Skip to main content

Activation of Cycloolefin Metathesis by Ultrasonic Irradiation

  • Conference paper
Green Metathesis Chemistry

Abstract

The present research focuses on the impact of power ultrasound on the synthesis of the tungsten-based metathesis catalytic system WCl6/Me4Sn and its activity in ring-opening metathesis polymerization of cyclooctene and cyclododecene. As compared to corresponding silent ROMP reactions with this mild catalytic system, altered reaction kinetics and different product selectivity have been found. Rate acceleration and an enhancement of oligomer formation have been clearly evidenced. The demonstrated possibility of employing technical grade solvents in ROMP induced by WCl6/Me4Sn is a further gain of the ultrasound strategy. Under the right conditions, ultrasound may thus promote greener, more cost effective and sustainable metathetic procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mason TJ, Larimer JP (1988) Sonochemistry: Theory, applications and uses of ultrasound in chemistry. Ellis Horwood, Chichester, England;

    Google Scholar 

  2. Mason TJ (ed.) (1990) Sonochemistry: The uses of ultrasound in chemistry. Royal Society of Chemistry, Cambridge, England;

    Google Scholar 

  3. Mason TJ, Peters D (2002) Power ultrasound. Uses and applications (2nd edn.). Horwood, Chichester;

    Google Scholar 

  4. Mason TJ, Lorimer JP (2002) Applied sonochemistry. Wiley-VCH, Weinheim

    Book  Google Scholar 

  5. Suslick KS (ed.) (1987) High energy processes in organometallic chemistry. ACS Symposium Series 333, New York;

    Google Scholar 

  6. Suslick KS (ed.) (1988) Ultrasound, its chemical, physical and biological effects. VCH Publishers, New York;

    Google Scholar 

  7. Suslick KS (1994) The chemistry of ultrasound, in Encyclopedia Britannica Yearbook of science and the future 1994. Britannica, Chicago, IL, pp. 138–155;

    Google Scholar 

  8. Suslick KS (1988) Sonochemistry, in Kirk-Othmer Encyclopedia of Chemical Technology (4th edn.). Wiley, New York, vol. 26, pp. 517–541

    Google Scholar 

  9. Price GJ, Matthias P, Lenz EJ (1994) Process Safety Environ Prot 72B1:27

    Google Scholar 

  10. Mason TJ (2007) Ultrasonics Sonochemistry 14:476–483;

    Article  CAS  Google Scholar 

  11. Joyce EM, Mason TJ (2008) Chimica Oggi ∙ Chem Today 26:22–26

    CAS  Google Scholar 

  12. Cravotto G, Cintas P (2006) Chem Soc Rev 35:180–196

    Article  CAS  Google Scholar 

  13. Cravotto G, Garella D, Gaudino CE, Leveque JM (2008) Chimica Oggi ∙ Chem Today 26:44–47

    CAS  Google Scholar 

  14. Price GJ, Ashokkumar M, Hodnett M, Zequiri B, Grieser F (2005) J Phys Chem B 109:17799–17801

    Article  CAS  Google Scholar 

  15. Caulier TP, Maeck M, Reisse J (1995) J Org Chem 60:272

    Article  CAS  Google Scholar 

  16. Peters D, Pautet F, Fakih H-El, Luche J-L, Fillion H (1995) J Prakt Chem 337:363

    Article  CAS  Google Scholar 

  17. Dauben WG, Bridon DP, Kowalczyk BA (1989) J Org Chem 54:6101

    Article  CAS  Google Scholar 

  18. Eshuis JJW (1994) Tetrahedron Lett 35:7833

    CAS  Google Scholar 

  19. Luche J-L, Damiano J-C (1980) J Am Chem Soc 102:7926

    Article  CAS  Google Scholar 

  20. Hyeon T, Fang M, Cichowlas AA, Suslick KS (1995) Prepr (Am Chem Soc Div Fuel Chem) 40:365

    CAS  Google Scholar 

  21. Ley SV, Low CMR (1989) Ultrasound in synthesis. Springer, Berlin

    Google Scholar 

  22. Cheng J, Luo F (1989) Bull Inst Chem Acad Sin 36:9

    CAS  Google Scholar 

  23. Billington DC, Helps IM, Paulson PL, Thompson, Willison D (1988) J Organomet Chem 354:233

    Article  CAS  Google Scholar 

  24. Harrity JPA, Kerr WJ, Middleniss D (1993) Tetrahedron 49:5565

    Article  CAS  Google Scholar 

  25. Suslick KS, Goodale JW, Schubert PF, Wang HH (1983) J Am Chem Soc 105:5781

    Article  CAS  Google Scholar 

  26. Suslick KS, Skrabalak SE (2008) Sonocatalysis. In: Handbook of heterogeneous catalysis, vol. 4, Ertl G, Knözinger H, Schüth F, Weitkamp J (eds.) Wiley-VCH, Weinheim. Weinheim. pp. 2006–2017

    Google Scholar 

  27. Dragutan I, Dragutan V, Petride A, Vanatoru M, Filip P (2002) Ultrasound assisted metathesis of monocyclic olefins with tungsten-based catalysts. In: Khosravi E, Szymanska-Buzar T (eds.) Ring-opening metathesis polymerization and related chemistry: State of the art and visions for the new century. NATO Science Series II. Mathematics, Physics and Chemistry, Kluwer, Dordrecht, The Netherlands, vol. 56, pp. 477–482

    Google Scholar 

  28. Paulusse JMJ, Sijbesma RP (2006) J Polym Sci Part A: Polym Chem 44:5445–5453

    Article  CAS  Google Scholar 

  29. Akyuz A, Catalgil-Giz H, Giz AT (2008) Macromol Chem Phys 209:801–809

    Article  CAS  Google Scholar 

  30. Schulz DN, Sissano JA, Costello CA (1994) Polym Prepr (Am Chem Soc Div Polym Chem) 35:514

    CAS  Google Scholar 

  31. Price GJ, Garland L, Comina J, Davis M, Snell DJ, West PJ (2004) Res Chem Intermed 30:807–827

    Article  CAS  Google Scholar 

  32. Price GJ (2003) Ultrasonics Sonochem 10:277–283

    Article  CAS  Google Scholar 

  33. Price GJ (1993) Chem Ind 3:75–78

    Google Scholar 

  34. Price GJ, Lenz EJ, Ansell CWG (2002) Eur Polym J 38:1753–1760

    Article  CAS  Google Scholar 

  35. Price GJ, Lenz EJ, Ansell CWG (2002) Eur Polym J 38:1531–1536

    Article  CAS  Google Scholar 

  36. Svenson J (2006) Anal Lett 39:2749–2760

    Article  CAS  Google Scholar 

  37. Wang JZ, Hu Y, Chen ZY (2003) Rare Metal Mater Eng 32:585–590

    CAS  Google Scholar 

  38. Sonawane SH, Chaudhari PL, Ghodke SA, Parande MG, Bhandari VM, Mishra S, Kulkarni RD (2009) Ultrasonics Sonochem 16:351–355

    Article  CAS  Google Scholar 

  39. Stokes VK (1989) Polym Eng Sci 29:1310–1324

    Article  CAS  Google Scholar 

  40. Peters D (1996) J Mater Chem 6:1605–1618;

    Article  CAS  Google Scholar 

  41. Suslick KS, Price GJ (1999) Ann Rev Mater Sci 29:295–326;

    Article  CAS  Google Scholar 

  42. Dhas NA, Suslick KS (2005) J Am Chem Soc 127:2368–2369

    Article  CAS  Google Scholar 

  43. Coquerel Y, Rodriguez J (2008) Eur J Org Chem 1125–1132

    Google Scholar 

  44. Gebauer J, Arseniyadis S, Cossy J (2008) Eur J Org Chem 2701–2704

    Google Scholar 

  45. Mandelli D, Jannini MJDM, Buffon R, Schuchardt U (1996) J Am Oil Chemists' Soc 73:229–232

    Article  CAS  Google Scholar 

  46. Furstner A, Dixneuf P, Bruneau C, Picquet M (2003) US Patent 6590048

    Google Scholar 

  47. Gulajski L, Sledz P, Lupa A, Grela K (2008) Green Chem 10:271–274

    Article  CAS  Google Scholar 

  48. Constable GS, Lesser AJ, Coughlin EB (2003) J Polym Sci Part B — Polym Phys 41:1323–1333

    Article  CAS  Google Scholar 

  49. Boelhower C, Mol JC (1985) Progr Lipid Res 24:243

    Article  Google Scholar 

  50. Thorn-Csanyi E, Kessler M (1991) J Mol Catal 65:253–260

    Article  CAS  Google Scholar 

  51. Dragutan V, Dragutan I, Dimonie M (2001) Polym Prepr (Am Chem Soc Div Polym Chem) 42:362–363

    CAS  Google Scholar 

  52. Luche J-L, Einhorn C, Einhorn J, Sinisterra-Gago JV (1990) Tetrahedron Lett 31:4125–4128;

    Article  CAS  Google Scholar 

  53. Chanon M, Luche J-L (1998) In Luche J-L (ed.) Synthetic organic sonochemistry. Plenum, New York, pp. 377–392

    Google Scholar 

  54. Dragutan V, Balaban AT, Dimonie M (1985) Olefin metathesis and ring-opening polymerization of cycloolefins. Wiley, New York

    Google Scholar 

  55. Ivin KJ, Mol JC (1997) Olefin metathesis and metathesis polymerization. Academic Press, London

    Google Scholar 

  56. Dragutan V, Streck R (2000) Catalytic polymerization of cycloolefins. Elsevier, Amsterdam

    Google Scholar 

  57. Thorn-Csanyi E, Timm H (1985) J Mol Catal 28:37

    Article  Google Scholar 

  58. Thorn-Csanyi E, Kessler M (1986) J Mol Catal 36:31

    Article  CAS  Google Scholar 

  59. Dimonie M, Coca S, Teodorescu M, Popescu R, Chipara M, Dragutan V (1994) J Mol Catal 90:117–124

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ileana Dragutan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Dragutan, I., Dragutan, V., Filip, P., Demonceau, A. (2010). Activation of Cycloolefin Metathesis by Ultrasonic Irradiation. In: Dragutan, V., Demonceau, A., Dragutan, I., Finkelshtein, E.S. (eds) Green Metathesis Chemistry. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3433-5_20

Download citation

Publish with us

Policies and ethics