Skip to main content

Comparative Skeletal Muscle Aging

  • Chapter
  • First Online:

Abstract

The decline in skeletal muscle function is characteristic of aging organisms across species ranging from C. elegans to humans. This is a multifaceted process involving changes in both the quantity (sarcopenia) and quality of skeletal muscle with age. This chapter describes age-related changes in several aspects of muscle function, including energy metabolism, muscle contraction, stem cell and injury repair and response to cellular stress. We pay particular attention to the effect of aging on different muscle fiber types. These fiber type differences, which are often overlooked, may explain some of the apparent contradictory results in the literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wright VJ and Perricelli BC (2008 Mar). Age-related rates of decline in performance among elite senior athletes. Am J Sports Med 36(3): 443–450.

    PubMed  Google Scholar 

  2. Hunter GR, McCarthy JP, and Bamman MM (2004). Effects of resistance training on older adults. Sports Med 34(5): 329–348.

    PubMed  Google Scholar 

  3. Janssen I, Shepard DS, Katzmarzyk PT, and Roubenoff R (2004 Jan). The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc 52(1): 80–85.

    PubMed  Google Scholar 

  4. Danneskiold-Samsoe B, Kofod V, Munter J, Grimby G, Schnohr P, and Jensen G (1984). Muscle strength and functional capacity in 78-81-year-old men and women. Eur J Appl Physiol Occup Physiol 52(3): 310–314.

    CAS  PubMed  Google Scholar 

  5. Overend TJ, Cunningham DA, Paterson DH, and Lefcoe MS (1992 Nov). Thigh composition in young and elderly men determined by computed tomography. Clin Physiol 12(6): 629–640.

    CAS  PubMed  Google Scholar 

  6. Jubrias SA, Odderson IR, Esselman PC, and Conley KE (1997 Jul). Decline in isokinetic force with age: muscle cross-sectional area and specific force. Pflugers Arch 434(3): 246–253.

    CAS  PubMed  Google Scholar 

  7. Lexell J, Henriksson-Larsen K, Winblad B, and Sjostrom M (1983 Oct). Distribution of different fiber types in human skeletal muscles: effects of aging studied in whole muscle cross sections. Muscle Nerve 6(8): 588–595.

    CAS  PubMed  Google Scholar 

  8. Lexell J, Taylor CC, and Sjostrom M (1988 Apr). What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci 84(2–3): 275–294.

    CAS  PubMed  Google Scholar 

  9. Brown M and Hasser EM (1996 Mar). Complexity of age-related change in skeletal muscle. J Gerontol A Biol Sci Med Sci 51(2): B117–B123.

    CAS  PubMed  Google Scholar 

  10. Holloszy JO, Chien M, Cartee GD, and Young JC (1991). Skeletal muscle atrophy in old rats: differential changes in the three fiber types. Mech Ageing Dev 60: 199–213.

    CAS  PubMed  Google Scholar 

  11. Muller FL, Song W, Liu Y, Chaudhuri A, Pieke-Dahl S, Strong R et al (2006 Jun 1). Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy. Free Radic Biol Med 40(11): 1993–2004.

    CAS  PubMed  Google Scholar 

  12. Brooks SV and Faulkner JA (1988 Oct). Contractile properties of skeletal muscles from young, adult and aged mice. J Physiol 404: 71–82.

    CAS  PubMed  Google Scholar 

  13. Herndon LA, Schmeissner PJ, Dudaronek JM, Brown PA, Listner KM, Sakano Y et al (2002 Oct 24). Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419(6909): 808–814.

    CAS  PubMed  Google Scholar 

  14. Cao Z, Wu Y, Curry K, Wu Z, Christen Y, and Luo Y (2007 Dec). Ginkgo biloba extract EGb 761 and Wisconsin Ginseng delay sarcopenia in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 62(12): 1337–1345.

    PubMed  Google Scholar 

  15. Daw CK, Starnes JW, and White TP (1988 Jun). Muscle atrophy and hypoplasia with aging: impact of training and food restriction. J Appl Physiol 64(6): 2428–2432.

    CAS  PubMed  Google Scholar 

  16. Larkin LM, Kuzon WM, and Halter JB (2003 May). Effects of age and nerve-repair grafts on reinnervation and fiber type distribution of rat medial gastrocnemius muscles. Mech Ageing Dev 124(5): 653–661.

    PubMed  Google Scholar 

  17. McKiernan SH, Bua E, McGorray J, and Aiken J (2004 Mar). Early-onset calorie restriction conserves fiber number in aging rat skeletal muscle. Faseb J 18(3): 580–581.

    PubMed  Google Scholar 

  18. Chung L and Ng YC (2006 Jan). Age-related alterations in expression of apoptosis regulatory proteins and heat shock proteins in rat skeletal muscle. Biochim Biophys Acta 1762(1): 103–109.

    CAS  PubMed  Google Scholar 

  19. Song W, Kwak HB, and Lawler JM (2006 Mar–Apr). Exercise training attenuates age-induced changes in apoptotic signaling in rat skeletal muscle. Antioxid Redox Signal 8(3–4): 517–528.

    CAS  PubMed  Google Scholar 

  20. Zheng J, Edelman SW, Tharmarajah G, Walker DW, Pletcher SD, and Seroude L (2005 Aug 23). Differential patterns of apoptosis in response to aging in Drosophila. Proc Natl Acad Sci U S A 102(34): 12083–12088.

    CAS  PubMed  Google Scholar 

  21. Siu PM and Alway SE (2005 Nov). Age-related apoptotic responses to stretch-induced hypertrophy in quail slow-tonic skeletal muscle. Am J Physiol Cell Physiol 289(5): C1105–C1113.

    CAS  PubMed  Google Scholar 

  22. Dirks AJ and Leeuwenburgh C (2004 Jan 1). Aging and lifelong calorie restriction result in adaptations of skeletal muscle apoptosis repressor, apoptosis-inducing factor, X-linked inhibitor of apoptosis, caspase-3, and caspase-12. Free Radic Biol Med 36(1): 27–39.

    CAS  PubMed  Google Scholar 

  23. Marzetti E, Lawler JM, Hiona A, Manini T, Seo AY, and Leeuwenburgh C (2008 Jan 15). Modulation of age-induced apoptotic signaling and cellular remodeling by exercise and calorie restriction in skeletal muscle. Free Radic Biol Med 44(2): 160–168.

    CAS  PubMed  Google Scholar 

  24. Phillips T and Leeuwenburgh C (2005 Apr). Muscle fiber specific apoptosis and TNF-alpha signaling in sarcopenia are attenuated by life-long calorie restriction. Faseb J 19(6): 668–670.

    CAS  PubMed  Google Scholar 

  25. Dirks AJ and Leeuwenburgh C (2006 Aug). Tumor necrosis factor alpha signaling in skeletal muscle: effects of age and caloric restriction. J Nutr Biochem 17(8): 501–508.

    CAS  PubMed  Google Scholar 

  26. Wanagat J, Cao Z, Pathare P, and Aiken JM (2001). Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia. Faseb J 15(2): 322–332.

    CAS  PubMed  Google Scholar 

  27. Lexell J (1995 Nov). Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci 50 Spec No: 11–16.

    CAS  PubMed  Google Scholar 

  28. Lee WS, Cheung WH, Qin L, Tang N, and Leung KS (2006 Sep). Age-associated decrease of type IIA/B human skeletal muscle fibers. Clin Orthop Relat Res 450: 231–237.

    PubMed  Google Scholar 

  29. Lexell J and Downham D (1992 Feb). What is the effect of ageing on type 2 muscle fibres? J Neurol Sci 107(2): 250–251.

    CAS  PubMed  Google Scholar 

  30. Korhonen MT, Cristea A, Alen M, Hakkinen K, Sipila S, Mero A et al (2006 Sep). Aging, muscle fiber type, and contractile function in sprint-trained athletes. J Appl Physiol 101(3): 906–917.

    CAS  PubMed  Google Scholar 

  31. Armstrong RB and Phelps RO (1984 Nov). Muscle fiber type composition of the rat hindlimb. Am J Anat 171(3): 259–272.

    CAS  PubMed  Google Scholar 

  32. Pistilli EE, Jackson JR, and Alway SE (2006 Dec). Death receptor-associated pro-apoptotic signaling in aged skeletal muscle. Apoptosis 11(12): 2115–2126.

    CAS  PubMed  Google Scholar 

  33. Lyons CN, Mathieu-Costello O, and Moyes CD (2006 Jan). Regulation of skeletal muscle mitochondrial content during aging. J Gerontol A Biol Sci Med Sci 61(1): 3–13.

    PubMed  Google Scholar 

  34. Rice KM and Blough ER (2006 Aug). Sarcopenia-related apoptosis is regulated differently in fast- and slow-twitch muscles of the aging F344/N x BN rat model. Mech Ageing Dev 127(8): 670–679.

    CAS  PubMed  Google Scholar 

  35. Anderson EJ and Neufer PD (2006 Mar). Type II skeletal myofibers possess unique properties that potentiate mitochondrial H(2)O(2) generation. Am J Physiol Cell Physiol 290(3): C844–C851.

    CAS  PubMed  Google Scholar 

  36. Pette D and Staron RS (2000). Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech 50: 500–509.

    CAS  PubMed  Google Scholar 

  37. Vandervoort AA and McComas AJ (1986 Jul). Contractile changes in opposing muscles of the human ankle joint with aging. J Appl Physiol 61(1): 361–367.

    CAS  PubMed  Google Scholar 

  38. Lynch GS, Hinkle RT, Chamberlain JS, Brooks SV, and Faulkner JA (2001). Force and power output of fast and slow skeletal muscles from mdx mice 6–28 months old. J Physiol 535(Pt 2): 591–600.

    CAS  PubMed  Google Scholar 

  39. Bolanowski MA, Russell RL, and Jacobson LA (1981 Mar). Quantitative measures of aging in the nematode Caenorhabditis elegans. I. Population and longitudinal studies of two behavioral parameters. Mech Ageing Dev 15(3): 279–295.

    CAS  PubMed  Google Scholar 

  40. Ingram DK (2000 Sep). Age-related decline in physical activity: generalization to nonhumans. Med Sci Sports Exerc 32(9): 1623–1629.

    CAS  PubMed  Google Scholar 

  41. Gonzalez E, Messi ML, and Delbono O (2000 Dec 1). The specific force of single intact extensor digitorum longus and soleus mouse muscle fibers declines with aging. J Membr Biol 178(3): 175–183.

    CAS  PubMed  Google Scholar 

  42. Prochniewicz E, Thompson LV, and Thomas DD (2007 Oct). Age-related decline in actomyosin structure and function. Exp Gerontol 42(10): 931–938.

    CAS  PubMed  Google Scholar 

  43. Thompson LV and Brown M (1999 Mar). Age-related changes in contractile properties of single skeletal fibers from the soleus muscle. J Appl Physiol 86(3): 881–886.

    CAS  PubMed  Google Scholar 

  44. Yu F, Hedstrom M, Cristea A, Dalen N, and Larsson L (2007 Jul). Effects of ageing and gender on contractile properties in human skeletal muscle and single fibres. Acta Physiol (Oxf ) 190(3): 229–241.

    CAS  Google Scholar 

  45. D‘Antona G, Pellegrino MA, Adami R, Rossi R, Carlizzi CN, Canepari M et al (2003 Oct 15). The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. J Physiol 552(Pt 2): 499–511.

    PubMed  Google Scholar 

  46. Hook P, Sriramoju V, and Larsson L (2001 Apr). Effects of aging on actin sliding speed on myosin from single skeletal muscle cells of mice, rats, and humans. Am J Physiol Cell Physiol 280(4): C782–C788.

    CAS  PubMed  Google Scholar 

  47. Hook P, Li X, Sleep J, Hughes S, and Larsson L (1999 Oct 15). In vitro motility speed of slow myosin extracted from single soleus fibres from young and old rats. J Physiol 520(Pt 2): 463–471.

    CAS  PubMed  Google Scholar 

  48. Fugere NA, Ferrington DA, and Thompson LV (2006 Aug). Protein nitration with aging in the rat semimembranosus and soleus muscles. J Gerontol A Biol Sci Med Sci 61(8): 806–812.

    PubMed  Google Scholar 

  49. Jimenez-Moreno R, Wang ZM, Gerring RC, and Delbono O (2008 Apr 15). Sarcoplasmic reticulum Ca2+ release declines in muscle fibers from aging mice. Biophys J 94(8): 3178–3188.

    CAS  PubMed  Google Scholar 

  50. Payne AM, Zheng Z, Gonzalez E, Wang ZM, Messi ML, and Delbono O (2004 Oct 1). External Ca(2+)-dependent excitation–contraction coupling in a population of ageing mouse skeletal muscle fibres. J Physiol 560(Pt 1): 137–155.

    CAS  PubMed  Google Scholar 

  51. Brooks SV and Faulkner JA (1994 Aug). Isometric, shortening, and lengthening contractions of muscle fiber segments from adult and old mice. Am J Physiol 267(2 Pt 1): C507–C513.

    CAS  PubMed  Google Scholar 

  52. Lexell J (1997 May). Evidence for nervous system degeneration with advancing age. J Nutr 127(5 Suppl): 1011S–1013S.

    CAS  PubMed  Google Scholar 

  53. Gordon T, Hegedus J, and Tam SL (2004 Mar). Adaptive and maladaptive motor axonal sprouting in aging and motoneuron disease. Neurol Res 26(2): 174–185.

    PubMed  Google Scholar 

  54. Nelson RM, Soderberg GL, and Urbscheit NL (1984 Jan). Alteration of motor-unit discharge characteristics in aged humans. Physical Therapy 64(1): 29–34.

    CAS  PubMed  Google Scholar 

  55. Snow LM, McLoon LK, and Thompson LV (2005 Sep). Adult and developmental myosin heavy chain isoforms in soleus muscle of aging Fischer Brown Norway rat. Anat Rec A Discov Mol Cell Evol Biol 286(1): 866–873.

    PubMed  Google Scholar 

  56. Wang YJ, Zhou CJ, Shi Q, Smith N, and Li TF (2007 May). Aging delays the regeneration process following sciatic nerve injury in rats. J Neurotrauma 24(5): 885–894.

    PubMed  Google Scholar 

  57. Edstrom E, Altun M, Bergman E, Johnson H, Kullberg S, Ramirez-Leon V et al (2007 Sep 10). Factors contributing to neuromuscular impairment and sarcopenia during aging. Physiol Behav 92(1–2): 129–135.

    PubMed  Google Scholar 

  58. Jubrias SA and Conley KE (2001). Aging Effects on Muscle Properties and Human Performance. Functional Neurobiology of Aging. New York: Academic Press, pp. 661–673.

    Google Scholar 

  59. Buskirk ER and Hodgson JL (1987). Age and aerobic power: the rate of change in men and women. Fed Proc 46: 1824–1829.

    CAS  PubMed  Google Scholar 

  60. Coggan AR, Abduljalil AM, Swanson SC, Earle MS, Farris JW, Mendenhall LA et al (1993). Muscle metabolism during exercise in young and older untrained and endurance-trained men. J Appl Physiol 75(5): 2125–2133.

    CAS  PubMed  Google Scholar 

  61. Conley KE, Esselman PC, Jubrias SA, Cress ME, Inglin B, Mogadam C et al (2000). Ageing, muscle properties and maximal O2 uptake rate in humans. J Physiol 526(1): 211–217.

    CAS  PubMed  Google Scholar 

  62. Conley KE, Jubrias SA, and Esselman PC (2000). Oxidative capacity and ageing in human muscle. J Physiol 526(1): 203–210.

    CAS  PubMed  Google Scholar 

  63. McCully K, Fielding K, Evans RA, Leigh WJ, Jr. JS, and Posner J (1993). Relationships between in vivo and in vitro measurements of metabolism in young and old human calf muscles. J Appl Physiol 75(2): 813–819.

    CAS  PubMed  Google Scholar 

  64. Proctor DN and Joyner MJ (1997). Skeletal muscle mass and the reduction of VO2max in trained older subjects. J Appl Physiol 82: 1411–1415.

    CAS  PubMed  Google Scholar 

  65. Schefer V and Talan MI (1996 May–Jun). Oxygen consumption in adult and AGED C57BL/6 J mice during acute treadmill exercise of different intensity. Exp Gerontol 31(3): 387–392.

    CAS  PubMed  Google Scholar 

  66. Hepple RT, Hagen JL, Krause DJ, and Jackson CC (2003 Mar). Aerobic power declines with aging in rat skeletal muscles perfused at matched convective O2 delivery. J Appl Physiol 94(2): 744–751.

    PubMed  Google Scholar 

  67. McKeever KH and Malinowski K (1997 Dec). Exercise capacity in young and old mares. Am J Vet Res 58(12): 1468–1472.

    CAS  PubMed  Google Scholar 

  68. Betros CL, McKeever KH, Kearns CF, and Malinowski K (2002). Effects of ageing and training on maximal heart rate and VO2max. Equine Vet J Suppl. (Sep.) 34: 100–105.

    Google Scholar 

  69. Proctor DN, Shen PH, Dietz NM, Eickhoff TJ, Lawler LA, Ebersold EJ et al (1998 Jul). Reduced leg blood flow during dynamic exercise in older endurance-trained men. J Appl Physiol 85(1): 68–75.

    CAS  PubMed  Google Scholar 

  70. Betik AC and Hepple RT (2008 Feb). Determinants of VO2max decline with aging: an integrated perspective. Appl Physiol Nutr Metab 33(1): 130–140.

    PubMed  Google Scholar 

  71. Payne GW (2006 Jun). Effect of inflammation on the aging microcirculation: impact on skeletal muscle blood flow control. Microcirculation 13(4): 343–352.

    CAS  PubMed  Google Scholar 

  72. Payne GW and Bearden SE (2006 Jun). The microcirculation of skeletal muscle in aging. Microcirculation 13(4): 275–277.

    CAS  PubMed  Google Scholar 

  73. Marcinek DJ (2004 Dec). Mitochondrial dysfunction measured in vivo. Acta Physiol Scand 182(4): 343–352.

    CAS  PubMed  Google Scholar 

  74. Irrcher I, Adhihetty PJ, Joseph AM, Ljubicic V, and Hood DA (2003). Regulation of mitochondrial biogenesis in muscle by endurance exercise. Sports Med 33(11): 783–793.

    PubMed  Google Scholar 

  75. Floyd RA, West M, and Hensley K (2001). Oxidative biochemical markers; clues to understanding aging in long- lived species. Exp Gerontol 36(4–6): 619–640.

    CAS  PubMed  Google Scholar 

  76. Ji LL, Leeuwenburgh C, Leichtweis S, Gore M, Fiebig R, Hollander J et al (1998 Nov). Oxidative stress and aging. Role of exercise and its influences on antioxidant systems. Ann N Y Acad Sci 20(854): 102–117.

    Google Scholar 

  77. Sastre J, Pallardo FV, and Vina J (2003 Jul 1). The role of mitochondrial oxidative stress in aging. Free Radic Biol Med 35(1): 1–8.

    CAS  PubMed  Google Scholar 

  78. Van Remmen H and Richardson A (2001). Oxidative damage to mitochondria and aging. Exp Gerontol 36(7): 957–968.

    CAS  PubMed  Google Scholar 

  79. Hoppeler H and Lindstedt SL (2006 Apr). In health and in a normoxic environment, VO2max is/is not limited primarily by cardiac output and locomotor muscle blood flow. J Appl Physiol 100(4): 1415–1416.

    PubMed  Google Scholar 

  80. Amara CE, Shankland EG, Jubrias SA, Marcinek DJ, Kushmerick MJ, and Conley KE (2007 Jan 16). Mild mitochondrial uncoupling impacts cellular aging in human muscles in vivo. Proc Natl Acad Sci U S A 104(3): 1057–1062.

    CAS  PubMed  Google Scholar 

  81. Marcinek DJ, Schenkman KA, Ciesielski WA, Lee D, and Conley KE (2005 Dec 1). Reduced mitochondrial coupling in vivo alters cellular energetics in aged mouse skeletal muscle. J Physiol 569(Pt 2): 467–473.

    CAS  PubMed  Google Scholar 

  82. Richter C, Schweizer M, Cossarizza A, and Franceschi C (1996 Jan 8). Control of apoptosis by the cellular ATP level. FEBS Lett 378(2): 107–110.

    CAS  PubMed  Google Scholar 

  83. Skulachev VP (2006 Mar 9). Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis 11(4): 473–485.

    CAS  PubMed  Google Scholar 

  84. Halestrap AP, Doran E, Gillespie JP, and O‘Toole A (2000 Feb). Mitochondria and cell death. Biochem Soc Trans 28(2): 170–177.

    CAS  PubMed  Google Scholar 

  85. Kroemer G, Dallaporta B, and Resche-Rigon M (1998). The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60: 619–642.

    CAS  PubMed  Google Scholar 

  86. Lemasters JJ, Qian T, Bradham CA, Brenner DA, Cascio WE, Trost LC et al (1999 Aug). Mitochondrial dysfunction in the pathogenesis of necrotic and apoptotic cell death. J Bioenerg Biomembr 31(4): 305–319.

    CAS  PubMed  Google Scholar 

  87. Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S et al (2005 Apr 12). Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci U S A 102(15): 5618–5623.

    CAS  PubMed  Google Scholar 

  88. Barazzoni R, Short KR, and Nair KS (2000). Effects of aging on mitochondrial DNA copy number and cytochrome c oxidase gene expression in rat skeletal muscle, liver, and heart. J Biol Chem 275(5): 3343–3347.

    CAS  PubMed  Google Scholar 

  89. Trounce I, Byrne E, and Marzuki S (1989 Mar 25). Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageing. Lancet 1(8639): 637–639.

    CAS  PubMed  Google Scholar 

  90. Boffoli D, Scacco SC, Vergari R, Solarino G, Santacroce G, and Papa S (1994 Apr 12). Decline with age of the respiratory chain activity in human skeletal muscle. Biochim Biophys Acta 1226(1): 73–82.

    CAS  PubMed  Google Scholar 

  91. Drew B, Phaneuf S, Dirks A, Selman C, Gredilla R, Lezza A et al (2003 Feb). Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart. Am J Physiol Regul Integr Comp Physiol 284(2): R474–R480.

    CAS  PubMed  Google Scholar 

  92. Desai VG, Weindruch R, Hart RW, and Feuers RJ (1996). Influences of age and dietary restriction on gastrocnemius electron transport system activities in mice. Arch Biochem Biophys 333(1): 145–151.

    CAS  PubMed  Google Scholar 

  93. Hagen JL, Krause DJ, Baker DJ, Fu MH, Tarnopolsky MA, and Hepple RT (2004 Nov). Skeletal muscle aging in F344BN F1-hybrid rats: I. Mitochondrial dysfunction contributes to the age-associated reduction in VO2max. J Gerontol A Biol Sci Med Sci 59(11): 1099–1110.

    PubMed  Google Scholar 

  94. Kim JS, Hinchcliff KW, Yamaguchi M, Beard LA, Markert CD, and Devor ST (2005 May). Age-related changes in metabolic properties of equine skeletal muscle associated with muscle plasticity. Vet J 169(3): 397–403.

    CAS  PubMed  Google Scholar 

  95. Ferguson M, Mockett RJ, Shen Y, Orr WC, and Sohal RS (2005 Sep 1). Age-associated decline in mitochondrial respiration and electron transport in Drosophila melanogaster. Biochem J 390(Pt 2): 501–511.

    CAS  PubMed  Google Scholar 

  96. Schwarze SR, Weindruch R, and Aiken JM (1998 Oct). Oxidative stress and aging reduce COX I RNA and cytochrome oxidase activity in Drosophila. Free Radic Biol Med 25(6): 740–747.

    CAS  PubMed  Google Scholar 

  97. Schwarze SR, Weindruch R, and Aiken JM (1998 May). Decreased mitochondrial RNA levels without accumulation of mitochondrial DNA deletions in aging Drosophila melanogaster. Mutat Res 382(3–4): 99–107.

    CAS  PubMed  Google Scholar 

  98. Kwong LK and Sohal RS (2000 Jan 1). Age-related changes in activities of mitochondrial electron transport complexes in various tissues of the mouse. Arch Biochem Biophys 373(1): 16–22.

    CAS  PubMed  Google Scholar 

  99. Zahn JM, Sonu R, Vogel H, Crane E, Mazan-Mamczarz K, Rabkin R et al (2006 Jul). Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet 2(7): e115.

    PubMed  Google Scholar 

  100. Welle S, Brooks AI, Delehanty JM, Needler N, and Thornton CA (2003 Jul 7). Gene expression profile of aging in human muscle. Physiol Genomics 14(2): 149–159.

    CAS  PubMed  Google Scholar 

  101. Pletcher SD, Macdonald SJ, Marguerie R, Certa U, Stearns SC, Goldstein DB et al (2002 Apr 30). Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster. Curr Biol 12(9): 712–723.

    CAS  PubMed  Google Scholar 

  102. Lund J, Tedesco P, Duke K, Wang J, Kim SK, and Johnson TE (2002 Sep 17). Transcriptional profile of aging in C. elegans. Curr Biol 12(18): 1566–1573.

    CAS  PubMed  Google Scholar 

  103. Lee C-K, Klopp RG, Weindruch R, and Prolla TA (1999). Gene expression profile of aging and its retardation by caloric restriction. Science 285: 1390–1393.

    CAS  PubMed  Google Scholar 

  104. Kent-Braun JA and Ng AV (2000 Sep). Skeletal muscle oxidative capacity in young and older women and men. J Appl Physiol 89(3): 1072–1078.

    CAS  PubMed  Google Scholar 

  105. Brierly EJ, Johnson MA, Bowman A, Ford GA, Subhan F, Reed JW et al (1997). Mitochondrial function in muscle from elderly athletes. Ann Neurol 41(1): 114–116.

    CAS  PubMed  Google Scholar 

  106. Brierley E, Johnson M, James O, and Turnbull D (1996 April 1). Effects of physical activity and age on mitochondrial function. QJM 89(4): 251–258.

    CAS  PubMed  Google Scholar 

  107. Rasmussen UF, Krustrup P, Kjaer M, and Rasmussen HN (2003 Aug). Experimental evidence against the mitochondrial theory of aging A study of isolated human skeletal muscle mitochondria. Exp Gerontol 38(8): 877–886.

    CAS  PubMed  Google Scholar 

  108. Rasmussen UF, Krustrup P, Kjaer M, and Rasmussen HN (2003 May). Human skeletal muscle mitochondrial metabolism in youth and senescence: no signs of functional changes in ATP formation and mitochondrial oxidative capacity. Pflugers Arch 446(2): 270–278.

    CAS  PubMed  Google Scholar 

  109. Rogers MA, Hagberg JM, Martin WH, 3rd, Ehsani AA, and Holloszy JO (1990 May). Decline in VO2max with aging in master athletes and sedentary men. J Appl Physiol 68(5): 2195–2199.

    CAS  PubMed  Google Scholar 

  110. Faulkner JA, Larkin LM, Claflin DR, and Brooks SV (2007 Nov). Age-related changes in the structure and function of skeletal muscles. Clin Exp Pharmacol Physiol 34(11): 1091–1096.

    CAS  PubMed  Google Scholar 

  111. Ojanen T, Rauhala T, and Hakkinen K (2007 Feb). Strength and power profiles of the lower and upper extremities in master throwers at different ages. J Strength Cond Res 21(1): 216–222.

    PubMed  Google Scholar 

  112. Jokl P, Sethi PM, and Cooper AJ (2004 Aug). Master’s performance in the New York City Marathon 1983–1999. Br J Sports Med 38(4): 408–412.

    CAS  PubMed  Google Scholar 

  113. Lazarus NR and Harridge SD (2007 Oct). Inherent ageing in humans: the case for studying master athletes. Scand J Med Sci Sports 17(5): 461–463.

    CAS  PubMed  Google Scholar 

  114. Tarpenning KM, Hamilton-Wessler M, Wiswell RA, and Hawkins SA (2004 Jan). Endurance training delays age of decline in leg strength and muscle morphology. Med Sci Sports Exerc 36(1): 74–78.

    PubMed  Google Scholar 

  115. Johnson MA, Polgar J, Weightman D, and Appleton D (1973 Jan). Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 18(1): 111–129.

    CAS  PubMed  Google Scholar 

  116. Houmard JA, Weidner ML, Gavigan KE, Tyndall GL, Hickey MS, and Alshami A (1998 Oct). Fiber type and citrate synthase activity in the human gastrocnemius and vastus lateralis with aging. J Appl Physiol 85(4): 1337–1341.

    CAS  PubMed  Google Scholar 

  117. Bejma J and Ji LL (1999 Jul). Aging and acute exercise enhance free radical generation in rat skeletal muscle. J Appl Physiol 87(1): 465–470.

    CAS  PubMed  Google Scholar 

  118. Lopez-Torres M, Gredilla R, Sanz A, and Barja G (2002). Influence of aging and long-term caloric restriction on oxygen radical generation and the oxidative DNA damage in rat liver mitochondria. Free Radic Biol Med 32(9): 882–889.

    CAS  PubMed  Google Scholar 

  119. Moghaddas S, Hoppel CL, and Lesnefsky EJ (2003). Aging defect at the Q(O) site of complex III augments oxyradical production in rat heart interfibrillar mitochondria. Arch Biochem Biophys 414(1): 59–66.

    CAS  PubMed  Google Scholar 

  120. Nicholls DG (2004 Feb). Mitochondrial membrane potential and aging. Aging Cell 3(1): 35–40.

    CAS  PubMed  Google Scholar 

  121. Heerdt BG, Houston MA, Wilson AJ, and Augenlicht LH (2003 Oct 1). The intrinsic mitochondrial membrane potential (Deltapsim) is associated with steady-state mitochondrial activity and the extent to which colonic epithelial cells undergo butyrate-mediated growth arrest and apoptosis. Cancer Res 63(19): 6311–6319.

    CAS  PubMed  Google Scholar 

  122. Stoetzer OJ, Pogrebniak A, Pelka-Fleischer R, Hasmann M, Hiddemann W, and Nuessler V (2002 Feb 1). Modulation of apoptosis by mitochondrial uncouplers: apoptosis-delaying features despite intrinsic cytotoxicity. Biochem Pharmacol 63(3): 471–483.

    CAS  PubMed  Google Scholar 

  123. Goodell S and Cortopassi G (1998). Analysis of oxygen consumption and mitochondrial permeability with age in mice. Mech Ageing Dev 101: 245–256.

    CAS  PubMed  Google Scholar 

  124. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL et al (2003 May 16). Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300(5622): 1140–1142.

    CAS  PubMed  Google Scholar 

  125. Korshunov SS, Skulachev VP, and Starkov AA (1997 Oct 13). High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416(1): 15–18.

    CAS  PubMed  Google Scholar 

  126. Skulachev VP (1998). Uncoupling: new approaches to an old problem of bioenergetics. Biochimica et Biophysica Acta 1363: 100–124.

    CAS  PubMed  Google Scholar 

  127. Brand MD (2000). Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Gerontol 35: 811–820.

    CAS  PubMed  Google Scholar 

  128. Neschen S, Katterle Y, Richter J, Augustin R, Scherneck S, Mirhashemi F et al (2008 Mar 18). Uncoupling protein 1 expression in murine skeletal muscle increases AMPK activation, glucose turnover and insulin sensitivity in vivo. Physiol Genomics 33(3): 333–340.

    Google Scholar 

  129. Gates AC, Bernal-Mizrachi C, Chinault SL, Feng C, Schneider JG, Coleman T et al (2007 Dec). Respiratory uncoupling in skeletal muscle delays death and diminishes age-related disease. Cell Metab 6(6): 497–505.

    CAS  PubMed  Google Scholar 

  130. Caldeira Da Silva C, Cerqueira F, Barbosa L, Medeiros M, and Kowaltowski A (2008). Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance, and longevity. Aging Cell 7(4): 552–560.

    Google Scholar 

  131. Speakman JR, Talbot DA, Selman C, Snart S, McLaren JS, Redman P et al (2004 Jun). Uncoupled and surviving: individual mice with high metabolism have greater mitochondrial uncoupling and live longer. Aging Cell 3(3): 87–95.

    CAS  PubMed  Google Scholar 

  132. Rohas LM, St-Pierre J, Uldry M, Jager S, Handschin C, and Spiegelman BM (2007 May 8). A fundamental system of cellular energy homeostasis regulated by PGC-1alpha. Proc Natl Acad Sci U S A 104(19): 7933–7938.

    CAS  PubMed  Google Scholar 

  133. Reznick RM, Zong H, Li J, Morino K, Moore IK, Yu HJ et al (2007 Feb). Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab 5(2): 151–156.

    CAS  PubMed  Google Scholar 

  134. Muller-Hocker J, Droste M, Kadenbach B, Pongratz D, and Hubner G (1989 Jul). Fatal mitochondrial myopathy with cytochrome-c-oxidase deficiency and subunit-restricted reduction of enzyme protein in two siblings: an autopsy-immunocytochemical study. Human Pathol 20(7): 666–672.

    CAS  Google Scholar 

  135. Muller-Hocker J (1990 Dec). Cytochrome c oxidase deficient fibres in the limb muscle and diaphragm of man without muscular disease: an age-related alteration. J Neurol Sci 100(1–2): 14–21.

    CAS  PubMed  Google Scholar 

  136. Olson W, Engel WK, Walsh GO, and Einaugler R (1972 Mar). Oculocraniosomatic neuromuscular disease with “ragged-red” fibers. Arch Neurol 26(3): 193–211.

    CAS  PubMed  Google Scholar 

  137. Muller-Hocker J, Schneiderbanger K, Stefani FH, and Kadenbach B (1992 Sep). Progressive loss of cytochrome c oxidase in the human extraocular muscles in ageing – a cytochemical-immunohistochemical study. Mutat Res 275(3–6): 115–124.

    CAS  PubMed  Google Scholar 

  138. Liu VW, Zhang C, and Nagley P (1998 Mar 1). Mutations in mitochondrial DNA accumulate differentially in three different human tissues during ageing. Nucleic Acids Res 26(5): 1268–1275.

    CAS  PubMed  Google Scholar 

  139. Muller-Hocker J, Seibel P, Schneiderbanger K, and Kadenbach B (1993). Different in situ hybridization patterns of mitochondrial DNA in cytochrome c oxidase-deficient extraocular muscle fibres in the elderly. Virchows Arch A Pathol Anat Histopathol 422(1): 7–15.

    CAS  PubMed  Google Scholar 

  140. Lee CM, Chung SS, Kaczkowski JM, Weindruch R, and Aiken JM (1993 Nov). Multiple mitochondrial DNA deletions associated with age in skeletal muscle of rhesus monkeys. J Gerontol 48(6): B201–B205.

    CAS  PubMed  Google Scholar 

  141. Cortopassi GA and Wong A (1999 Feb 9). Mitochondria in organismal aging and degeneration. Biochimica et biophysica acta 1410(2): 183–193.

    CAS  PubMed  Google Scholar 

  142. Wanagat J, Lopez M, and Aiken JM (2001). Alterations of the mitochondrial genome. In Handbook of The Biology of Aging. (Masoro E, Austad S, eds., 5th ed). San Diego: Academic Press, pp. 114–131.

    Google Scholar 

  143. Wanagat J, Wolff MR, and Aiken JM (2002 Jan). Age-associated changes in function, structure and mitochondrial genetic and enzymatic abnormalities in the Fischer 344 x Brown Norway F(1) hybrid rat heart. J Mol Cell Cardiol 34(1): 17–28.

    CAS  PubMed  Google Scholar 

  144. Bua EA, McKiernan SH, and Aiken JM (2004 Jan 20). Calorie restriction limits the generation but not the progression of mitochondrial abnormalities in aging skeletal muscle. Faseb J 18(3): 582–584.

    CAS  PubMed  Google Scholar 

  145. Gokey NG, Cao Z, Pak JW, Lee D, McKiernan SH, McKenzie D et al (2004 Oct). Molecular analyses of mtDNA deletion mutations in microdissected skeletal muscle fibers from aged rhesus monkeys. Aging Cell 3(5): 319–326.

    CAS  PubMed  Google Scholar 

  146. Cao Z, Wanagat J, McKiernan SH, and Aiken JM (2001 Nov 1). Mitochondrial DNA deletion mutations are concomitant with ragged red regions of individual, aged muscle fibers: analysis by laser-capture microdissection. Nucleic Acids Res 29(21): 4502–4508.

    CAS  PubMed  Google Scholar 

  147. Herbst A, Pak JW, McKenzie D, Bua E, Bassiouni M, and Aiken JM (2007 Mar). Accumulation of mitochondrial DNA deletion mutations in aged muscle fibers: evidence for a causal role in muscle fiber loss. J Gerontol A Biol Sci Med Sci 62(3): 235–245.

    PubMed  Google Scholar 

  148. Bua E, Johnson J, Herbst A, Delong B, McKenzie D, Salamat S et al (2006 Sep). Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am J Hum Genet 79(3): 469–480.

    CAS  PubMed  Google Scholar 

  149. Prigione A and Cortopassi G (2007 Oct). Mitochondrial DNA deletions induce the adenosine monophosphate-activated protein kinase energy stress pathway and result in decreased secretion of some proteins. Aging Cell 6(5): 619–630.

    CAS  PubMed  Google Scholar 

  150. Prigione A and Cortopassi G (2007 Jul–Aug). Mitochondrial DNA deletions and chloramphenicol treatment stimulate the autophagic transcript ATG12. Autophagy 3(4): 377–380.

    CAS  PubMed  Google Scholar 

  151. Aspnes LE, Lee CM, Weindruch R, Chung SS, Roecker EB, and Aiken JM (1997 Jun). Caloric restriction reduces fiber loss and mitochondrial abnormalities in aged rat muscle. Faseb J 11(7): 573–581.

    CAS  PubMed  Google Scholar 

  152. Lopez ME, Van Zeeland NL, Dahl DB, Weindruch R, and Aiken JM (2000 Jul 20). Cellular phenotypes of age-associated skeletal muscle mitochondrial abnormalities in rhesus monkeys. Mutat Res 452(1): 123–138.

    CAS  PubMed  Google Scholar 

  153. Bua E, Johnson J, Herbst A, Delong B, McKenzie D, Salamat S et al (2006 Sep). Mitochondrial DNA deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am J Hum Genet 79(3): 469–480.

    CAS  PubMed  Google Scholar 

  154. Bua EA, McKiernan SH, Wanagat J, McKenzie D, and Aiken JM (2002 Jun). Mitochondrial abnormalities are more frequent in muscles undergoing sarcopenia. J Appl Physiol 92(6): 2617–2624.

    PubMed  Google Scholar 

  155. Tyynismaa H, Mjosund KP, Wanrooij S, Lappalainen I, Ylikallio E, Jalanko A et al (2005 Dec 6). Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice. Proc Natl Acad Sci U S A 102(49): 17687–17692.

    CAS  PubMed  Google Scholar 

  156. Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE et al (2005 Jul 15). Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309(5733): 481–484.

    CAS  PubMed  Google Scholar 

  157. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE et al (2004 May 27). Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429(6990): 417–423.

    CAS  PubMed  Google Scholar 

  158. Esposito LA, Melov S, Panov A, Cottrell BA, and Wallace DC (1999 Apr 27). Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci U S A 96(9): 4820–4825.

    CAS  PubMed  Google Scholar 

  159. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M et al (2005 May 5). Extension of murine lifespan by overexpression of catalase targeted to mitochondria. Science 308(5730):1909–1911.

    CAS  PubMed  Google Scholar 

  160. Faulkner JA, Brooks SV, and Zerba E (1995 Nov). Muscle atrophy and weakness with aging: contraction-induced injury as an underlying mechanism. J Gerontol A Biol Sci Med Sci 50 Spec No: 124–129.

    CAS  PubMed  Google Scholar 

  161. Manfredi TG, Fielding RA, O‘Reilly KP, Meredith CN, Lee HY, and Evans WJ (1991 Sep). Plasma creatine kinase activity and exercise-induced muscle damage in older men. Med Sci Sports Exerc 23(9): 1028–1034.

    CAS  PubMed  Google Scholar 

  162. Roth SM, Martel GF, Ivey FM, Lemmer JT, Metter EJ, Hurley BF et al (2000 Dec 1). Skeletal muscle satellite cell populations in healthy young and older men and women. Anat Rec 260(4): 351–358.

    CAS  PubMed  Google Scholar 

  163. McBride T (2000 Jun 20). Increased depolarization, prolonged recovery and reduced adaptation of the resting membrane potential in aged rat skeletal muscles following eccentric contractions. Mech Ageing Dev 115(3): 127–138.

    CAS  PubMed  Google Scholar 

  164. Rader EP and Faulkner JA (2006 Sep). Effect of aging on the recovery following contraction-induced injury in muscles of female mice. J Appl Physiol 101(3): 887–892.

    PubMed  Google Scholar 

  165. Rader EP and Faulkner JA (2006 Feb). Recovery from contraction-induced injury is impaired in weight-bearing muscles of old male mice. J Appl Physiol 100(2): 656–661.

    PubMed  Google Scholar 

  166. McBride TA, Gorin FA, and Carlsen RC (1995 Sep 15). Prolonged recovery and reduced adaptation in aged rat muscle following eccentric exercise. Mech Ageing Dev 83(3): 185–200.

    CAS  PubMed  Google Scholar 

  167. Brack AS, Bildsoe H, and Hughes SM (2005 Oct 15). Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy. J Cell Sci 118(Pt 20): 4813–4821.

    CAS  PubMed  Google Scholar 

  168. Carlson ME and Conboy IM (2007 Jun). Loss of stem cell regenerative capacity within aged niches. Aging Cell 6(3): 371–382.

    CAS  PubMed  Google Scholar 

  169. Gopinath SD and Rando TA (2008 Aug). Stem cell review series: aging of the skeletal muscle stem cell niche. Aging Cell 7(4): 590–598.

    CAS  PubMed  Google Scholar 

  170. Shefer G, Van de Mark DP, Richardson JB, and Yablonka-Reuveni Z (2006 Jun 1). Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol 294(1): 50–66.

    CAS  PubMed  Google Scholar 

  171. Snow MH (1977 Dec 19). The effects of aging on satellite cells in skeletal muscles of mice and rats. Cell Tissue Res 185(3): 399–408.

    CAS  PubMed  Google Scholar 

  172. Gibson MC and Schultz E (1983 Oct). Age-related differences in absolute numbers of skeletal muscle satellite cells. Muscle Nerve 6(8): 574–580.

    CAS  PubMed  Google Scholar 

  173. Dedkov EI, Borisov AB, Wernig A, and Carlson BM (2003 Jul). Aging of skeletal muscle does not affect the response of satellite cells to denervation. J Histochem Cytochem 51(7): 853–863.

    CAS  PubMed  Google Scholar 

  174. Renault V, Rolland E, Thornell LE, Mouly V, and Butler-Browne G (2002 Dec). Distribution of satellite cells in the human vastus lateralis muscle during aging. Exp Gerontol 37(12): 1513–1514.

    CAS  PubMed  Google Scholar 

  175. Sajko S, Kubinova L, Cvetko E, Kreft M, Wernig A, and Erzen I (2004 Feb). Frequency of M-cadherin-stained satellite cells declines in human muscles during aging. J Histochem Cytochem 52(2): 179–185.

    CAS  PubMed  Google Scholar 

  176. Nnodim JO (2000 Jan 3). Satellite cell numbers in senile rat levator ani muscle. Mech Ageing Dev 112(2): 99–111.

    CAS  PubMed  Google Scholar 

  177. Grounds MD (1998 Nov). Age-associated changes in the response of skeletal muscle cells to exercise and regeneration. Ann N Y Acad Sci 20(854): 78–91.

    Google Scholar 

  178. Harridge SD (2003 Feb). Ageing and local growth factors in muscle. Scand J Med Sci Sports 13(1): 34–39.

    PubMed  Google Scholar 

  179. Goldspink G (2004 Jun). Age-related muscle loss and progressive dysfunction in mechanosensitive growth factor signaling. Ann N Y Acad Sci 1019: 294–298.

    CAS  PubMed  Google Scholar 

  180. Jejurikar SS and Kuzon WM, Jr. (2003 Dec). Satellite cell depletion in degenerative skeletal muscle. Apoptosis 8(6): 573–578.

    CAS  PubMed  Google Scholar 

  181. Chakravarthy MV, Abraha TW, Schwartz RJ, Fiorotto ML, and Booth FW (2000 Nov 17). Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3-kinase/Akt signaling pathway. J Biol Chem 275(46): 35942–35952.

    CAS  PubMed  Google Scholar 

  182. Jejurikar SS, Henkelman EA, Cederna PS, Marcelo CL, Urbanchek MG, and Kuzon WM, Jr. (2006 Sep). Aging increases the susceptibility of skeletal muscle derived satellite cells to apoptosis. Exp Gerontol 41(9): 828–836.

    CAS  PubMed  Google Scholar 

  183. Wokke JH, Van den Oord CJ, Leppink GJ, and Jennekens FG (1989 Feb). Perisynaptic satellite cells in human external intercostal muscle: a quantitative and qualitative study. Anat Rec 223(2): 174–180.

    CAS  PubMed  Google Scholar 

  184. Zammit PS, Partridge TA, and Yablonka-Reuveni Z (2006 Nov). The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 54(11): 1177–1191.

    CAS  PubMed  Google Scholar 

  185. Kelly AM (1978 Apr). Perisynaptic satellite cells in the developing and mature rat soleus muscle. Anat Rec 190(4): 891–903.

    CAS  PubMed  Google Scholar 

  186. Wagatsuma A (2006 Jan). Effect of aging on expression of angiogenesis-related factors in mouse skeletal muscle. Exp Gerontol 41(1): 49–54.

    CAS  PubMed  Google Scholar 

  187. Brandes RP, Fleming I, and Busse R (2005 May 1). Endothelial aging. Cardiovasc Res 66(2): 286–294.

    CAS  PubMed  Google Scholar 

  188. Anderson JE (2000 May). A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell 11(5): 1859–1874.

    CAS  PubMed  Google Scholar 

  189. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, and Rando TA (2005 Feb 17). Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433(7027): 760–764.

    CAS  PubMed  Google Scholar 

  190. Conboy IM and Rando TA (2005 Mar). Aging, stem cells and tissue regeneration: lessons from muscle. Cell Cycle 4(3): 407–410.

    CAS  PubMed  Google Scholar 

  191. Mezzogiorno A, Coletta M, Zani BM, Cossu G, and Molinaro M (1993 Aug 1). Paracrine stimulation of senescent satellite cell proliferation by factors released by muscle or myotubes from young mice. Mech Ageing Dev 70(1–2): 35–44.

    CAS  PubMed  Google Scholar 

  192. Reeves I, Abribat T, Laramee P, Jasmin G, and Brazeau P (2000 Apr). Age-related serum levels of insulin-like growth factor-I, -II and IGF-binding protein-3 following myocardial infarction. Growth Horm IGF Res 10(2): 78–84.

    CAS  PubMed  Google Scholar 

  193. Beggs ML, Nagarajan R, Taylor-Jones JM, Nolen G, Macnicol M, and Peterson CA (2004 Dec). Alterations in the TGFbeta signaling pathway in myogenic progenitors with age. Aging Cell 3(6): 353–361.

    CAS  PubMed  Google Scholar 

  194. Rosa EF, Silva AC, Ihara SS, Mora OA, Aboulafia J, and Nouailhetas VL (2005 Oct). Habitual exercise program protects murine intestinal, skeletal, and cardiac muscles against aging. J Appl Physiol 99(4): 1569–1575.

    PubMed  Google Scholar 

  195. Kohrt WM, Malley MT, Coggan AR, Spina RJ, Ogawa T, Ehsani AA et al (1991 Nov). Effects of gender, age, and fitness level on response of VO2max to training in 60-71 yr olds. J Appl Physiol 71(5): 2004–2011.

    CAS  PubMed  Google Scholar 

  196. Jubrias SA, Esselman PC, Price LB, Cress ME, and Conley KE (2001). Large energetic adaptations of elderly muscle to resistance and endurance training. J Appl Physiol 90: 1663–1670.

    CAS  PubMed  Google Scholar 

  197. Melov S, Tarnopolsky MA, Beckman K, Felkey K, and Hubbard A (2007). Resistance exercise reverses aging in human skeletal muscle. PLoS ONE 2(5): e465.

    PubMed  Google Scholar 

  198. Hakkinen K, Pakarinen A, Kraemer WJ, Hakkinen A, Valkeinen H, and Alen M (2001 Aug). Selective muscle hypertrophy, changes in EMG and force, and serum hormones during strength training in older women. J Appl Physiol 91(2): 569–580.

    CAS  PubMed  Google Scholar 

  199. Hakkinen K, Alen M, and Komi PV (1985 Dec). Changes in isometric force- and relaxation-time, electromyographic and muscle fibre characteristics of human skeletal muscle during strength training and detraining. Acta Physiol Scand 125(4): 573–585.

    CAS  PubMed  Google Scholar 

  200. Mackey AL, Heinemeier KM, Koskinen SO, and Kjaer M (2008). Dynamic adaptation of tendon and muscle connective tissue to mechanical loading. Connect Tissue Res 49(3): 165–168.

    CAS  PubMed  Google Scholar 

  201. Suetta C, Andersen JL, Dalgas U, Berget J, Koskinen S, Aagaard P et al (2008 Jul). Resistance training induces qualitative changes in muscle morphology, muscle architecture, and muscle function in elderly postoperative patients. J Appl Physiol 105(1): 180–186.

    PubMed  Google Scholar 

  202. Steinhagen-Thiessen E, Reznick AZ, and Hilz H (1981). Positive and negative adaptation of muscle enzymes in aging mice subjected to physical exercise. Mech Ageing Dev 16(4): 363–369.

    CAS  PubMed  Google Scholar 

  203. Ji LL, Wu E, and Thomas DP (1991). Effect of exercise training on antioxidant and metabolic functions in senescent rat skeletal muscle. Gerontology 37(6): 317–325.

    CAS  PubMed  Google Scholar 

  204. Rossiter HB, Howlett RA, Holcombe HH, Entin PL, Wagner HE, and Wagner PD (2005 Jun 15). Age is no barrier to muscle structural, biochemical and angiogenic adaptations to training up to 24 months in female rats. J Physiol 565(Pt 3): 993–1005.

    CAS  PubMed  Google Scholar 

  205. Betik AC, Baker DJ, Krause DJ, McConkey MJ, and Hepple RT (2008 Jul). Exercise training in late middle-aged male Fischer 344 x Brown Norway F1-hybrid rats improves skeletal muscle aerobic function. Exp Physiol 93(7): 863–871.

    PubMed  Google Scholar 

  206. German E and Hoffman-Goetz L (1986 Jul). The effect of cold acclimation and exercise training on cold tolerance in aged C57BL/6 J mice. J Gerontol 41(4): 453–459.

    CAS  PubMed  Google Scholar 

  207. Chow DK, Glenn CF, Johnston JL, Goldberg IG, and Wolkow CA (2006 Mar). Sarcopenia in the Caenorhabditis elegans pharynx correlates with muscle contraction rate over lifespan. Exp Gerontol 41(3): 252–260.

    CAS  PubMed  Google Scholar 

  208. Towler MC and Hardie DG (2007 Feb 16). AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100(3): 328–341.

    CAS  PubMed  Google Scholar 

  209. Atherton PJ, Babraj J, Smith K, Singh J, Rennie MJ, and Wackerhage H (2005 May). Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. Faseb J 19(7): 786–788.

    CAS  PubMed  Google Scholar 

  210. Thomson DM and Gordon SE (2005 Feb). Diminished overload-induced hypertrophy in aged fast-twitch skeletal muscle is associated with AMPK hyperphosphorylation. J Appl Physiol 98(2): 557–564.

    CAS  PubMed  Google Scholar 

  211. Thomson DM and Gordon SE (2006 Jul 1). Impaired overload-induced muscle growth is associated with diminished translational signalling in aged rat fast-twitch skeletal muscle. J Physiol 574(Pt 1): 291–305.

    CAS  PubMed  Google Scholar 

  212. Drummond MJ, Dreyer HC, Pennings B, Fry CS, Dhanani S, Dillon EL et al (2008 May). Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging. J Appl Physiol 104(5): 1452–1461.

    CAS  PubMed  Google Scholar 

  213. Johnston J, Iser WB, Chow DK, Goldberg IG, and Wolkow CA (2008). Quantitative image analysis reveals distinct structural transitions during aging in Caenorhabditis elegans tissues. PLoS ONE 3(7): e2821.

    PubMed  Google Scholar 

  214. Wolkow CA (2006 Oct). Identifying factors that promote functional aging in Caenorhabditis elegans. Exp Gerontol 41(10): 1001–1006.

    CAS  PubMed  Google Scholar 

  215. Conley KE, Amara CE, Jubrias SA, and Marcinek DJ (2007 Mar). Mitochondrial function, fibre types and ageing: new insights from human muscle in vivo. Exp Physiol 92(2): 333–339.

    CAS  PubMed  Google Scholar 

  216. Lexell J (1993 Mar). Ageing and human muscle: observations from Sweden. Can J Appl Physiol 18(1): 2–18.

    CAS  PubMed  Google Scholar 

  217. Kim JS, Hinchcliff KW, Yamaguchi M, Beard LA, Markert CD, and Devor ST (2005 Jan). Exercise training increases oxidative capacity and attenuates exercise-induced ultrastructural damage in skeletal muscle of aged horses. J Appl Physiol 98(1): 334–342.

    PubMed  Google Scholar 

  218. Chung L and Ng YC (2005 Sep 1). Age-related alterations in expression of apoptosis regulatory proteins and heat shock proteins in rat skeletal muscle. Biochim Biophys Acta 1762(1):103–109.

    PubMed  Google Scholar 

  219. Dirks AJ and Leeuwenburgh C (2005). The role of apoptosis in age-related skeletal muscle atrophy. Sports Med 35(6): 473–483.

    PubMed  Google Scholar 

  220. Dedkov EI, Borisov AB, and Carlson BM (2003 Nov). Dynamics of postdenervation atrophy of young and old skeletal muscles: differential responses of fiber types and muscle types. J Gerontol A Biol Sci Med Sci 58(11): 984–991.

    PubMed  Google Scholar 

  221. Lee CM, Aspnes LE, Chung SS, Weindruch R, and Aiken JM (1998 Nov). Influences of caloric restriction on age-associated skeletal muscle fiber characteristics and mitochondrial changes in rats and mice. Ann N Y Acad Sci 20(854): 182–191.

    Google Scholar 

  222. Siriett V, Platt L, Salerno MS, Ling N, Kambadur R, and Sharma M (2006 Dec). Prolonged absence of myostatin reduces sarcopenia. J Cell Physiol 209(3): 866–873.

    CAS  PubMed  Google Scholar 

  223. Braga M, Sinha Hikim AP, Datta S, Ferrini MG, Brown D, Kovacheva EL et al (2008 Jun). Involvement of oxidative stress and caspase 2-mediated intrinsic pathway signaling in age-related increase in muscle cell apoptosis in mice. Apoptosis 13(6): 822–832.

    CAS  PubMed  Google Scholar 

  224. Caccia MR, Harris JB, and Johnson MA (1979 May–Jun). Morphology and physiology of skeletal muscle in aging rodents. Muscle Nerve 2(3): 202–212.

    CAS  PubMed  Google Scholar 

  225. Miller MS, Lekkas P, Braddock JM, Farman GP, Ballif BA, Irving TC et al (2008 Sep). Aging enhances indirect flight muscle fiber performance yet decreases flight ability in Drosophila. Biophys J 95(5): 2391–2401.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Kevin Conley and Martin Kushmerick for discussions related to skeletal muscle aging. The authors are supported NIH grants AG028455, AG022385, AG032873, AG029052 and the Nathan Shock Center of Excellence in the Basic Biology of Aging at the University of Washington and an Ellison Medical Foundation New Scholar Award in Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Marcinek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Marcinek, D.J., Wanagat, J., Villarin, J.J. (2010). Comparative Skeletal Muscle Aging. In: Wolf, N. (eds) The Comparative Biology of Aging. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3465-6_13

Download citation

Publish with us

Policies and ethics