Skip to main content

Dislocations, Microforce and Micromomentum in Second Order Finite Elasto-Plasticity

  • Conference paper
IUTAM Symposium on Progress in the Theory and Numerics of Configurational Mechanics

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 17))

Abstract

The paper deals with thermodynamic restrictions for physical force, microforce and micromomentum, compatible with the imbalanced free energy condition, written for isothermal processes, within the constitutive framework of elasto-plastic materials with continuously distributed dislocations, which are mathematically modeled by the existence of the plastic connection with non-zero torsion and non-zero curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bilby, B.A., Continuous distribution of dislocations. In: Sneddon, I.N., Hill, R. (Eds.), Progress in Solid Mechanics, I, North-Holland, Amsterdam, 1960, pp. 329–398.

    Google Scholar 

  2. Cleja-Ţigoiu, S., Couple stresses, non-Riemannian plastic connection in finite elasto-plasticity. ZAMP 53, 2002, 996–1013.

    Article  MATH  ADS  Google Scholar 

  3. Cleja-Ţigoiu, S., Material forces in finite elasto-plasticity with continuously distributed dislocation. Int. J. Fracture 147, 2007, 67–81.

    Article  MATH  Google Scholar 

  4. Cross, J.J., Mixtures of fluids, isotropic solids. Arch. Mech. 25, 1973, 1025–1039.

    MATH  MathSciNet  Google Scholar 

  5. Epstein, M., Maugin, G.A., Thermomechanics of volumetric growth in uniform bodies. Int. J. Plast. 16, 2000, 951–978.

    Article  MATH  Google Scholar 

  6. Forest, S., Cailletaud, G., Sievert, R., A Cosserat theory for elastoviscoplastic single crystals at finite deformation. Arch. Mech. 49, 1997, 705–736.

    MATH  MathSciNet  Google Scholar 

  7. Gurtin, M.E., A gradient theory of single-crystal viscoplasticity that accounts for geometric-allynecessary dislocations. J. Mech. Phys. Solids 50, 2002, 5–32.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Gurtin, M.E., A gradient theory of small-deformation isotropic plasticity that accounts for the Burgers, for dissipation due to plastic spin. J. Mech. Phys. Solids 52, 2004, 2545–2568.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Kondo, K., Yuki, M., On the current viewpoints of non-Riemannian plasticity theory. In: RAAG Memoirs of the Unifying Study of Basic Problems in Engineering and Physical Sciences by Means of Geometry, II (D), Tokyo, 1958, pp. 202–226.

    Google Scholar 

  10. Liebe, T., Menzel, A., Steinmann, P., Theory and numerics of geometrically non-linear gardient plasticity. Int. J. Engng. Sci. 41, 2003, 1603–1629.

    Article  MathSciNet  Google Scholar 

  11. Maugin, G.A., Material forces: Concepts, applications. Appl. Mech. Rev. 48, 1995, 213–245.

    Article  MathSciNet  Google Scholar 

  12. Noll, W., Materially uniform simple bodies with inhomogeneities. Arch. Rat. Mech. Anal. 27, 1967, 1–32.

    Article  MathSciNet  Google Scholar 

  13. Schouten, J.A., Ricci-Calculus. Springer-Verlag, Berlin, 1954.

    MATH  Google Scholar 

  14. Stumpf, H., Hackl, K., Micromechanical concept for analysis of damage evolution in thermo-viscoplastic and quasi-brittle materials. Int. J. Solids Struct. 40, 2003, 1567–1584.

    Article  MATH  Google Scholar 

  15. Teodosiu, C., Contribution to a continuum theory of dislocations, initial stresses. I, II, III, Rev. Roum. Sci. Techn.- Mec.Appl. 12, 1967, 961–977, 1061–1077, 1291–1308.

    Google Scholar 

  16. Teodosiu, C., A dynamic theory of dislocations, its applications to the theory of the elastic-plastic continuum. In: Simmons, J.A., de Witt, R., Bullough, R. (Eds.), Fundamental Aspects of Dislocation Theory, Nat. Bur. Stand. (U.S.), Spec. Publ. 317, II, 1970, pp. 837–876.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanda Cleja-Å¢igoiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Cleja-Å¢igoiu, S. (2009). Dislocations, Microforce and Micromomentum in Second Order Finite Elasto-Plasticity. In: Steinmann, P. (eds) IUTAM Symposium on Progress in the Theory and Numerics of Configurational Mechanics. IUTAM Bookseries, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3447-2_8

Download citation

Publish with us

Policies and ethics