Skip to main content

ATP Release Via Connexin Hemichannels Controls Intercellular Propagation of Ca2+ Waves in Corneal Endothelial Cells

  • Chapter
  • First Online:
Extracellular ATP and Adenosine as Regulators of Endothelial Cell Function

Abstract

Intercellular communication (IC) is essential for coordinating cellular activity in multi-cellular organisms, and plays a role in many physiological and pathological processes. Direct IC between adjacent cells is mainly mediated by gap junctions, whereas paracrine signaling provides an indirect pathway for IC between neighboring cells. Purinergic mediators are important messengers in this paracrine signaling, and recent evidence shows that connexin and pannexin hemichannels form an important release pathway for ATP involved in purinergic IC.

We have investigated the properties of IC via Ca2+ waves evoked by mechanical stimulation of a single cell in monolayers of bovine corneal endothelial cells (BCEC). We have demonstrated that both gap junctions and paracrine IC are involved in the Ca2+ wave propagation, and that purinergic paracrine signaling is the main component of IC in BCEC. Furthermore, our results demonstrate that connexin43 hemichannels provide the pathway for ATP release. Our experiments show that the paracrine IC is strongly reduced in the presence of inflammatory agents, such as histamine and thrombin, that enhance actomyosin contraction. The effect of these agents is due to inhibition of hemichannel-mediated ATP release. This effect of thrombin can be precluded by preincubation of the cells with adenosine. Possible roles of paracrine IC to “bystander” and “good Samaritan” effects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbracchio MP, Burnstock G. (1998) Purinergic signalling: pathophysiological roles. Jpn J Pharmacol 78:113–45.

    Article  CAS  PubMed  Google Scholar 

  2. Andrade-Rozental AF, Rozental R, Hopperstad MG, Wu JK, Vrionis FD, Spray DC. (2000) Gap junctions: the “kiss of death” and the “kiss of life”. Brain Res Brain Res Rev 32:308–15.

    Article  CAS  PubMed  Google Scholar 

  3. Anselmi F, Hernandez VH, Crispino G, Seydel A, Ortolano S, Roper SD, Kessaris N, Richardson W, Rickheit G, Filippov MA, Monyer H, Mammano F. (2008) ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proc Natl Acad Sci USA 105:18770–5.

    Article  CAS  PubMed  Google Scholar 

  4. Aracena P, Sanchez G, Donoso P, Hamilton SL, Hidalgo C. (2003) S-glutathionylation decreases Mg2+ inhibition and S-nitrosylation enhances Ca2+ activation of RyR1 channels. J Biol Chem 278:42927–35.

    Article  CAS  PubMed  Google Scholar 

  5. Arcuino G, Lin JH, Takano T, Liu C, Jiang L, Gao Q, Kang J, Nedergaard M. (2002) Intercellular calcium signaling mediated by point-source burst release of ATP. Proc Natl Acad Sci USA 99:9840–5.

    Article  CAS  PubMed  Google Scholar 

  6. Ayala A, Warejcka DJ, Olague-Marchan M, Twining SS. (2007) Corneal activation of prothrombin to form thrombin, independent of vascular injury. Invest Ophthalmol Vis Sci 48:134–43.

    Article  PubMed  Google Scholar 

  7. Bao L, Locovei S, Dahl G. (2004) Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 572:65–8.

    Article  CAS  PubMed  Google Scholar 

  8. Blair SA, Kane SV, Clayburgh DR, Turner JR. (2006) Epithelial myosin light chain kinase expression and activity are upregulated in inflammatory bowel disease. Lab Invest 86:191–201.

    Article  CAS  PubMed  Google Scholar 

  9. Boassa D, Ambrosi C, Qiu F, Dahl G, Gaietta G, Sosinsky G. (2007) Pannexin1 channels contain a glycosylation site that targets the hexamer to the plasma membrane. J Biol Chem 282:31733–43.

    Article  CAS  PubMed  Google Scholar 

  10. Boassa D, Qiu F, Dahl G, Sosinsky G. (2008) Trafficking dynamics of glycosylated pannexin 1 proteins. Cell Commun Adhes 15:119–32.

    Article  CAS  PubMed  Google Scholar 

  11. Bonanno JA. (2003) Identity and regulation of ion transport mechanisms in the corneal endothelium. Prog Retin Eye Res 22:69–94.

    Article  CAS  PubMed  Google Scholar 

  12. Bonanno JA, Srinivas SP. (1997) Cyclic AMP activates anion channels in cultured bovine corneal endothelial cells. Exp Eye Res 64:953–62.

    Article  CAS  PubMed  Google Scholar 

  13. Bourne RR, Minassian DC, Dart JK, Rosen P, Kaushal S, Wingate N. (2004) Effect of cataract surgery on the corneal endothelium: modern phacoemulsification compared with extracapsular cataract surgery. Ophthalmology 111:679–85.

    Article  PubMed  Google Scholar 

  14. Bourne WM. (2003) Biology of the corneal endothelium in health and disease. Eye 17:912–8.

    Article  CAS  PubMed  Google Scholar 

  15. Braet K, Vandamme W, Martin PE, Evans WH, Leybaert L. (2003) Photoliberating inositol-1,4,5-trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap 26. Cell Calcium 33:37–48.

    Article  CAS  PubMed  Google Scholar 

  16. Bruzzone R, Barbe MT, Jakob NJ, Monyer H. (2005) Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J Neurochem 92:1033–43.

    Article  CAS  PubMed  Google Scholar 

  17. Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H. (2003) Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci USA 100:13644–9.

    Article  CAS  PubMed  Google Scholar 

  18. Bruzzone S, Guida L, Zocchi E, Franco L, De Flora A. (2001) Connexin 43 hemi channels mediate Ca2+-regulated transmembrane NAD+ fluxes in intact cells. Faseb J 15:10–2.

    CAS  PubMed  Google Scholar 

  19. Burnstock G. (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797.

    Article  CAS  PubMed  Google Scholar 

  20. Chipman JK, Mally A, Edwards GO. (2003) Disruption of gap junctions in toxicity and carcinogenicity. Toxicol Sci 71:146–53.

    Article  CAS  PubMed  Google Scholar 

  21. Clarke TC, Williams OJ, Martin PE, Evans WH. (2009) ATP release by cardiac myocytes in a simulated ischaemia model: inhibition by a connexin mimetic and enhancement by an antiarrhythmic peptide. Eur J Pharmacol 605:9–14.

    Article  CAS  PubMed  Google Scholar 

  22. Contreras JE, Saez JC, Bukauskas FF, Bennett MV. (2003) Functioning of cx43 hemichannels demonstrated by single channel properties. Cell Commun Adhes 10: 245–9.

    CAS  PubMed  Google Scholar 

  23. Contreras JE, Saez JC, Bukauskas FF, Bennett MV. (2003) Gating and regulation of connexin 43. (Cx43) hemichannels. Proc Natl Acad Sci USA 100:11388–93.

    Article  CAS  PubMed  Google Scholar 

  24. Cotrina ML, Lin JH, Alves-Rodrigues A, Liu S, Li J, Azmi-Ghadimi H, Kang J, Naus CC, Nedergaard M. (1998) Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci USA 95:15735–40.

    Article  CAS  PubMed  Google Scholar 

  25. Cruciani V, Mikalsen SO. (2006) The vertebrate connexin family. Cell Mol Life Sci 63: 1125–40.

    Article  CAS  PubMed  Google Scholar 

  26. D'hondt C, Ponsaerts R, Srinivas SP, Vereecke J, Himpens B. (2007) Thrombin inhibits intercellular calcium wave propagation in corneal endothelial cells by modulation of hemichannels and gap junctions. Invest Ophthalmol Vis Sci 48:120–33.

    Article  PubMed  Google Scholar 

  27. D'hondt C, Srinivas SP, Vereecke J, Himpens B. (2007) Adenosine opposes thrombin-induced inhibition of intercellular calcium wave in corneal endothelial cells. Invest Ophthalmol Vis Sci 48:1518–27.

    Article  PubMed  Google Scholar 

  28. De Maio A, Vega VL, Contreras JE. (2002) Gap junctions, homeostasis, and injury. J Cell Physiol 191:269–82.

    Article  PubMed  CAS  Google Scholar 

  29. De Vuyst E, Decrock E, Cabooter L, Dubyak GR, Naus CC, Evans WH, Leybaert L. (2006) Intracellular calcium changes trigger connexin 32 hemichannel opening. Embo J 25:34–44.

    Article  PubMed  CAS  Google Scholar 

  30. De Vuyst E, Decrock E, De Bock M, Yamasaki H, Naus CC, Evans WH, Leybaert L. (2007) Connexin hemichannels and gap junction channels are differentially influenced by lipopolysaccharide and basic fibroblast growth factor. Mol Biol Cell 18:34–46.

    Article  PubMed  CAS  Google Scholar 

  31. Decrock E, De Vuyst E, Vinken M, Van Moorhem M, Vranckx K, Wang N, Van Laeken L, De Bock M, D'Herde K, Lai CP, Rogiers V, Evans WH, Naus CC, Leybaert L. (2009) Connexin 43 hemichannels contribute to the propagation of apoptotic cell death in a rat C6 glioma cell model. Cell Death Differ 16: 151–63.

    Article  CAS  PubMed  Google Scholar 

  32. Decrock E, Vinken M, De Vuyst E, Krysko DV, D'Herde K, Vanhaecke T, Vandenabeele P, Rogiers V, Leybaert L. (2009) Connexin-related signaling in cell death: to live or let die? Cell Death Differ 16: 524–36.

    Article  CAS  PubMed  Google Scholar 

  33. Dunzendorfer S, Lee HK, Soldau K, Tobias PS. (2004) Toll-like receptor 4 functions intracellularly in human coronary artery endothelial cells: roles of LBP and sCD14 in mediating LPS responses. Faseb J 18:1117–9.

    CAS  PubMed  Google Scholar 

  34. Ebihara L. (2003) New roles for connexons. News Physiol Sci 18:100–3.

    CAS  PubMed  Google Scholar 

  35. Edelhauser HF. (2000) The resiliency of the corneal endothelium to refractive and intraocular surgery. Cornea 19: 263–73.

    Article  CAS  PubMed  Google Scholar 

  36. Eltzschig HK, Eckle T, Mager A, Kuper N, Karcher C, Weissmuller T, Boengler K, Schulz R, Robson SC, Colgan SP. (2006) ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial cell function. Circ Res 99:1100–8.

    Article  CAS  PubMed  Google Scholar 

  37. Evans WH, Boitano S. (2001) Connexin mimetic peptides: specific inhibitors of gap-junctional intercellular communication. Biochem Soc Trans 29: 606–12.

    Article  PubMed  Google Scholar 

  38. Evans WH, De Vuyst E, Leybaert L. (2006) The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J 397:1–14.

    Article  CAS  PubMed  Google Scholar 

  39. Faigle M, Seessle J, Zug S, El Kasmi KC, Eltzschig HK. (2008) ATP release from vascular endothelia occurs across Cx43 hemichannels and is attenuated during hypoxia. PLoS ONE 3: e2801.

    Article  PubMed  CAS  Google Scholar 

  40. Fick J, Barker FG, 2nd, Dazin P, Westphale EM, Beyer EC, Israel MA. (1995) The extent of heterocellular communication mediated by gap junctions is predictive of bystander tumor cytotoxicity in vitro. Proc Natl Acad Sci USA 92:11071–5.

    Article  CAS  PubMed  Google Scholar 

  41. Gage PJ, Rhoades W, Prucka SK, Hjalt T. (2005) Fate maps of neural crest and mesoderm in the mammalian eye. Invest Ophthalmol Vis Sci 46:4200–8.

    Article  PubMed  Google Scholar 

  42. Giepmans BN. (2004) Gap junctions and connexin-interacting proteins. Cardiovasc Res 62: 233–45.

    Article  CAS  PubMed  Google Scholar 

  43. Gomes P, Srinivas SP, Van Driessche W, Vereecke J, Himpens B. (2005) ATP release through connexin hemichannels in corneal endothelial cells. Invest Ophthalmol Vis Sci 46:1208–18.

    Article  PubMed  Google Scholar 

  44. Gomes P, Srinivas SP, Vereecke J, Himpens B. (2005) ATP-dependent paracrine intercellular communication in cultured bovine corneal endothelial cells. Invest Ophthalmol Vis Sci 46:104–13.

    Article  PubMed  Google Scholar 

  45. Goodenough DA, Paul DL. (2003) Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 4:285–94.

    Article  CAS  PubMed  Google Scholar 

  46. Harris AL. (2001) Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 34: 325–472.

    CAS  PubMed  Google Scholar 

  47. Herve JC, Bourmeyster N, Sarrouilhe D, Duffy HS. (2007) Gap junctional complexes: from partners to functions. Prog Biophys Mol Biol 94:29–65.

    Article  CAS  PubMed  Google Scholar 

  48. Holden BA, Sweeney DF, Vannas A, Nilsson KT, Efron N. (1985) Effects of long-term extended contact lens wear on the human cornea. Invest Ophthalmol Vis Sci 26:1489–501.

    CAS  PubMed  Google Scholar 

  49. Huang YJ, Maruyama Y, Dvoryanchikov G, Pereira E, Chaudhari N, Roper SD. (2007) The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proc Natl Acad Sci USA 104:6436–41.

    Article  CAS  PubMed  Google Scholar 

  50. Jiang LH, Mackenzie AB, North RA, Surprenant A. (2000) Brilliant blue G selectively blocks ATP-gated rat P2X(7) receptors. Mol Pharmacol 58:82–8.

    CAS  PubMed  Google Scholar 

  51. John S, Cesario D, Weiss JN. (2003) Gap junctional hemichannels in the heart. Acta Physiol Scand 179:23–31.

    Article  CAS  PubMed  Google Scholar 

  52. Joyce NC. (2003) Proliferative capacity of the corneal endothelium. Prog Retin Eye Res 22:359–89.

    Article  CAS  PubMed  Google Scholar 

  53. Kang J, Kang N, Lovatt D, Torres A, Zhao Z, Lin J, Nedergaard M. (2008) Connexin 43 hemichannels are permeable to ATP. J Neurosci 28:4702–11.

    Article  CAS  PubMed  Google Scholar 

  54. Kanneganti TD, Lamkanfi M, Kim YG, Chen G, Park JH, Franchi L, Vandenabeele P, Nunez G. (2007) Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26:433–43.

    Article  CAS  PubMed  Google Scholar 

  55. Klepeis VE, Cornell-Bell A, Trinkaus-Randall V. (2001) Growth factors but not gap junctions play a role in injury-induced Ca2+ waves in epithelial cells. J Cell Sci 114:4185–95.

    CAS  PubMed  Google Scholar 

  56. Klepeis VE, Weinger I, Kaczmarek E, Trinkaus-Randall V. (2004) P2Y receptors play a critical role in epithelial cell communication and migration. J Cell Biochem 93:1115–33.

    Article  CAS  PubMed  Google Scholar 

  57. Knight MM, McGlashan SR, Garcia M, Jensen CG, Poole CA. (2009) Articular chondrocytes express connexin 43 hemichannels and P2 receptors – a putative mechanoreceptor complex involving the primary cilium? J Anat 214: 275–83.

    Article  CAS  PubMed  Google Scholar 

  58. Kondo RP, Wang SY, John SA, Weiss JN, Goldhaber JI. (2000) Metabolic inhibition activates a non-selective current through connexin hemichannels in isolated ventricular myocytes. J Mol Cell Cardiol 32:1859–72.

    Article  CAS  PubMed  Google Scholar 

  59. Krysko DV, Mussche S, Leybaert L, D’Herde K. (2004) Gap junctional communication and connexin43 expression in relation to apoptotic cell death and survival of granulosa cells. J Histochem Cytochem 52: 1199–207.

    Article  CAS  PubMed  Google Scholar 

  60. Lampe PD, Lau AF. (2004) The effects of connexin phosphorylation on gap junctional communication. Int J Biochem Cell Biol 36:1171–86.

    Article  CAS  PubMed  Google Scholar 

  61. Li H, Liu TF, Lazrak A, Peracchia C, Goldberg GS, Lampe PD, Johnson RG. (1996) Properties and regulation of gap junctional hemichannels in the plasma membranes of cultured cells. J Cell Biol 134:1019–30.

    Article  CAS  PubMed  Google Scholar 

  62. Limouze J, Straight AF, Mitchison T, Sellers JR. (2004) Specificity of blebbistatin, an inhibitor of myosin II. J Muscle Res Cell Motil 25:337–41.

    Article  CAS  PubMed  Google Scholar 

  63. Lopes-Bezerra LM, Filler SG. (2003) Endothelial cells, tissue factor and infectious diseases. Braz J Med Biol Res 36:987–91.

    Article  CAS  PubMed  Google Scholar 

  64. Lucas-Lopez C, Patterson S, Blum T, Straight AF, Toth J, Slawin AMZ, Mitchison TJ, Sellers JR, Westwood NJ. (2005) Absolute Stereochemical Assignment and Fluorescence Tuning of the Small Molecule Tool (-)-Blebbistatin. Eur J Organic Chem 2005:1736–40.

    Article  CAS  Google Scholar 

  65. Matsuoka I, Ohkubo S. (2004) ATP- and adenosine-mediated signaling in the central nervous system: adenosine receptor activation by ATP through rapid and localized generation of adenosine by ecto-nucleotidases. J Pharmacol Sci 94:95–9.

    Article  CAS  PubMed  Google Scholar 

  66. Mayo C, Ren R, Rich C, Stepp MA, Trinkaus-Randall V. (2008) Regulation by P2X7: Epithelial Migration and Stromal Organization in the Cornea. Invest Ophthalmol Vis Sci 49(10):4384–91.

    Article  PubMed  Google Scholar 

  67. Mesnil M. (2002) Connexins and cancer. Biol Cell 94:493–500.

    Article  CAS  PubMed  Google Scholar 

  68. Meszaros K, Aberle S, Dedrick R, Machovich R, Horwitz A, Birr C, Theofan G, Parent JB. (1994) Monocyte tissue factor induction by lipopolysaccharide. (LPS): dependence on LPS-binding protein and CD14, and inhibition by a recombinant fragment of bactericidal/permeability-increasing protein. Blood 83:2516–25.

    CAS  PubMed  Google Scholar 

  69. Mitchell SA, Randers-Pehrson G, Brenner DJ, Hall EJ. (2004) The bystander response in C3H 10T1/2 cells: the influence of cell-to-cell contact. Radiat Res 161:397–401.

    Article  CAS  PubMed  Google Scholar 

  70. Naus CC. (2002) Gap junctions and tumour progression. Can J Physiol Pharmacol 80: 136–141.

    Article  CAS  PubMed  Google Scholar 

  71. Naus CC, Elisevich K, Zhu D, Belliveau DJ, Del Maestro RF. (1992) In vivo growth of C6 glioma cells transfected with connexin43 cDNA. Cancer Res 52:4208–13.

    CAS  PubMed  Google Scholar 

  72. Parthasarathi K, Ichimura H, Monma E, Lindert J, Quadri S, Issekutz A, Bhattacharya J. (2006) Connexin 43 mediates spread of Ca2+-dependent proinflammatory responses in lung capillaries. J Clin Invest 116:2193–200.

    Article  CAS  PubMed  Google Scholar 

  73. Patterson S, Lucas-Lopez C, Westwood NJ. (2005) Selective chemical intervention in biological systems: the small molecule tool (S)-(-)-Blebbistatin. In: Hicks MG, Kettner C (eds) The Chemical Theatre of Biological Systems.

    Google Scholar 

  74. Pearson RA, Dale N, Llaudet E, Mobbs P. (2005) ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron 46:731–44.

    Article  CAS  PubMed  Google Scholar 

  75. Pelegrin P, Barroso-Gutierrez C, Surprenant A. (2008) P2X7 receptor differentially couples to distinct release pathways for IL-1beta in mouse macrophage. J Immunol 180:7147–57.

    CAS  PubMed  Google Scholar 

  76. Pelegrin P, Surprenant A. (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. Embo J 25: 5071–82.

    Article  CAS  PubMed  Google Scholar 

  77. Pelegrin P, Surprenant A. (2007) Pannexin-1 couples to maitotoxin- and nigericin-induced interleukin-1beta release through a dye uptake-independent pathway. J Biol Chem 282: 2386–94.

    Article  CAS  PubMed  Google Scholar 

  78. Plotkin LI, Manolagas SC, Bellido T. (2002) Transduction of cell survival signals by connexin-43 hemichannels. J Biol Chem 277:8648–57.

    Article  CAS  PubMed  Google Scholar 

  79. Ponsaerts R, D’Hondt C, Bultynck G, Srinivas SP, Vereecke J, Himpens B. (2008) The myosin II ATPase inhibitor blebbistatin prevents thrombin-induced inhibition of intercellular calcium wave propagation in corneal endothelial cells. Invest Ophthalmol Vis Sci 49:4816–27.

    Article  PubMed  Google Scholar 

  80. Ponsaerts R, D’Hondt C, Srinivas SP, Vereecke J, Himpens B. (2008) Effects of thrombin and adenosine on MLC phosphorylation in bovine corneal endothelial cells studied by confocal immunofluorescence microscopy. Acta Physiologica 192:P0–12.

    Google Scholar 

  81. Praetorius HA, Leipziger J. (2009) ATP release from non-excitable cells. Purinergic Signal, DOI 10.1007/s11302-009-9146-2.

    Google Scholar 

  82. Ransford GA, Fregien N, Qiu F, Dahl G, Conner GE, Salathe M. (2009) Pannexin 1 Contributes to ATP Release in Airway Epithelia. Am J Respir Cell Mol Biol 41(5):525–34.

    Article  CAS  PubMed  Google Scholar 

  83. Reigada D, Lu W, Zhang M, Mitchell CH. (2008) Elevated pressure triggers a physiological release of ATP from the retina: Possible role for pannexin hemichannels. Neuroscience 157:396–404.

    Article  CAS  PubMed  Google Scholar 

  84. Retamal MA, Cortes CJ, Reuss L, Bennett MV, Saez JC. (2006) S-nitrosylation and permeation through connexin 43 hemichannels in astrocytes: induction by oxidant stress and reversal by reducing agents. Proc Natl Acad Sci USA 103:4475–80.

    Article  CAS  PubMed  Google Scholar 

  85. Retamal MA, Schalper KA, Shoji KF, Bennett MV, Saez JC. (2007) Opening of connexin 43 hemichannels is increased by lowering intracellular redox potential. Proc Natl Acad Sci USA 104:8322–7.

    Article  CAS  PubMed  Google Scholar 

  86. Riley MV, Winkler BS, Starnes CA, Peters MI. (1996) Adenosine promotes regulation of corneal hydration through cyclic adenosine monophosphate. Invest Ophthalmol Vis Sci 37:1–10.

    CAS  PubMed  Google Scholar 

  87. Riley MV, Winkler BS, Starnes CA, Peters MI, Dang L. (1998) Regulation of corneal endothelial barrier function by adenosine, cyclic AMP, and protein kinases. Invest Ophthalmol Vis Sci 39:2076–84.

    CAS  PubMed  Google Scholar 

  88. Romanello M, Pani B, Bicego M, D'Andrea P. (2001) Mechanically induced ATP release from human osteoblastic cells. Biochem Biophys Res Commun 289:1275–81.

    Article  CAS  PubMed  Google Scholar 

  89. Romanov RA, Rogachevskaja OA, Khokhlov AA, Kolesnikov SS. (2008) Voltage dependence of ATP secretion in mammalian taste cells. J Gen Physiol 132:731–44.

    Article  CAS  PubMed  Google Scholar 

  90. Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC. (2003) Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 83:1359–400.

    CAS  PubMed  Google Scholar 

  91. Saez JC, Contreras JE, Bukauskas FF, Retamal MA, Bennett MV. (2003) Gap junction hemichannels in astrocytes of the CNS. Acta Physiol Scand 179:9–22.

    Article  CAS  PubMed  Google Scholar 

  92. Saez JC, Retamal MA, Basilio D, Bukauskas FF, Bennett MV. (2005) Connexin-based gap junction hemichannels: gating mechanisms. Biochim Biophys Acta 1711: 215–24.

    Article  CAS  PubMed  Google Scholar 

  93. Satpathy M, Gallagher P, Jin Y, Srinivas SP. (2005) Extracellular ATP opposes thrombin-induced myosin light chain phosphorylation and loss of barrier integrity in corneal endothelial cells. Exp Eye Res 81:183–92.

    Article  CAS  PubMed  Google Scholar 

  94. Satpathy M, Gallagher P, Waniewski ML, Srinivas SP. (2004) Thrombin-induced phosphorylation of the regulatory light chain of myosin II in cultured bovine corneal endothelial cells. Exp Eye Res 79:477–86.

    Article  CAS  PubMed  Google Scholar 

  95. Scemes E, Spray DC, Meda P. (2009) Connexins, pannexins, innexins: novel roles of "hemi-channels". Pflugers Arch 457:1207–26.

    Article  CAS  PubMed  Google Scholar 

  96. Scemes E, Suadicani SO, Dahl G, Spray DC. (2007) Connexin and pannexin mediated cell-cell communication. Neuron Glia Biol 3:199–208.

    Article  PubMed  Google Scholar 

  97. Schenk U, Westendorf AM, Radaelli E, Casati A, Ferro M, Fumagalli M, Verderio C, Buer J, Scanziani E, Grassi F. (2008) Purinergic control of T cell activation by ATP released through pannexin-1 hemichannels. Sci Signal 1:ra6.

    Article  PubMed  Google Scholar 

  98. Schilling WP, Wasylyna T, Dubyak GR, Humphreys BD, Sinkins WG. (1999) Maitotoxin and P2Z/P2X7 purinergic receptor stimulation activate a common cytolytic pore. Am J Physiol 277:C766–76.

    CAS  PubMed  Google Scholar 

  99. Schock SC, Leblanc D, Hakim AM, Thompson CS. (2008) ATP release by way of connexin 36 hemichannels mediates ischemic tolerance in vitro. Biochem Biophys Res Commun 368:138–44.

    Article  CAS  PubMed  Google Scholar 

  100. Seki A, Coombs W, Taffet SM, Delmar M. (2004) Loss of electrical communication, but not plaque formation, after mutations in the cytoplasmic loop of connexin43. Heart Rhythm 1:227–33.

    Article  PubMed  Google Scholar 

  101. Seki A, Duffy HS, Coombs W, Spray DC, Taffet SM, Delmar M. (2004) Modifications in the biophysical properties of connexin43 channels by a peptide of the cytoplasmic loop region. Circ Res 95:e22–8.

    Article  CAS  PubMed  Google Scholar 

  102. Shao C, Furusawa Y, Aoki M, Ando K. (2003) Role of gap junctional intercellular communication in radiation-induced bystander effects in human fibroblasts. Radiat Res 160:318–23.

    Article  CAS  PubMed  Google Scholar 

  103. Shen L, Black ED, Witkowski ED, Lencer WI, Guerriero V, Schneeberger EE, Turner JR. (2006) Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J Cell Sci 119:2095–106.

    Article  CAS  PubMed  Google Scholar 

  104. Shestopalov VI, Panchin Y. (2008) Pannexins and gap junction protein diversity. Cell Mol Life Sci 65:376–94.

    Article  CAS  PubMed  Google Scholar 

  105. Srinivas SP, Satpathy M, Gallagher P, Larivière E, Van Driessche W. (2004) Adenosine induces dephosphorylation of myosin II regulatory light chain in cultured bovine corneal endothelial cells. Exp Eye Res 79:543–51.

    Article  CAS  PubMed  Google Scholar 

  106. Srinivas SP, Satpathy M, Guo Y, Anandan V. (2006) Histamine-induced phosphorylation of the regulatory light chain of myosin II disrupts the barrier integrity of corneal endothelial cells. Invest Ophthalmol Vis Sci 47:4011–18.

    Article  PubMed  Google Scholar 

  107. Srinivas SP, Yeh JC, Ong A, Bonanno JA. (1998) Ca2+ mobilization in bovine corneal endothelial cells by P2 purinergic receptors. Curr Eye Res 17:994–1004.

    Article  CAS  PubMed  Google Scholar 

  108. Stout CE, Costantin JL, Naus CC, Charles AC. (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277:10482–8.

    Article  CAS  PubMed  Google Scholar 

  109. Straight AF, Cheung A, Limouze J, Chen I, Westwood NJ, Sellers JR, Mitchison TJ. (2003) Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Science 299:1743–7.

    Article  CAS  PubMed  Google Scholar 

  110. Suadicani SO, Brosnan CF, Scemes E. (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26: 1378–85.

    Article  CAS  PubMed  Google Scholar 

  111. Sun XC, Cui M, Bonanno JA. (2004) [HCO3-]-regulated expression and activity of soluble adenylyl cyclase in corneal endothelial and Calu-3 cells. BMC Physiol 4:8.

    Article  PubMed  Google Scholar 

  112. Tan-Allen KY, Sun XC, Bonanno JA. (2005) Characterization of adenosine receptors in bovine corneal endothelium. Exp Eye Res 80:687–96.

    Article  CAS  PubMed  Google Scholar 

  113. Thompson RJ, Jackson MF, Olah ME, Rungta RL, Hines DJ, Beazely MA, MacDonald JF, MacVicarr BA. (2008) Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus. Science 322.

    Google Scholar 

  114. Thompson RJ, Zhou N, MacVicar BA. (2006) Ischemia opens neuronal gap junction hemichannels. Science 312:924–7.

    Article  CAS  PubMed  Google Scholar 

  115. Tong D, Li TY, Naus KE, Bai D, Kidder GM. (2007) In vivo analysis of undocked connexin43 gap junction hemichannels in ovarian granulosa cells. J Cell Sci 120:4016–24.

    Article  CAS  PubMed  Google Scholar 

  116. Trosko JE, Ruch RJ. (2002) Gap junctions as targets for cancer chemoprevention and chemotherapy. Curr Drug Targets 3:465–82.

    Article  CAS  PubMed  Google Scholar 

  117. Utech M, Ivanov AI, Samarin SN, Bruewer M, Turner JR, Mrsny RJ, Parkos CA, Nusrat A. (2005) Mechanism of IFN-gamma-induced endocytosis of tight junction proteins: myosin II-dependent vacuolarization of the apical plasma membrane. Mol Biol Cell 16:5040–52.

    Article  CAS  PubMed  Google Scholar 

  118. Veltrop MH, Beekhuizen H, Thompson J. (1999) Bacterial species- and strain-dependent induction of tissue factor in human vascular endothelial cells. Infect Immun 67:6130–8.

    CAS  PubMed  Google Scholar 

  119. Verhoef PA, Kertesy SB, Estacion M, Schilling WP, Dubyak GR. (2004) Maitotoxin induces biphasic interleukin-1beta secretion and membrane blebbing in murine macrophages. Mol Pharmacol 66:909–20.

    CAS  PubMed  Google Scholar 

  120. Vrionis FD, Wu JK, Qi P, Waltzman M, Cherington V, Spray DC. (1997) The bystander effect exerted by tumor cells expressing the herpes simplex virus thymidine kinase. (HSVtk) gene is dependent on connexin expression and cell communication via gap junctions. Gene Ther 4:577–85.

    Article  CAS  PubMed  Google Scholar 

  121. Wang F, Graham WV, Wang Y, Witkowski ED, Schwarz BT, Turner JR. (2005) Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol 166:409–19.

    CAS  PubMed  Google Scholar 

  122. Warny M, Kelly CP. (1999) Monocytic cell necrosis is mediated by potassium depletion and caspase-like proteases. Am J Physiol 276: C717–24.

    CAS  PubMed  Google Scholar 

  123. Weber PA, Chang HC, Spaeth KE, Nitsche JM, Nicholson BJ. (2004) The permeability of gap junction channels to probes of different size is dependent on connexin composition and permeant-pore affinities. Biophys J 87:958–73.

    Article  CAS  PubMed  Google Scholar 

  124. Williams KK, Watsky MA. (2004) Bicarbonate promotes dye coupling in the epithelium and endothelium of the rabbit cornea. Curr Eye Res 28:109–20.

    Article  CAS  PubMed  Google Scholar 

  125. Wurmser AE, Nakashima K, Summers RG, Toni N, D'Amour KA, Lie DC, Gage FH. (2004) Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 430:350–6.

    Article  CAS  PubMed  Google Scholar 

  126. Yang L, Cranson D, Trinkaus-Randall V. (2004) Cellular injury induces activation of MAPK via P2Y receptors. J Cell Biochem 91:938–50.

    Article  CAS  PubMed  Google Scholar 

  127. Yee RW, Matsuda M, Schultz RO, Edelhauser HF. (1985) Changes in the normal corneal endothelial cellular pattern as a function of age. Curr Eye Res 4:671–8.

    Article  CAS  PubMed  Google Scholar 

  128. Yegutkin GG. (2008) Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783:673–94.

    Article  CAS  PubMed  Google Scholar 

  129. Yen MR, Saier MH, Jr.. (2007) Gap junctional proteins of animals: the innexin/pannexin superfamily. Prog Biophys Mol Biol 94:5–14.

    Article  CAS  PubMed  Google Scholar 

  130. Zhu D, Caveney S, Kidder GM, Naus CC. (1991) Transfection of C6 glioma cells with connexin 43 cDNA: analysis of expression, intercellular coupling, and cell proliferation. Proc Natl Acad Sci USA 88:1883–7.

    Article  CAS  PubMed  Google Scholar 

  131. Zoidl G, Petrasch-Parwez E, Ray A, Meier C, Bunse S, Habbes HW, Dahl G, Dermietzel R. (2007) Localization of the pannexin1 protein at postsynaptic sites in the cerebral cortex and hippocampus. Neuroscience 146:9–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by FWO-Vlaanderen G.0218.03, GOA/2004/07, IAP program 5/05 (BH and JV) and NIH grant R21-EY019119 and Faculty Research Grant, VP of Research, IU Bloomington, IN (SPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Vereecke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ponsaerts, R. et al. (2010). ATP Release Via Connexin Hemichannels Controls Intercellular Propagation of Ca2+ Waves in Corneal Endothelial Cells. In: Gerasimovskaya, E., Kaczmarek, E. (eds) Extracellular ATP and Adenosine as Regulators of Endothelial Cell Function. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3435-9_10

Download citation

Publish with us

Policies and ethics