Sediment Regime of the River Danube (1956–1985)

  • László RákócziEmail author


During the investigated period (1956–1985), the natural sediment regime of the River Danube has changed significantly due to various human interventions on the Danube itself and on its main tributaries. The total mass of suspended sediment transported to the Black Sea annually varies between 25 and 80 × 106 t. The sediment transport quickly rises where the bigger tributaries (Tisza, Sava, V. Morava) join the Danube within a relatively short reach. Before the construction of barrages and hydropower stations, the share of bedload in the total sediment transport reached about 20% on the German and Austrian Danube reach. On low-land sections this share drops to about 1% or less.

The most important human interventions affecting sediment transport include retaining and collecting the eroded soil and rock materials on the slopes of basins; damming the rivers for navigation and energy production purposes; dredging the bed material from the river channel for industrial use at a rate much higher than the bedload transporting potential of the river, etc. Because of the summarized effects of these anthropogenic factors, the suspended sediment and bedload transport show a decreasing tendency at almost every station investigated.

The presented results also show how the damming effect of the river barrages causes characteristic changes in the grain-size distribution of both the suspended sediment and the riverbed material. As human interventions have continued on the River Danube and in its basin since 1985, it is now high time to collate all available sediment data for the following 20-year period and compile a similar monographic summary (1986–2005) based on this data.


Artificial impacts Changes of sediment transport in time and space Effects of river barrages Scarcity of bedload data Gravel mining from the riverbed Changes of grain-size composition of bed material 


  1. Bauer F (1965) Der Geschiebehaushalt der bayerischen Donau in Wandel wasserbaulicher Maßnahmen. Die Wasserwirtschaft 55. Jg. H. 4+5Google Scholar
  2. Bogárdi J (1971) Feststofführung der Gewässer. Akademischer Verlag, BudapestGoogle Scholar
  3. Bondar C, State I (1977) The Danube River contribution with water and silts to the Black Sea. Cercetari Mar IRCM 10:51–66Google Scholar
  4. Kobilka J, Hauck HH (1982) Feststoffhaushalt in den Stauräumen de österreichischen Donaukraftwerke. Internationale Talsperrenkommission, 14. TalsperrenkongressGoogle Scholar
  5. Kresser W, Lászlóffy W (1964) Hydrologie du Danube. La Houille Blanche 2:133–178CrossRefGoogle Scholar
  6. Pecinov D (1984) Änderungen in der granulometrischen Zusammensetzung der Schwebstoffe im Fluß Donau unter dem Einfluss der Hydrosystems “Eisernes Tor”. In: Proceedings of the 12th Konferenz der Donauländer über hydrologische, Vorhersagen, BratislavaGoogle Scholar
  7. Rajnov S et al (1975) Der Einfluss der Staustufe “Eisernes Tor” auf die Schwebstofführung der Donau. In: Proceedings of the 8th Konferenz der Donauländer über hydrologische, Vorhersagen, RegensburgGoogle Scholar
  8. Rákóczi L (1990) Vorhersage von Flussbettveränderungen an der ungarischen Donaustrecke. In: Proceedings of the 15th Konferenz der Donauländer über hydrologische, Vorhersagen, VarnaGoogle Scholar
  9. RC of DC (Regional Co-operation of Danube Countries) (1986) Die Donau und Ihr Einzugsgebiet. Eine Hydrologische Monographie. Bayer. Landesamt f. Wasserwirtschaft, MünchenGoogle Scholar
  10. Schmutterer J (1961) Geschiebe- und Schwebstofführung der österreichischen Donau. Wasser und Abwasser. JgGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Research Centre for Environment and Water (VITUKI)BudapestHungary

Personalised recommendations