Skip to main content

Purinergic Signalling in Pancreatic Islet Endothelial Cells

  • Chapter
  • First Online:
Book cover Extracellular ATP and Adenosine as Regulators of Endothelial Cell Function

Abstract

Both the microvascular endothelium and the endocrine cells in the pancreatic islet can release and react upon ATP. In support for the idea that intermittently released ATP, related to exocytosis of insulin secretory granules, affects the secretory activity of the capillary endothelium, we have demonstrated that isolated endothelial cells respond to activation of P2Y2 receptors with pronounced and extended rises of [Ca2+]i. The presence of such ATP effect is consistent with reports that β-cells regulate the blood flow within islets, where adenosine is a key mediator, and that the endothelial cell produce pro-angiogenic and angiostatic factors. In β-cells down-regulation of P2Y1 receptors results in disappearance of the transients of [Ca2+]i supposed to entrain these cells into a common rhythm. Since the islet endothelial cells respond to activation of P2Y2 receptors with extended elevation of [Ca2+]i, it is likely that the accompanying release of ATP is prolonged. Accordingly, the endothelial cells may have a tonic inhibitory action on the coordination of islet release pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahren B. (2000) Autonomic regulation of islet hormone secretion – implications for health and disease. Diabetologia 43:393–410.

    Article  CAS  PubMed  Google Scholar 

  2. Anneren C, Welsh M, Jansson L. (2007) Glucose intolerance and reduced islet blood flow in transgenic mice expressing the FRK tyrosine kinase under the control of the rat insulin promoter. Am J Physiol Endocrinol Metab 292:E1183–90.

    Article  CAS  PubMed  Google Scholar 

  3. Beach JM, McGahren ED, Duling BR. (1998) Capillaries and arterioles are electrically coupled in hamster cheek pouch. Am J Physiol 275: H1489–96.

    CAS  PubMed  Google Scholar 

  4. Bertrand G, Chapal J, Puech R, Loubatieres-Mariani MM. (1991) Adenosine-5ʹ-O-(2-thiodiphosphate) is a potent agonist at P2 purinoceptors mediating insulin secretion from perfused rat pancreas. Br J Pharmacol 102:627–30.

    CAS  PubMed  Google Scholar 

  5. Bertuzzi F, Davalli AM, Nano R, et al.. (1999) Mechanisms of coordination of Ca2+ signals in pancreatic islet cells. Diabetes 48:1971–8.

    Article  CAS  PubMed  Google Scholar 

  6. Bishara NB, Triggle CR, Hill MA. (2005) Cytochrome P450 products and arachidonic acid-induced, non-store-operated, Ca2+ entry in cultured bovine endothelial cells. Endothelium 12:153–61.

    Article  CAS  PubMed  Google Scholar 

  7. Bonner-Weir S. (1988) Morphological evidence for pancreatic polarity of beta-cell within islets of Langerhans. Diabetes 37:616–21.

    Article  CAS  PubMed  Google Scholar 

  8. Bonner-Weir S, Orci L. (1982) New perspectives on the microvasculature of the islets of Langerhans in the rat. Diabetes 31:883–9.

    Article  CAS  PubMed  Google Scholar 

  9. Brunicardi FC, Stagner J, Bonner-Weir S, et al. (1996) Microcirculation of the islets of Langerhans. Long Beach veterans administration regional medical education center symposium. Diabetes 45:385–92.

    CAS  PubMed  Google Scholar 

  10. Burnstock G. (2002) Purinergic signaling and vascular cell proliferation and death. Arterioscler Thromb Vasc Biol 22:364–73.

    Article  PubMed  Google Scholar 

  11. Burnstock G. (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797.

    Article  CAS  PubMed  Google Scholar 

  12. Burnstock G, Sneddon P. (1985) Evidence for ATP and noradrenaline as cotransmitters in sympathetic nerves. Clin Sci (Lond) 68(Suppl 10): 89 s–92 s.

    Google Scholar 

  13. Buxton IL, Kaiser RA, Oxhorn BC, Cheek DJ. (2001) Evidence supporting the Nucleotide Axis Hypothesis: ATP release and metabolism by coronary endothelium. Am J Physiol Heart Circ Physiol 281:H1657–66.

    CAS  PubMed  Google Scholar 

  14. Carlsson PO, Flodstrom M, Sandler S. (2000) Islet blood flow in multiple low dose streptozotocin-treated wild-type and inducible nitric oxide synthase-deficient mice. Endocrinology 141:2752–57.

    Article  CAS  PubMed  Google Scholar 

  15. Carlsson PO, Iwase M, Jansson L. (1999) Stimulation of intestinal glucoreceptors in rats increases pancreatic islet blood flow through vagal mechanisms. Am J Physiol 276: R233–6.

    CAS  PubMed  Google Scholar 

  16. Carlsson PO, Iwase M, Jansson L. (2000) Intraportal glucose infusion and pancreatic islet blood flow in anesthetized rats. Am J Physiol Regul Integr Comp Physiol 279:R1224–9.

    CAS  PubMed  Google Scholar 

  17. Carlsson PO, Olsson R, Källskog Ö, Bodin B, Andersson A, Jansson L. (2002) Glucose-induced islet blood flow increase in rats: interaction between nervous and metabolic mediators. Am J Physiol Endocrinol Metab 283: E457–64.

    CAS  PubMed  Google Scholar 

  18. Carlsson PO, Sandler S, Jansson L. (1998) Pancreatic islet blood perfusion in the nonobese diabetic mouse: diabetes-prone female mice exhibit a higher blood flow compared with male mice in the prediabetic phase. Endocrinology 139: 3534–41.

    Article  CAS  PubMed  Google Scholar 

  19. Castro E, Mateo J, Tome AR, Barbosa RM, Miras-Portugal MT, Rosario LM. (1995) Cell-specific purinergic receptors coupled to Ca2+ entry and Ca2+ release from internal stores in adrenal chromaffin cells. Differential sensitivity to UTP and suramin. J Biol Chem 270:5098–106.

    Article  CAS  PubMed  Google Scholar 

  20. Cioffi DL, Stevens T. (2006) Regulation of endothelial cell barrier function by store-operated calcium entry. Microcirculation 13:709–23.

    Article  CAS  PubMed  Google Scholar 

  21. Collins DM, McCullough WT, Ellsworth ML. (1998) Conducted vascular responses: communication across the capillary bed. Microvasc Res 56:43–53.

    Article  CAS  PubMed  Google Scholar 

  22. Dryselius S, Grapengiesser E, Hellman B, Gylfe E. (1999) Voltage-dependent entry and generation of slow Ca2+ oscillations in glucose-stimulated pancreatic β-cells. Am J Physiol 276:E512–8.

    CAS  PubMed  Google Scholar 

  23. Eltzschig HK, Macmanus CF, Colgan SP. (2008) Neutrophils as sources of extracellular nucleotides: functional consequences at the vascular interface. Trends Cardiovasc Med 18:103–7.

    Article  CAS  PubMed  Google Scholar 

  24. Erlinge D, Burnstock G. (2008) P2 receptors in cardiovascular regulation and disease. Purinergic Signal 4:1–20.

    Article  CAS  PubMed  Google Scholar 

  25. Ferner H. (1957) Dissemination of testicular interstitial cells and of the islets of Langerhans as a functional principle for the seminiferous tubules and the exocrine pancreas. Z Mikrosk Anat Forsch 63:35–52.

    CAS  PubMed  Google Scholar 

  26. Gerasimovskaya EV, Woodward HN, Tucker DA, Stenmark KR. (2008) Extracellular ATP is a pro-angiogenic factor for pulmonary artery vasa vasorum endothelial cells. Angiogenesis 11:169–82.

    Article  CAS  PubMed  Google Scholar 

  27. Gonzalez-Alonso J, Olsen DB, Saltin B. (2002) Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: role of circulating ATP. Circ Res 91: 1046–55.

    Article  CAS  PubMed  Google Scholar 

  28. Grapengiesser E, Dansk H, Hellman B. (2004) Pulses of external ATP aid to the synchronization of pancreatic β-cells by generating premature Ca2+ oscillations. Biochem Pharmacol 68:667–74.

    Article  CAS  PubMed  Google Scholar 

  29. Grapengiesser E, Gylfe E, Dansk H, Hellman B. (2003) Stretch activation of Ca2+ transients in pancreatic β cells by mobilization of intracellular stores. Pancreas 26:82–6.

    Article  CAS  PubMed  Google Scholar 

  30. Grapengiesser E, Gylfe E, Hellman B. (1999) Synchronization of glucose-induced Ca2+ transients in pancreatic β-cells by a diffusible factor. Biochem Biophys Res Commun 254:436–9.

    Article  CAS  PubMed  Google Scholar 

  31. Hansen B, Longati P, Elvevold K, et al.. (2005) Stabilin-1 and stabilin-2 are both directed into the early endocytic pathway in hepatic sinusoidal endothelium via interactions with clathrin/AP-2, independent of ligand binding. Exp Cell Res 303:160–73.

    Article  CAS  PubMed  Google Scholar 

  32. Hazama A, Hayashi S, Okada Y. (1998) Cell surface measurements of ATP release from single pancreatic beta cells using a novel biosensor technique. Pflugers Arch 437:31–5.

    Article  CAS  PubMed  Google Scholar 

  33. Hellman B. (1959) Methodological aspects on the differential cell count of the islet tissue in the rat. Acta Pathol Microbiol Scand 45:336–46.

    Article  CAS  PubMed  Google Scholar 

  34. Hellman B. (1965) Studies in obese-hyperglycemic mice. Ann NY Acad Sci 131:541–58.

    Article  CAS  PubMed  Google Scholar 

  35. Hellman B, Dansk H, Grapengiesser E. (2004) Pancreatic β-cells communicate via intermittent release of ATP. Am J Physiol Endocrinol Metab 286:E759–65.

    Article  CAS  PubMed  Google Scholar 

  36. Hellman B, Gylfe E, Grapengiesser E, Lund PE, Berts A. (1992) Cytoplasmic Ca2+ oscillations in pancreatic β-cells. Biochim Biophys Acta 1113: 295–305.

    CAS  PubMed  Google Scholar 

  37. Hellman B, Jansson L, Dansk H, Grapengiesser E. (2007) Effects of external ATP on Ca2+ signalling in endothelial cells isolated from mouse islets. Endocrine 32:33–40.

    Article  CAS  PubMed  Google Scholar 

  38. Hellman B, Wallgren A, Petersson B. (1962) Cytological characteristics of the exocrine pancreatic cells with regard to their position in relation to the islets of Langerhans. A study in normal and obese-hyperglycaemic mice. Acta Endocrinol. (Copenh) 39:465–73.

    CAS  Google Scholar 

  39. Hillaire-Buys D, Dietz S, Chapal J, Petit P, Loubatieres-Mariani MM. (1999) Involvement of P2X and P2U receptors in the constrictor effect of ATP on the pancreatic vascular bed. J Soc Biol 193:57–61.

    CAS  PubMed  Google Scholar 

  40. Himmel HM, Whorton AR, Strauss HC. (1993) Intracellular calcium, currents, and stimulus-response coupling in endothelial cells. Hypertension 21:112–27.

    CAS  PubMed  Google Scholar 

  41. Holmqvist K, Cross MJ, Rolny C, et al. (2004) The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor. (VEGF) receptor-2 and regulates VEGF-dependent cellular migration. J Biol Chem 279:22267–75.

    Article  CAS  PubMed  Google Scholar 

  42. Isakson BE, Damon DN, Day KH, Liao Y, Duling BR. (2006) Connexin 40 and connexin 43 in mouse aortic endothelium: evidence for coordinated regulation. Am J Physiol Heart Circ Physiol 290:H1199–205.

    Article  CAS  PubMed  Google Scholar 

  43. Jagger JE, Bateman RM, Ellsworth ML, Ellis CG. (2001) Role of erythrocyte in regulating local O2 delivery mediated by hemoglobin oxygenation. Am J Physiol Heart Circ Physiol 280: H2833–9.

    CAS  PubMed  Google Scholar 

  44. Jakovcevic D, Harder DR. (2007) Role of astrocytes in matching blood flow to neuronal activity. Curr Top Dev Biol 79:75–97.

    Article  CAS  PubMed  Google Scholar 

  45. Jansson L. (1994) The regulation of pancreatic islet blood flow. Diabetes Metab Rev 10: 407–16.

    Article  CAS  PubMed  Google Scholar 

  46. Jansson L, Hellerstrom C. (1986) Glucose-induced changes in pancreatic islet blood flow mediated by central nervous system. Am J Physiol 251: E644–7.

    CAS  PubMed  Google Scholar 

  47. Johansson M, Andersson A, Carlsson PO, Jansson L. (2006) Perinatal development of the pancreatic islet microvasculature in rats. J Anat 208: 191–6.

    Article  PubMed  Google Scholar 

  48. Johansson M, Mattsson G, Andersson A, Jansson L, Carlsson PO. (2006) Islet endothelial cells and pancreatic beta-cell proliferation: studies in vitro and during pregnancy in adult rats. Endocrinology 147:2315–24.

    Article  CAS  PubMed  Google Scholar 

  49. Kaido T, Yebra M, Cirulli V, Montgomery AM. (2004) Regulation of human beta-cell adhesion, motility, and insulin secretion by collagen IV and its receptor α1β1. J Biol Chem 279:53762–9.

    Article  CAS  PubMed  Google Scholar 

  50. Konstantinova I, Lammert E. (2004) Microvascular development: learning from pancreatic islets. Bioessays 26:1069–75.

    Article  CAS  PubMed  Google Scholar 

  51. Lai EY, Jansson L, Patzak A, Persson AE. (2007) Vascular reactivity in arterioles from normal and alloxan-diabetic mice: studies on single perfused islets. Diabetes 56:107–12.

    Article  CAS  PubMed  Google Scholar 

  52. Lai EY, Persson AE, Bodin B, et al. (2007) Endothelin-1 and pancreatic islet vasculature: studies in vivo and on isolated, vascularly perfused pancreatic islets. Am J Physiol Endocrinol Metab 292: E1616–23.

    Article  CAS  PubMed  Google Scholar 

  53. Lammert E. (2008) The vascular trigger of type II diabetes mellitus. Exp Clin Endocrinol Diabetes 116 (Suppl 1):S21–5.

    Article  CAS  PubMed  Google Scholar 

  54. Lammert E, Cleaver O, Melton D. (2001) Induction of pancreatic differentiation by signals from blood vessels. Science 294:564–7.

    Article  CAS  PubMed  Google Scholar 

  55. Lammert E, Gu G, McLaughlin M, et al. (2003) Role of VEGF-A in vascularization of pancreatic islets. Curr Biol 13: 1070–4.

    Article  CAS  PubMed  Google Scholar 

  56. Langenkamp E, Molema G. (2009) Microvascular endothelial cell heterogeneity: general concepts and pharmacological consequences for anti-angiogenic therapy of cancer. Cell Tissue Res 335:205–22.

    Article  CAS  PubMed  Google Scholar 

  57. Lopez-Jaramillo P, Gonzalez MC, Palmer RM, Moncada S. (1990) The crucial role of physiological Ca2+ concentrations in the production of endothelial nitric oxide and the control of vascular tone. Br J Pharmacol 101:489–93.

    CAS  PubMed  Google Scholar 

  58. Luo X, Zheng W, Yan M, Lee MG, Muallem S. (1999) Multiple functional P2X and P2Y receptors in the luminal and basolateral membranes of pancreatic duct cells. Am J Physiol 277:C205–15.

    CAS  PubMed  Google Scholar 

  59. Mattsson G. (2005) The endothelial cells in islets of Langerhans. Ups J Med Sci 110:1–15.

    Article  PubMed  Google Scholar 

  60. Mattsson G, Carlsson PO, Olausson K, Jansson L. (2002) Histological markers for endothelial cells in endogenous and transplanted rodent pancreatic islets. Pancreatology 2:155–62.

    Article  CAS  PubMed  Google Scholar 

  61. McCullough WT, Collins DM, Ellsworth ML. (1997) Arteriolar responses to extracellular ATP in striated muscle. Am J Physiol 272:H1886–91.

    CAS  PubMed  Google Scholar 

  62. McGahren ED, Beach JM, Duling BR. (1998) Capillaries demonstrate changes in membrane potential in response to pharmacological stimuli. Am J Physiol 274:H60–5.

    CAS  PubMed  Google Scholar 

  63. Moccia F, Baruffi S, Spaggiari S, et al. (2001) P2y1 and P2y2 receptor-operated Ca2+ signals in primary cultures of cardiac microvascular endothelial cells. Microvasc Res 61:240–52.

    Article  CAS  PubMed  Google Scholar 

  64. Morato M, Sousa T, Albino-Teixeira A. (2008) Purinergic receptors in the splanchnic circulation. Purinergic Signal 4:267–85.

    Article  CAS  PubMed  Google Scholar 

  65. Nikolova G, Jabs N, Konstantinova I, et al. (2006) The vascular basement membrane: a niche for insulin gene expression and β cell proliferation. Dev Cell 10:397–405.

    Article  CAS  PubMed  Google Scholar 

  66. Noble MD, Liddle RA. (2005) Neurohormonal control of exocrine pancreatic secretion. Curr Opin Gastroenterol 21:531–7.

    Article  CAS  PubMed  Google Scholar 

  67. Nordquist L, Lai EY, Sjoquist M, Jansson L, Persson AE. (2008) C-peptide constricts pancreatic islet arterioles in diabetic, but not normoglycaemic mice. Diabetes Metab Res Rev 24:165–8.

    Article  CAS  PubMed  Google Scholar 

  68. Novak I. (2008) Purinergic receptors in the endocrine and exocrine pancreas. Purinergic Signal 4:237–53.

    Article  CAS  PubMed  Google Scholar 

  69. Nyman LR, Wells KS, Head WS, et al. (2008) Real-time, multidimensional in vivo imaging used to investigate blood flow in mouse pancreatic islets. J Clin Invest 118:3790–97.

    Article  CAS  PubMed  Google Scholar 

  70. Olerud J, Johansson M, Lawler J, Welsh N, Carlsson PO. (2008) Improved vascular engraftment and graft function after inhibition of the angiostatic factor thrombospondin-1 in mouse pancreatic islets. Diabetes 57:1870–7.

    Article  CAS  PubMed  Google Scholar 

  71. Olsson R, Carlsson PO. (2005) Better vascular engraftment and function in pancreatic islets transplanted without prior culture. Diabetologia 48:469–76.

    Article  CAS  PubMed  Google Scholar 

  72. Olsson R, Carlsson PO. (2006) The pancreatic islet endothelial cell: emerging roles in islet function and disease. Int J Biochem Cell Biol 38:710–4.

    Article  CAS  PubMed  Google Scholar 

  73. Parr EL, Bowen KM, Lafferty KJ. (1980) Cellular changes in cultured mouse thyroid glands and islets of Langerhans. Transplantation 30: 135–41.

    Article  CAS  PubMed  Google Scholar 

  74. Persson-Sjogren S, Forsgren S, Taljedal IB. (2000) Peptides and other neuronal markers in transplanted pancreatic islets. Peptides 21:741–52.

    Article  CAS  PubMed  Google Scholar 

  75. Petit P, Lajoix AD, Gross R. (2009) P2 purinergic signalling in the pancreatic β-cell: control of insulin secretion and pharmacology. Eur J Pharm Sci 37:67–75.

    Article  CAS  PubMed  Google Scholar 

  76. Pittman RN. (2000) Oxygen supply to contracting skeletal muscle at the microcirculatory level: diffusion vs. convection. Acta Physiol Scand 168:593–602.

    Article  CAS  PubMed  Google Scholar 

  77. Sprague RS, Ellsworth ML, Stephenson AH, Lonigro AJ. (2001) Participation of cAMP in a signal-transduction pathway relating erythrocyte deformation to ATP release. Am J Physiol Cell Physiol 281:C1158–64.

    CAS  PubMed  Google Scholar 

  78. Stagner JI, Samols E, Bonner-Weir S. (1988) beta – alpha – delta pancreatic islet cellular perfusion in dogs. Diabetes 37:1715–21.

    Article  CAS  PubMed  Google Scholar 

  79. Surprenant A, North RA. (2009) Signaling at Purinergic P2X Receptors. Annu Rev Physiol 71:333–59.

    Article  CAS  PubMed  Google Scholar 

  80. Svensson AM, Ostenson CG, Sandler S, Efendic S, Jansson L. (1994) Inhibition of nitric oxide synthase by NG-nitro-L-arginine causes a preferential decrease in pancreatic islet blood flow in normal rats and spontaneously diabetic GK rats. Endocrinology 135:849–53.

    Article  CAS  PubMed  Google Scholar 

  81. Tang EH, Ku DD, Tipoe GL, Feletou M, Man RY, Vanhoutte PM. (2005) Endothelium-dependent contractions occur in the aorta of wild-type and COX2–/– knockout but not COX1–/– knockout mice. J Cardiovasc Pharmacol 46:761–5.

    Article  CAS  PubMed  Google Scholar 

  82. Teitelman G, Guz Y, Ivkovic S, Ehrlich M. (1998) Islet injury induces neurotrophin expression in pancreatic cells and reactive gliosis of peri-islet Schwann cells. J Neurobiol 34:304–18.

    Article  CAS  PubMed  Google Scholar 

  83. Tran QK, Ohashi K, Watanabe H. (2000) Calcium signalling in endothelial cells. Cardiovasc Res 48:13–22.

    Article  CAS  PubMed  Google Scholar 

  84. Virtanen I, Banerjee M, Palgi J, et al. (2008) Blood vessels of human islets of Langerhans are surrounded by a double basement membrane. Diabetologia 51:1181–91.

    Article  CAS  PubMed  Google Scholar 

  85. Yamamoto K, Korenaga R, Kamiya A, Qi Z, Sokabe M, Ando J. (2000) P2X4 receptors mediate ATP-induced calcium influx in human vascular endothelial cells. Am J Physiol Heart Circ Physiol 279:H285–92.

    CAS  PubMed  Google Scholar 

  86. Yamamoto K, Sokabe T, Matsumoto T, et al. (2006) Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat Med 12:133–7.

    Article  CAS  PubMed  Google Scholar 

  87. Yegutkin GG. (2008) Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783:673–94.

    Article  CAS  PubMed  Google Scholar 

  88. Zhou Y, Varadharaj S, Zhao X, Parinandi N, Flavahan NA, Zweier JL. (2005) Acetylcholine causes endothelium-dependent contraction of mouse arteries. Am J Physiol Heart Circ Physiol 289:H1027–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support for our own studies referred to in the article was received from the Swedish Research Council, the Swedish Diabetes Association, the Juvenile Diabetes Research Foundation and the Family Ernfors Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif Jansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Jansson, L., Grapengiesser, E., Hellman, B. (2010). Purinergic Signalling in Pancreatic Islet Endothelial Cells. In: Gerasimovskaya, E., Kaczmarek, E. (eds) Extracellular ATP and Adenosine as Regulators of Endothelial Cell Function. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3435-9_12

Download citation

Publish with us

Policies and ethics