Skip to main content

Unexpected Discoveries, Graded Structures, and the Difference Between Acceptance and Neglect

  • Chapter
  • First Online:
Models of Discovery and Creativity

Part of the book series: Origins: Studies in the Sources of Scientific Creativity ((ORIN,volume 3))

Abstract

In June 1934 the Italian physicist Enrico Fermi published a paper in Nature entitled “Possible Production of Elements of Atomic Number higher than 92” (Fermi, 1934b). In this paper Fermi reported that by bombarding uranium with neutrons he and his team had produced an element which could be element number 93, that is, a transuranic element.

Two objections followed very quickly. One objection came from von Grosse and Agruss who pointed out that different chemical properties were to be expected from element number 93 than those displayed by the element produced by Fermi (von Grosse and Agruss, 1934a, 1934b). Hence, they suggested to recategorize the element as number 91. The other objection came fromIdaNoddack (1934b), who also questioned Fermi’s assumptions regarding the chemical properties of element 93 and suggested that the uranium nucleus could have split into several larger fragments whichwould be isotopes of known, light elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amaldi, E. (1984). From the discovery of the neutron to the discovery of nuclear fission. Physics Reports, 111:1–332.

    Article  Google Scholar 

  • Amaldi, E., D'Agostino, O., Fermi, E., Pontecorvo, B., Rasetti, F., and Segré, E. (1935). Artificial radioactivity produced by neutron bombardment. Proc. Roy. Soc., 149A:522–558.

    Google Scholar 

  • Andersen, H. (1996). Categorization, anomalies, and the discovery of nuclear fission. Stud. Hist. Phil. Mod. Phys., 27:463–492.

    Article  Google Scholar 

  • Andersen, H., Barker, P., and Chen, X. (1996). Kuhn's mature philosophy of science and cognitive psychology. Philosophical Psychology, 9:347–363.

    Article  Google Scholar 

  • Barsalou, L. (1992). Cognitive Psychology. An Overview for Cognitive Scientists. Lawrence Erlbaum Associates, Hillsdale, NJ.

    Google Scholar 

  • Bohr, N. (1936). Neutron capture and nuclear constitution. Nature, 137:344–348.

    Article  Google Scholar 

  • Bohr, N. (1937). Transmutations of atomic nuclei. Science, 86:161–165.

    Article  Google Scholar 

  • Chen, X., Andersen, H., and Barker, P. (1998). Kuhn's theory of scientific revolution and cognitive psychology. Philosophical Psychology, 11:5–28.

    Article  Google Scholar 

  • Curie, I. and Joliot, F. (1934). Un nouveau type de radioactivité. Compt. Rend., 198:254–256.

    Google Scholar 

  • Fermi, E. (1934a). Artificial radioactivity produced by neutron bombardment. Nature, 134:668.

    Google Scholar 

  • Fermi, E. (1934b). Possible production of elements of atomic number higher than 92. Nature, 133:898–899.

    Article  Google Scholar 

  • Fermi, E. (1934c). Radioactivity induced by neutron bombardment. Nature, 133:757.

    Article  Google Scholar 

  • Fermi, E., Amaldi, E., D'Agostino, O., Rasetti, F., and Segré, E. (1934). Artificial radioactivity produced by neutron bombardment. Proc. Roy. Soc., 146A:483–500.

    Google Scholar 

  • Gamow, G. (1929a). Über die Struktur des Atomkerns. Physik. Z., 30:717–720.

    Google Scholar 

  • Gamow, G. (1929b). Zur Quantentheorie der Atomzertümmerung. Z. Phys, 52:510–515.

    Article  Google Scholar 

  • Gamow, G. (1931). Constitution of Atomic Nuclei and Radioactivity. Clarendon, Oxford.

    Google Scholar 

  • Hahn, D., editor (1975). Otto Hahn. Erlebnisse und Erkenntnisse. Econ. Verlag, Düsseldorf.

    Google Scholar 

  • Hahn, O. and Meinter, L. (1935a). Über die künstliche Umwandlung des Urans durch Neutronen. Naturwissenschaften, 23:37–38.

    Article  Google Scholar 

  • Hahn, O. and Meinter, L. (1935b). Über die künstliche Umwandlung des Urans durch Neutronen (II mitteil.). Naturwissenschafte, 23:230–231.

    Article  Google Scholar 

  • Hahn, O. and Straßmann, F. (1939a). Nachweis der Entstehung aktiver Bariumisotope aus Uran und Thorium durch Neutronbestrahlung; Nachweis weiterer aktiver Bruchstücke bei der Uranspaltung. Die Naturwissenschaften, 27:89–95.

    Article  Google Scholar 

  • Hahn, O. and Straßmann, F. (1939b). Zur Frage nach der Existenz der ‘trans-urane’. Die Naturwissenschaften, 27:451–453.

    Article  Google Scholar 

  • Herrmann, G. (1995). The discovery of nuclear fission—Good solid chemistry got things on the right track. Radiochemistry Acta, 70/71:51–67.

    Google Scholar 

  • Krafft, F. (1981). Im Schatten der Sensation: Leben und Wirken von Fritz Straßmann. Verlag Chemie, Weinheim.

    Google Scholar 

  • Krafft, F. (1983). Internal and external conditions for the discovery of nuclear fission by the berlin team. In Shea, 1983, pages 135–165.

    Google Scholar 

  • Lakoff, G. (1987). Women, Fire, and Dangerous Things. What Categories Reveal about the Mind. University of Chicago Press, Chicago.

    Google Scholar 

  • Meitner, L. (1934). Atomkern und periodisches System der Elemente. Naturwissenschaften, 22:733–739.

    Article  Google Scholar 

  • Meitner, L. (1936). Künstliche Umwandlungsprozesse beim Uran. In Bretscher, E., editor, Kernphysik. Vorträge gehalten am Physikalischen Institut der Eidgenössischen Technischen Hochschule Zürich im Sommer 1936, pages 24–42. Springer, Berlin.

    Google Scholar 

  • Meitner, L. and Frisch, O. (1939). Disintegration of uranium by neutrons: a new type of nuclear reaction. Nature, 143:239–240.

    Article  Google Scholar 

  • Meitner, L. and Hahn, O. (1936). Neue Umwandlungsprozess bei Bestrahlung des Urans mit Neutronen. Naturwissenschaften, 24:158–159.

    Article  Google Scholar 

  • Meitner, L., Hahn, O., and Straßmann, F. (1937). Über die Umwandlungsreihen des Urans, die durch Neutronenbestrahlung erzeugt werden. Z. Phys., 106:249–270.

    Article  Google Scholar 

  • Nersessian, N. and Andersen, H. (1997). Conceptual change and incommensurability: A cognitive-historical view. Danish Yearbook of Philosophy, 32:111–151.

    Google Scholar 

  • Nickles, T. (1980). Can scientific constraints be violated rationally? In Nickles, T., editor, Scientific Discovery, Logic, and Rationality, pages 285–315. Reidel, Dordrecht.

    Google Scholar 

  • Noddack, I. (1934a). Das Periodische System der Elemente und seine lücken. Angew. Chem., 47:301–305.

    Article  Google Scholar 

  • Noddack, I. (1934b). Über das Element 93. Angew. Chem., 47:653–655.

    Article  Google Scholar 

  • Seaborg, G. T. (1989). Nuclear fission and transuranic elements? 50 years ago. J. Chem. Educ., 66:379–384.

    Article  Google Scholar 

  • Segré, E. (1970). Enrico Fermi Physicist. University of Chicago Press, Chicago.

    Google Scholar 

  • Shea, W. R., editor (1983). Otto Hahn and the Rise of Nuclear Physics. Reidel, Dordrecht.

    Google Scholar 

  • Stuewer, R. H. (1983). The nuclear electron hypothesis. In Shea, 1983, pages 19–68.

    Google Scholar 

  • Stuewer, R. H. (1994). The origin of the liquid-drop model and the interpretation of nuclear fission. Perspectives on Science, 2:76–129.

    Google Scholar 

  • Treumann, R. A. (1991). A post-fission perspective of the discovery of nuclear fission. J. Gen. Phil. Sci., 22:143–153.

    Google Scholar 

  • van Assche, P. (1988). The ignored discovery of the element z=43. Nucl. Phys., A480:205–214.

    Google Scholar 

  • von Grosse, A. (1934). The chemical properties of elements 93 and 94. J. Am. Chem. Soc., 57:440–441.

    Article  Google Scholar 

  • von Grosse, A. and Agruss, M. (1934a). The chemistry of element 93 and Fermi's discovery. Phys. Rev., 46:241.

    Article  Google Scholar 

  • von Grosse, A. and Agruss, M. (1934b). Fermi's element 93. Nature, 134:773.

    Article  Google Scholar 

  • von Weizsäcker, C. F. (1936). Metastabile Zustände der Atomkerne. Die Naturwissenschaften, 24:813–814.

    Article  Google Scholar 

  • von Weizsäcker, C. F. (1937). Die Atomkerne. Springer, Berlin.

    Google Scholar 

  • Weart, S. (1983). The discovery of physics and a nuclear physics paradigm. In Shea, 1983, pages 91–133.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanne Andersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Andersen, H. (2009). Unexpected Discoveries, Graded Structures, and the Difference Between Acceptance and Neglect. In: Meheus, J., Nickles, T. (eds) Models of Discovery and Creativity. Origins: Studies in the Sources of Scientific Creativity, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3421-2_1

Download citation

Publish with us

Policies and ethics