Skip to main content

New N-Heterocyclic Carbene Ligands in Grubbs and Hoveyda–Grubbs Catalysts

  • Conference paper
Green Metathesis Chemistry

Abstract

A series of N-heterocyclic carbene (NHC) ligands bearing aliphatic amino side groups were synthesized and reacted with the Grubbs first generation catalyst. Reactions involving symmetrical, aliphatic NHCs did not allow the isolation of any pure NHC substituted complexes due to their instability. Unsymmetrical NHCs having a planar mesityl group on one amino side reacted with Grubbs catalyst in a favorable manner, and the resulting complexes were stable enough to be isolated. X-ray crystallographic analysis demonstrated that the mesityl group is co-planar with the phenyl ring of the benzylidene, which indicates that a π–π interaction between the mesityl arm and the benzylidene moiety might constitute an important structural element. Catalysts substituted with an NHC derived from a primary or secondary amino-group were found to surpass the parent-complex for the ROMP of cycloocta-1,5-diene. The catalyst substituted with an NHC derived from tBu-NH2 was considerably less metathesis active. Also new N-alkyl-N′-(2,6-diisopropylphenyl) heterocyclic carbenes were synthesized. These NHC ligands revealed a different reactivity towards Grubbs complexes than the hitherto reported imidazolinylidenes: (i) facile bis(NHC) coordination was found, and (ii) both NHCs on the bis(NHC) complexes can be exchanged with a phosphine, thereupon regenerating the Grubbs first generation complex. Furthermore, a comparison between the classical Hoveyda–Grubbs complexes and complexes substituted with N-alkyl-N′-(aryl) heterocyclic carbenes demonstrates that the introduction of one aliphatic group into the NHC framework does not improve the catalytic activity in any of the tested metathesis reactions. The introduction of two aliphatic amino side groups enhances the reactivity in the ROMP reaction while the increase of steric interactions lowers the CM activity. The lower activity of the N-alkyl-N′-(2,6-diisopropylphenyl) heterocyclic carbene complexes compared with the N-alkyl-N′-mesityl heterocyclic carbene complexes, may analogously be attributed to a more demanding steric environment. While small differences in donor capacities might cause a significantly different catalytic behavior, it is thus plausible that subtle steric differences exert a more determining influence on the activity of the catalysts. In addition, the obtained results confirm that the NHC's amino side groups play a pivotal role in determining the reactivity, selectivity as well as the stability of the corresponding catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nolan SP, Huang J, Stevens ED, Petersen JL (1999) J Am Chem Soc 121:2674–2678;

    Article  CAS  Google Scholar 

  2. Westkamp T, Kohl FJ, Hieringer W, Gleich D, Herrmann WA (1999) Angew Chem Int Ed 38:2416–2419;

    Article  Google Scholar 

  3. Scholl M, Ding S, Lee CW, Grubbs RH (1999) Org Lett 1:953–956;

    Article  CAS  Google Scholar 

  4. Scholl M, Trnka TM, Morgan JP, Grubbs RH (1999) Tetrahedron Lett 40:2247–2250;

    Article  CAS  Google Scholar 

  5. Huang J, Schanz H-J, Stevens ED, Nolan SP (1999) Organometallics 18:5375–5380;

    Article  CAS  Google Scholar 

  6. Arduengo AJIII, Krafczyk R, Schmutzler R (1999) Tetrahedron 55:14523–14534;

    Article  CAS  Google Scholar 

  7. Love JA, Morgan JP, Trnka TM, Grubbs RH (2002) Angew Chem Int Ed 21:4035–4037;

    Article  Google Scholar 

  8. Choi T-L, Grubbs RH (2003) Angew Chem Int Ed 42:1743–1746;

    Article  CAS  Google Scholar 

  9. Love JA, Sanford MS, Day MW, Grubbs RH (2003) J Am Chem Soc 125:10103–10109

    Article  CAS  Google Scholar 

  10. Chauvin Y (2006) Angew Chem 118:3824–3831;

    Article  Google Scholar 

  11. Chauvin Y (2006) Angew Chem Int Ed 45:3740–3747;

    Article  CAS  Google Scholar 

  12. Schrock RR (2006) Angew Chem 118:3832–3844;

    Article  Google Scholar 

  13. Schrock RR (2006) Angew Chem Int Ed 45:3748–3759;

    Article  CAS  Google Scholar 

  14. Grubbs RH (2006) Angew Chem 118:3845–3850;

    Article  Google Scholar 

  15. Grubbs RH (2006) Angew Chem Int Ed 45:3760–3765; For selected reviews on olefin metathesis, see:

    Article  CAS  Google Scholar 

  16. Grubbs RH (ed.) (2003) Handbook of metathesis. Wiley-VCH, Weinheim;

    Google Scholar 

  17. Fürstner A (2000) Angew Chem Int Ed 39:3013–3043;

    Article  Google Scholar 

  18. Schrock RR, Hoveyda AH (2003) Angew Chem Int Ed 42:4592–4633;

    Article  CAS  Google Scholar 

  19. Grubbs RH (2004) Tetrahedron 60:7117–7140;

    Article  CAS  Google Scholar 

  20. Astruc D (2005) New J Chem 29:42–56

    Article  CAS  Google Scholar 

  21. Allaert B, Dieltiens N, Ledoux N, Vercaemst C, Van Der Voort P, Stevens CV, Linden A, Verpoort F (2006) J Mol Catal A 260:221–226;

    Article  CAS  Google Scholar 

  22. Drozdzak R, Ledoux N, Allaert B, Dragutan I, Dragutan V, Verpoort F (2005) Cent Eur J Chem 3:404–416;

    Article  CAS  Google Scholar 

  23. Drozdzak R, Allaert B, Ledoux N, Dragutan I, Dragutan V, Verpoort F (2005) Coord Chem Rev 249:3055–3074;

    Article  CAS  Google Scholar 

  24. Drozdzak R, Allaert B, Ledoux N, Dragutan I, Dragutan V, Verpoort F (2005) Adv Synth Catal 347:1721–1743;

    Article  CAS  Google Scholar 

  25. De Clercq B, Verpoort F (2003) J Organomet Chem 672:11–16;

    Article  CAS  Google Scholar 

  26. Melis K, De Vos D, Jacobs P, Verpoort F (2003) J Organomet Chem 671:131–136;

    Article  CAS  Google Scholar 

  27. Melis K, Verpoort F (2003) J Mol Catal A 201:33–41;

    Article  CAS  Google Scholar 

  28. Melis K, Verpoort F (2003) J Mol Catal A 194:39–47;

    Article  CAS  Google Scholar 

  29. Scholl M, Ding S, Lee CW, Grubbs RH (1999) Org Lett 1:953–956;

    Article  CAS  Google Scholar 

  30. Dinger MB, Mol JC (2002) Adv Synth Catal 344:671–677

    Article  CAS  Google Scholar 

  31. Fürstner A, Ackermann L, Gabor B, Goddard R, Lehmann CW, Mynott R, Stelzer F, Thiel OR (2001) Chem Eur J 7:3236–3253

    Article  Google Scholar 

  32. Dinger MB, Nieczypor P, Mol JC (2003) Organometallics 22:5291‒5296

    Article  CAS  Google Scholar 

  33. Ledoux N, Allaert B, Pattyn S, Van der Mierde H, Vercaemst C, Verpoort F (2006) Chem Eur J 12:4654–4661;

    Article  CAS  Google Scholar 

  34. Ledoux N, Allaert B, Linden A, Vander Voort P, Verpoort F (2007) Organometallics 26:1052–1056;

    Article  CAS  Google Scholar 

  35. Ledoux N, Linden A, Allaert B, Vander Mierde H, Verpoort F (2007) Adv Synth Catal 349:1692–1700

    Article  CAS  Google Scholar 

  36. Waltman AW, Grubbs RH (2004) Organometallics 23:3105–3107;

    Article  CAS  Google Scholar 

  37. Clavier H, Coutable L, Guillemin J-C, Mauduit M (2005) Tetrahedron Asymm16:921–914

    Article  CAS  Google Scholar 

  38. Trnka TM, Morgan JP, Sanford MS, Wilhelm TE, Scholl M, Choi T-L, Ding S, Day MW, Grubbs RH (2003) J Am Chem Soc 125:2546–2558

    Article  CAS  Google Scholar 

  39. Fürstner A, Ackermann L, Gabor B, Goddard R, Lehmann CW, Mynott R, Stelzer F, Thiel OR (2001) Chem Eur J 7:3236–3253;

    Article  Google Scholar 

  40. Prühs S, Lehmann CW, Fürstner A (2004) Organometallics 23:280–287

    Article  CAS  Google Scholar 

  41. Vehlow K, Maechling S, Blechert S (2006) Organometallics 25:25–28

    Article  CAS  Google Scholar 

  42. Herrmann WA (2002) Angew Chem Int Ed 41:1290–1309;

    Article  CAS  Google Scholar 

  43. Huang J, Schanz H-J, Stevens ED, Nolan SP (1999) Organometallics 18:2370–2375

    Article  CAS  Google Scholar 

  44. Garber SB, Kingsbury JS, Gray LB, Hoveyda AH (2000) J Am Chem Soc 122:8168– 8179;

    Article  CAS  Google Scholar 

  45. Wakamatsu H, Blechert S (2002) Angew Chem Int Ed 41:794–796;

    Article  CAS  Google Scholar 

  46. Wakamatsu H, Blechert S (2002) Angew Chem Int Ed 41:2403–2405;

    Article  CAS  Google Scholar 

  47. Dunne AM, Mix S, Blechert S (2003) Tetrahedron Lett 44:2733–2736;

    Article  CAS  Google Scholar 

  48. Grela K, Harutyunyan S, Michrowska A (2002) Angew Chem Int Ed 41:4038–4040;

    Article  CAS  Google Scholar 

  49. Michrowska A, Bujok R, Harutyunyan S, Sashuk V, Dolgonos G, Grela K (2004) J Am Chem Soc 126:9318–9325

    Article  CAS  Google Scholar 

  50. Gessler S, Randl S, Blechert S (2000) Tetrahedron Lett 41:9973–9976

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Verpoort .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Monsaert, S., Ledoux, N., Drozdzak, R., Van Der Voort, P., Verpoort, F. (2010). New N-Heterocyclic Carbene Ligands in Grubbs and Hoveyda–Grubbs Catalysts. In: Dragutan, V., Demonceau, A., Dragutan, I., Finkelshtein, E.S. (eds) Green Metathesis Chemistry. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3433-5_2

Download citation

Publish with us

Policies and ethics