Skip to main content

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 17))

Abstract

The contribution's main objective is the examination of configurational forces in non-classical nonlinear thermoelasticity based on the approach of Green and Naghdi. In the early 1990s, Green and Naghdi introduced a theory attracting interest as heat propagates as thermal waves at finite speed, does not necessarily involve energy dissipation and fully integrates the classical theory. A wide range of heat flow problems can be modeled and the classical theory is fully embedded. As configurational forces have proven to be well suited for the examination of defect mechanics, a numerical example from that research area is discussed. The numerical realization is based on Galerkin finite elements in space as well as in time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Green, A.E., Naghdi, P.M., A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. 432, 1991, 171–194.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Bargmann, S., Steinmann, P., Finite element approaches to non-classical heat conduction in solids. Comp. Meth. Eng. Sci. 9(2), 2005, 133–150.

    MathSciNet  Google Scholar 

  3. Bargmann, S., Steinmann, P., Modeling and simulation of first and second sound in solids. Int. J. Solid Struct. 45, 2008, 6067–6073.

    Article  MathSciNet  MATH  Google Scholar 

  4. Eshelby, J.D., The force on an elastic singularity. Phil. Trans. Royal Soc. Lond. A 244, 1951, 87–112.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Eshelby, J.D., The elastic energy-momentum tensor. J. Elasticity 5, 1975, 321–335.

    Article  MATH  MathSciNet  Google Scholar 

  6. Gurtin, M.E., Configurational Forces as Basic Concepts of Continuum Physics, Springer, Berlin/Heidelberg, 1999.

    Google Scholar 

  7. Bargmann, S., Steinmann, P., An incremental variational formulation of dissipative and non-dissipative coupled thermoelasticity for solids. Heat Mass Trans. 45, 2008, 107–116.

    MathSciNet  ADS  Google Scholar 

  8. Dascalu, C., Maugin, G.A., The thermoelastic material-momentum equation. J. Elasticity 39, 1995, 201–212.

    Article  MATH  MathSciNet  Google Scholar 

  9. Maugin, G.A., Kalpadikes, V.K., The slow march towards an analytical mechanics of dis-sipative materials. Techn. Mechanik 22, 2002, 98–103.

    Google Scholar 

  10. Maugin, G.A., Kalpadikes, V.K., A Hamiltonian formulation for elasticity and ther-moelasticity. J. Phys. A: Math. Gen. 35, 2002, 10775–10788.

    Article  MATH  ADS  Google Scholar 

  11. Bargmann, S., Steinmann, P., A classical result for a non-classical theory: Remarks on Green—Naghdi thermo-hyperelasticity. Cont. Mech. Thermodyn. 19(1–2), 2007, 59–66.

    Article  MATH  MathSciNet  Google Scholar 

  12. Kalpadikes, V.K., Maugin, G.A., Canonical formulation and conservation laws of ther-moelasticity without energy dissipation. Rep. Math. Physics 53, 2004, 371–391.

    Article  ADS  Google Scholar 

  13. Bargmann, S., Denzer, R., Steinmann, P., Material forces in non-classical thermo-hyperelasticity. J. Therm. Stress. 32(4), 2009, 361–393.

    Article  Google Scholar 

  14. Maugin, G.A., Material Inhomogeneities in Elasticity, Chapman & Hall, London, 1993.

    MATH  Google Scholar 

  15. Kuhl, E., Denzer, R., Barth, F.J., Steinmann, P., Application of the material force method to thermo-hyperelasticity. Comp. Meth. Appl. Mech. Engng. 193, 2004, 3303–3325.

    Article  MATH  MathSciNet  Google Scholar 

  16. Steinmann, P., On spatial, material settings of thermo-hyper-elastodynamics. J. Elasticity 66, 2002, 109–157.

    Article  MATH  MathSciNet  Google Scholar 

  17. Steinmann, P., On spatial, material settings of hyperelastodynamics. Acta Mechanica 156, 2002, 193–218.

    Article  MATH  Google Scholar 

  18. Podio-Guidugli, P., A virtual power format for thermomechanics. Continuum Mechanics, Thermodynamics, DOI 10.1007/s00161-009-0093-5, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swantje Bargmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Bargmann, S., Denzer, R., Steinmann, P. (2009). On Configurational Forces within Green—Naghdi Thermo-Hyperelasticity. In: Steinmann, P. (eds) IUTAM Symposium on Progress in the Theory and Numerics of Configurational Mechanics. IUTAM Bookseries, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3447-2_19

Download citation

Publish with us

Policies and ethics