Skip to main content

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 17))

  • 551 Accesses

Abstract

Functionally Graded Materials (FGMs) are advanced materials that possess continuously graded properties. Applications of FGMs are on composites, ceramics, alloys and coatings. This work is concerned with the crack analysis of FGMs. To this end we exploit a Clausius—Planck inequality to a migrating control volume. As a consequence of the principle of maximum dissipation the direction of crack propagation is obtained in terms of material forces. In the numerical implementation a staggered algorithm — deformation update for fixed geometry followed by geometry update for fixed deformation — is employed. The corresponding finite element mesh is generated by combining Delaunay triangulation with local mesh refinement. In a numerical example the brittle crack propagation in an FGM is investigated for varying directions of strength gradation within the structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anlas, G., Santare, M.H., Lambros, J., Numerical calculation of stress intensity factors in functionally graded materials. Int. J. Fracture 104, 2000, 131–143.

    Article  Google Scholar 

  2. Braun, M., Configurational forces induced by finite-element discretization. Proc. Estonian Acad. Sci. Phys. Math. 46, 1997, 24–31.

    MATH  MathSciNet  Google Scholar 

  3. Delale, F., Erdogan, F., Fracture mechanics of functionally graded materials. J. Appl. Mech. 50, 1983, 609–614.

    Article  MATH  Google Scholar 

  4. Denzer, R., Barth, F.J., Steinmann, P., Studies in elastic fracture mechanics based on the material force method. Int. J. Num. Meth. Eng. 58, 2003, 1817–1835.

    Article  MATH  Google Scholar 

  5. Eischen, J.W., Fracture of non-homogeneous materials. Int. J. Fracture 34, 1987, 3–22.

    Google Scholar 

  6. Erdogan, F., Fracture mechanics of functionally graded materials. Composit. Eng. 5, 1995, 753–770.

    Article  Google Scholar 

  7. Erdogan, F., Wu, B.H., The surface crack problem for a plate with functionally graded materials. ASME J. Appl. Mech. 64, 1997, 449–456.

    Article  MATH  Google Scholar 

  8. Eshelby J.D., The force on an elastic singularity. Philos. Trans. Roy. Soc., Math. Phys. Sci. A 244, 1951, 87–112.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Gurtin, M.E., Podio-Guidugli, P., Configurational forces and the basic laws for crack propagation. J. Mech. Phys. Solids 44(6), 1996, 905–927.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Joe, B., GEOMPACK, a software for the generation of meshes using geometric algorithms. Adv. Eng. Software, 13(5/6), 1991, 325–331.

    Article  MATH  Google Scholar 

  11. Kim, J.H., Paulino, G.H., Finite element evaluation of mixed mode stress intensity factors in functionally graded materials. Int. J. Num. Meth. Eng. 53, 2002, 1903–1935.

    Article  MATH  Google Scholar 

  12. Le, K.C., Stumpf, H., 1990, Variational principles of nonlinear fracture mechanics. Acta Mech. 83, 1990, 25–37.

    Article  MATH  MathSciNet  Google Scholar 

  13. Li, F.Z., Shih, C.F., Needleman, A., A comparison of methods for calculating energy release rates. Engr. Frac. Mech. 21, 1985, 405–421.

    Article  Google Scholar 

  14. Lu, Y.Y., Belytschko, T., Tabbara, M., Element-free Galerkin method for wave-propagation and dynamic fracture. Comp. Meth. Appl. Mech. Eng. 126(1–2), 1995, 131–153.

    Article  MATH  MathSciNet  Google Scholar 

  15. Mahnken, R., Material forces for crack analysis of functionally graded materials in adaptively refined meshes. Int. J. Fracture 147, 2008, 269–283.

    Article  Google Scholar 

  16. Mahnken, R., Geometry update driven by material forces for simulation of brittle crack growth in functionally graded materials. Int. J. Num. Meths. Eng., 2007, accepted.

    Google Scholar 

  17. Makowski, J., Stumpf, H., Hackl, K., The fundamental role of nonlocal and local balance laws of material forces in finite elastoplasticity and damage mechanics. Int. J. Solids Structures, 43, 2006, 3940–3959.

    Article  MATH  Google Scholar 

  18. Miehe, C., Gürses, E., A robust algorithm for configurational-force-driven brittle crack propagation with r-adaptive mesh alignement. Int. J. Num. Meths. Eng. 72, 2007, 127–155.

    Article  MATH  Google Scholar 

  19. Moes, N., Dolbow, J., Belytschko, T., A finite element method for crack growth without remeshing. Int. J. Num. Meths. Eng. 46(1), 1999, 133–150.

    Article  Google Scholar 

  20. Pandolfi, A., Ortiz, M., An efficient adaptive procedure for three-dimensional fragmentation simulations. Eng. Comput. 18, 2002, 148–159.

    Article  Google Scholar 

  21. Paulino, G.H., Jin, Z.H., Dodds, R.H., Failure of functionally graded materials. In: Kariha-loo, B., Knauss, W.G. (Eds.), Comprehensive Structural Integrity, Volume 2, Elsevier Science, 2003, pp. 607–644.

    Google Scholar 

  22. Staten, M.S., Selective refinement of two, three-dimensional finite element meshes. Thesis for the Degree of MSc., Department of Civil Engineering, Brigham Young University, 1996.

    Google Scholar 

  23. Steinmann, P., Ackermann, D., Barth, F.J., Application of material forces to hyperelastic fracture mechanics, Part II: Computational setting. Int. J. Solids Structures 38, 2001, 5509–5526.

    Article  MATH  Google Scholar 

  24. Surush, S., Mortensen, A., Fundamentals of functionally graded materials. Institute of Materials, London, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Mahnken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Mahnken, R. (2009). On Crack Analysis of Functionally Graded Materials with Material Forces. In: Steinmann, P. (eds) IUTAM Symposium on Progress in the Theory and Numerics of Configurational Mechanics. IUTAM Bookseries, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3447-2_6

Download citation

Publish with us

Policies and ethics