Skip to main content

The Influence of the Anionic Counter-Ion on the Activity of Ammonium Substituted Hoveyda-Type Olefin Metathesis Catalysts in Aqueous Media

  • Conference paper
Green Metathesis Chemistry

Abstract

Polar olefin metathesis catalysts, bearing an ammonium group are presented. The electron withdrawing ammonium group not only activates the catalysts electronically, but at the same time makes the catalysts more hydrophilic. Catalysts can be therefore efficiently used not only in traditional media, such as methylene chloride and toluene, but also in technical-grade alcohols, alcohol— water mixtures and in neat water. Finally, in this overview the influence of the anionic counter-ion on the activity of ammonium substituted Hoveyda-type olefin metathesis catalysts in aqueous media is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. General reviews: (a) Schrock RR, Hoveyda AH (2003) Angew Chem Int Ed 42:4592

    Article  CAS  Google Scholar 

  2. Trnka TM, Grubbs RH (2001) Acc Chem Res 34:18

    Article  CAS  Google Scholar 

  3. Fűrstner A (2000) Angew Chem Int Ed 39:3012

    Article  Google Scholar 

  4. Grubbs RH, Chang S (1998) Tetrahedron 54:4413

    Article  CAS  Google Scholar 

  5. Schuster M, Blechert S (1997) Angew Chem Int Ed 36:2037

    CAS  Google Scholar 

  6. Dragutan V, Dragutan I, Balaban AT (2001) Platinum Met Rev 45:155

    CAS  Google Scholar 

  7. For an industrial perspective: Thayer AM (2007) C&EN 85(7):37

    Google Scholar 

  8. Nicola T, Brenner M, Donsbach K, Kreye P (2005) Org Process Res Dev 9:513

    Article  CAS  Google Scholar 

  9. Conrad JC, Parnas HH, Snelgrove JL, Fogg DE (2005) J Am Chem Soc 127:11882;

    Article  CAS  Google Scholar 

  10. For example, in a crude untreated product of the diethyl diallylmalonate RCM catalysed by 5 mol% of Grubbs I-generation catalyst the theoretical amount of Ru is 90 mg per 5 mg of product (18,000 ppm). After filtration of the crude reaction mixture, the Ru level was reduced to 59.7 ± 0.50 mg per 5 mg (12,000 ppm). Further purification of such crude metathesis products usually reduces ruthenium levels below 2,000 ppm, see ibid, and McEleney K, Allen DP, Holliday AE, Crudden CM (2006) Org Lett 8:2663

    Article  CAS  Google Scholar 

  11. Another solution to this problem might be based on the immobilisation of a metathesis catalysts in a separate liquid or solid phase. For recent reviews, see: (a) Hoveyda AH, Gillingham DG, Van Veldhuizen JJ, Kataoka O, Garber S B, Kingsbury JS, Harrity JPA (2004) Org Biomol Chem 2:1

    Article  Google Scholar 

  12. Buchmeiser RM (2004) New J Chem 28:549. For related systems developed in our laboratories, see:

    Article  CAS  Google Scholar 

  13. Grela K, Mennecke K, Kunz U, Kirschning A (2005) Synlett 19:2948

    Google Scholar 

  14. Grela K, Tryznowki M, Bieniek M (2002) Tetrahedron Lett 43:6425

    Article  Google Scholar 

  15. Cho J H, Kim BM (2003) Org Lett 5:531

    Article  CAS  Google Scholar 

  16. Cornils B, Hermann WA (eds.) (2004) Aqueous-phase organometallic catalysis. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  17. For a review on sustainable aspects of olefin metathesis, see: Clavier H, Grela K, Kirschning A, Mauduit M, Nolan SP (2007) Angew Chem Int Ed 46:6786

    Article  CAS  Google Scholar 

  18. For example, see: (a) Gordon EJ, Sanders WJ, Kiessling LL (1998) Nature 392:30;

    Article  CAS  Google Scholar 

  19. Kanai M, Mortell KH, Kiessling LL (1997) J Am Chem Soc 119:993;

    Article  Google Scholar 

  20. Manning DD, Hu X, Beck P, Kiessling LL (1997) J Am Chem Soc 119:3161;

    Article  CAS  Google Scholar 

  21. Manning DD, Strong LE, Hu X, Beck P, Kiessling LL (1997) Tetrahedron 53:11937

    Article  CAS  Google Scholar 

  22. Lynn DM, Kanaoka S, Grubbs RH (1996) J Am Chem Soc 118:784;

    Article  CAS  Google Scholar 

  23. Monteil V, Wehrmann P, Mecking S (2005) J Am Chem Soc 127:14568

    Article  CAS  Google Scholar 

  24. Kirkland TA, Lynn DM, Grubbs RH (1998) J Org Chem 63:9904;

    Article  CAS  Google Scholar 

  25. Davis KJ, Sinou D (2002) J Mol Catal A: Chem 177:173;

    Article  CAS  Google Scholar 

  26. Mwangi MT, Runge MB, Bowden NB (2006) J Am Chem Soc 128:14434;

    Article  CAS  Google Scholar 

  27. Connon SJ, Rivard M, Zaja M, Blechert S (2003) Adv Synth Catal 345:572;

    Article  CAS  Google Scholar 

  28. Zarka MT, Nuyken O, Weberskirch R (2004) Macromol Rapid Commun 25:858;

    Article  CAS  Google Scholar 

  29. For early examples of ROMP in aqueous media initiated by poorly defined ruthenium complexes such as RuCl2(H2O)n or Ru(H2O)6(TsO)2, see: Novak BM, Grubbs RH (1988) J Am Chem Soc 110:960;

    Article  CAS  Google Scholar 

  30. Novak BM, Grubbs RH (1988) J Am Chem Soc 110:7542;

    Article  CAS  Google Scholar 

  31. Hillmeyer MA, Lepetit C, McGrath DV, Novak BM, Grubbs RH (1992) Macromolecules 25:3345;

    Article  Google Scholar 

  32. Mortell KH, Weatherman RV, Kiessling LL (1996) J Am Chem Soc 118:2297;

    Article  CAS  Google Scholar 

  33. Lipshutz BH, Aguinaldo GT, Ghorai S, Voigtritter K (2008) Org Lett 10:1325;

    Article  CAS  Google Scholar 

  34. Lipshutz BH, Ghorai S, Aguinaldo GT (2008) Adv Synth Catal 7–8:953;

    Article  Google Scholar 

  35. For a review on aqueous olefin metathesis, see: Burtscher D, Grela K (2009) Angew Chem Int Ed 48:442

    Article  CAS  Google Scholar 

  36. Grela K, Harutyunyan S, Michrowska A (2002) Angew Chem Int Ed 41:4038;

    Article  CAS  Google Scholar 

  37. Michrowska A, Bujok R, Harutyunyan S, Sashuk V, Dolgonos G, Grela K (2004) J Am Chem Soc 126:9318

    Article  CAS  Google Scholar 

  38. Grela K, Michrowska A, Bieniek M (2006) Chem Rec 6:144; (b) Michrowska A, Grela K (2008) Pure Appl Chem 80:31

    Article  CAS  Google Scholar 

  39. Michrowska A, Grela K (2008) Pure Appl Chem 80:31

    Article  CAS  Google Scholar 

  40. Gułajski L, Michrowska A, Bujak R, Grela K (2006) J Mol Catal A: Chem 254:118;

    Article  Google Scholar 

  41. Kirschning A, Gułajski Ł, Mennecke K, Meyer A, Busch T, Grela K (2008) Synlett 2692

    Google Scholar 

  42. Michrowska A, Mennecke K, Kunz U, Kirschning A, Grela K (2006) J Am Chem Soc 128:13261

    Article  CAS  Google Scholar 

  43. Kirschning A, Harmrolfs K, Mennecke K, Messinger J, Schön U, Grela K (2008) Tetrahedron Lett 49:3019

    Article  CAS  Google Scholar 

  44. Michrowska A (2006) Ph.D. thesis, Institute of Organic Chemistry, Warsaw

    Google Scholar 

  45. Michrowska A, Gułajski Ł, Grela K (2006) Chem Today 24(6):19

    CAS  Google Scholar 

  46. Michrowska A, Gułajski Ł, Kaczmarska Z, Mennecke K, Kirschning A, Grela K (2006) Green Chem 8:685

    Article  CAS  Google Scholar 

  47. Gułajski Ł, Michrowska A, Naroznik J, Kaczmarska Z, Rupnicki L, Grela K (2008) Chem SusChem 1:103; Ł. Gułajski; K. Grela unpubliced results

    Google Scholar 

  48. Binder JB, Guzei IA, Raines RT (2007) Adv Synth Catal 349:395

    Article  CAS  Google Scholar 

  49. Rix D, Clavier H, Gułajski Ł, Grela K, Mauduit M (2006) J Organomet Chem 691:5397;

    Article  CAS  Google Scholar 

  50. Rix D, Caïjo F, Laurent I, Gułajski Ł, Grela K, Mauduit M (2007) Chem Commun 3771

    Google Scholar 

  51. Jordan J P, Grubbs R H (2007) Angew Chem Int Ed 46:5152

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol Grela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Gułajski, Ł., Grela, K. (2010). The Influence of the Anionic Counter-Ion on the Activity of Ammonium Substituted Hoveyda-Type Olefin Metathesis Catalysts in Aqueous Media. In: Dragutan, V., Demonceau, A., Dragutan, I., Finkelshtein, E.S. (eds) Green Metathesis Chemistry. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3433-5_5

Download citation

Publish with us

Policies and ethics