Skip to main content

Targeting Survivin in Cancer Therapy: Pre-clinical Studies

  • Chapter
  • First Online:
Apoptosome

Abstract

Survivin is a structurally unique member of the inhibitor of apoptosis protein family that in addition to acting as a suppressor of programmed cell death also plays a central role in cell division. Owing to its massive up-regulation in human tumors and its involvement in cancer progression and treatment resistance, survivin is currently undergoing extensive investigation as a promising target for new anticancer interventions. Several preclinical studies have demonstrated that down-regulation of survivin expression or function, accomplished by means of various strategies (including the use of antisense oligonucleotides, small interfering RNAs, ribozymes, dominant negative mutants and small molecule antagonists), reduced tumor growth potential, increased the apoptotic rate, and sensitized tumor cells to chemotherapeutic drugs and ionizing radiation in different human tumor preclinical models. Moreover, the first survivin inhibitors have already reached the clinic with some promise. However, due to its documented role in some normal tissues, the possibility that survivin disruption could affect normal cell function, mainly the hematopoietic and immune systems, cannot be excluded. In this context, a better understanding of the effects exerted by survivin on normal versus malignant cells will be important for the design of optimal strategies to selectively disrupt survivin in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BIR:

Baculovirus IAP repeat

CDK:

Cyclin-dependent kinase

Hsp90:

Heat shock protein 90

ILP2:

IAP-like protein 2

IAP:

Inhibitor of apoptosis protein

INCENP:

Inner centromere protein

ML-IAP:

Melanoma inhibitor of apoptosis

NAIP:

Neuronal apoptosis inhibitor protein

NSCLC:

Non-small cell lung cancer

PSA:

Prostate-specific antigen

Smac/Diablo:

Second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI

siRNA:

Small interfering RNA

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

X-IAP:

X-linked inhibitor of apoptosis.

References

  • Adida, C., Crotty, P. L., McGrath, J., Berrei, D., Diebold, J., and Altieri, D. C. (1998). Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am J Pathol 152, 43–49.

    Google Scholar 

  • Ai, Z., Yin, L., Zhou, X., Zhu, Y., Zhu, D., Yu, Y., and Feng,Y. (2006). Inhibition of survivin reduces cell proliferation and induces apoptosis in human endometrial cancer. Cancer 107, 746–756.

    Google Scholar 

  • Altieri, D C. (2006). The case for survivin as a regulator of microtubule dynamics and cell-death decisions. Curr Opin Cell Biol 18, 1–7.

    Google Scholar 

  • Altieri, D. C. (2008). New wirings in the survivin networks. Oncogene 27, 6276–6284.

    Google Scholar 

  • Ambrosini, G., Adida, C., and Altieri, D. C. (1997). A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3, 917–921.

    Google Scholar 

  • Andersen, M. H. and Thor, S. P. (2002). Survivin-a universal tumor antigen. Histol Histopathol 17, 669–675.

    Google Scholar 

  • Ansell, S. M., Arendt, B. K., Grote, D. M., Jelinek, D. F., Novak, A. J., Wellik, L. E., Remstein, E. D., Bennett, C. F., and Fielding, A. (2004). Inhibition of survivin expression suppresses the growth of aggressive non-Hodgkin’s lymphoma. Leukemia 18, 616–623.

    Google Scholar 

  • Asanuma, K., Moriai, R., and Yajima, T. (2000). Survivin as a radio-resistance factor in pancreatic cancer. Jap J Cancer Res 91, 1204–1209.

    Google Scholar 

  • Beltrami, E., Plescia, J., Wilkinson, J. C., Duckett, C. S., and Altieri, D. C. (2004). Acute ablation of survivin uncovers p53-dependent mitotic checkpoint functions and control of mitochondrial apoptosis. J Biol Chem 279, 2077–2084.

    Google Scholar 

  • Caldas, H., Honsey, L. E., and Altura, R. A. (2005a). Survivin 2alpha: a novel Survivin splice variant expressed in human malignancies. Mol Cancer 4, 11.

    Google Scholar 

  • Caldas, H., Jiang, Y., Holloway, M. P., Fangusaro, J., Mahotka, C., Conway, E. M., and Altura, R. A. (2005b). Survivin splice variants regulate the balance between proliferation and cell death. Oncogene 24, 1994–2007.

    Google Scholar 

  • Cao, C., Mu, Y., Hallahan, D. E., and Lu, B. (2004). XIAP and survivin as therapeutic targets for radiation sensitization in preclinical models of lung cancer. Oncogene 23, 7047–7052.

    Google Scholar 

  • Carvalho, A., Carmena, M., Sambade, C., Earnshaw, W. C., and Wheatley, S. P. (2003). Survivin is required for stable checkpoint activation in taxol-treated HeLa cells. J Cell Sci 116, 2987–2998.

    Google Scholar 

  • Chang, C. C., Heller, J. D., Kuo, J., and Huang, R. C. (2004). Tetra-O-methyl nordihydroguaiaretic acid induces growth arrest and cellular apoptosis by inhibiting Cdc2 and survivin expression. Proc Natl Acad Sci USA 101, 13239–13244.

    Google Scholar 

  • Choi, K.S., Lee, T. H., and Jung, M. H. (2003). Ribozyme-mediated cleavage of the human survivin mRNA and inhibition of antiapoptotica function of survivin in MCF-7 cells. Cancer Gene Ther 10, 87–95.

    Google Scholar 

  • Coma, S., Noe, V., Lavarino, C., Adán, J., Rivas, M., López-Matas, M., Pagan, R., Mitjans, F., Vilaró, S., Piulats, J., and Ciudad, C.J. (2004). Use of siRNAs and antisense oligonucleotides against survivin RNA to inhibit steps leading to tumor angiogenesis. Oligonucleotides 14, 100–103.

    Google Scholar 

  • Dohi, T., Beltrami, E., Wall, N. R., Plescia, J., and Altieri, D. C. (2004a). Mitochondrial survivin inhibits apoptosis and promotes tumorigenesis. J Clin Invest 114, 1117–1127.

    Google Scholar 

  • Dohi, T., Okada, K., Xia, F., Wilford, C. E., Samuel, T., Welsh, K., Marusawa, H., Zou, H., Armstrong, R., Matsuzawa, S., Salvesen, G. S., Reed, J. C., and Altieri, D. C. (2004b). An IAP-IAP complex inhibits apoptosis. J Biol Chem 279, 34087–34090.

    Google Scholar 

  • Du, Z. X., Zhang, H. Y., Gaoda, X., Wang, H. Q., Li, Y. J., and Liu, G. L. (2006). Antisurvivin oligonucleotides inhibit growth and induce apoptosis in human medullary thyroid carcinoma cells. Exp Mol Med 38, 230–240.

    Google Scholar 

  • Duffy, M. J., O’Donovan, N., Brennan, D. J., Gallagher, W. M., and Ryan, B. M. (2007) Survivin: a promising tumor biomarker. Cancer Lett 249, 49–60.

    Google Scholar 

  • Eckelman, B. P., Salvesen, G. S., and Scott, F. L. (2006). Human inhibitor of apoptosis proteins; why XIAP is the black sheep of the family. EMBO reports 7, 988–994.

    Google Scholar 

  • Endoh, T., Tsuji, N., Asanuma, K., Yagihashi, A., and Watanabe, N. (2005). Survivin enhances telomerase activity via up-regulation of specificity protein 1-and c-Myc-mediated human telomerase reverse transcriptase gene transcription. Exp Cell Res 305, 300–311.

    Google Scholar 

  • Engelsma, D., Rodriguez, J. A., Fish, A., Giaccone, G., and Fornerod, M. (2007). Homodimerization antagonizes nuclear export of survivin. Traffic 8, 1495–1502.

    Google Scholar 

  • Fodde, R. and Brabletz, T. (2007). Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol 19, 150–158.

    Google Scholar 

  • Fortugno, P., Beltrami, E., Plescia, J., Fontana, J., Pradhan, D., Marchisio, P. C., Sessa, W. C., and Altieri, D. C. (2003). Regulation of survivin function by Hsp90. Proc. Natl Acad Sci USA 100, 13791–13796.

    Google Scholar 

  • Fuessel, S., Kueppers, B., Ning, S., Kotzsch, M., Kraemer, K., Schmidt, U., Meye, A., and Wirth, M.P. (2004). Systematic in vitro evaluation of survivin directed antisense oligodeoxynucleotides in bladder cancer cells. J Urol 171, 2471–2476.

    Google Scholar 

  • Fukuda, S. and Pelus, L. M. (2002). Elevation of survivin levels by hematopoietic growth factors occurs in quiescent CD34(+) hematopoietic stem and progenitor cells before cell cycle entry. Cell Cycle 1, 322–326.

    Google Scholar 

  • Fukuda, S. and Pelus, L. M. (2004). Activated H-Ras regulates hematopoietic cell survival by modulating Survivin. Biochem Biophys Res Commun 323, 636–644.

    Google Scholar 

  • Fukuda, S. and Pelus, L. M. (2006). Survivin, a cancer target with an emerging role in normal adult tissues. Mol Cancer Ther 5, 1087–1098.

    Google Scholar 

  • Gassmann, R., Carvalho, A., Henzing, A. J., Ruchaud, S., Hudson, D. F., Honda, R., Nigg, E. A., Gerloff, D. L., and Earnshaw, W. C. (2004). Borealin: a novel chromosomal passenger requied for stability of the bipolar mitotic spindle. J Cell Biol 166, 179–191.

    Google Scholar 

  • Giodini, A., Kallio, M. J., Wall, N. R., Gorbsky, G. J., Tognin, S., Marchisio, P. C., and Altieri, D. C. (2002). Regulation of microtubule stability and mitotic progression by survivin. Cancer Res 62, 2462–2467.

    Google Scholar 

  • Gritsko, T., Williams, A., Turkson, J., Kaneko, S., Bowman, T., Huang, M., Nam, S., Eweis, I., Diaz, N., Sullivan, D., Yoder, S., Enkemann, S., Eschrich, S., Lee, J. H., Beam, C. A., Cheng, J., Minton, S., Muro-Cacho, C. A., and Jove, R. (2006). Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin Cancer Res 12, 11–19.

    Google Scholar 

  • Grossman, D., Mcniff, J. M., Li, F., and Altieri, D. C. (1999). Expression and targeting of the apoptosis inhibitor, survivin, in human melanoma. J Invest Dermatol 113, 1076–1081.

    Google Scholar 

  • Grossman, D., Kim, P. J., Schechner, J. S., and Altieri, D. C.(2001). Inhibition of melanoma tumor growth in vivo by survivin targeting. Proc Natl Acad Sci USA 98, 635–640.

    Google Scholar 

  • Gyurkocza, B., Plescia, J., Raskett, C. M., Garlick, D. S., Lowry, P. A., Carter, B. Z., Andreedd, M., Meli, M., Colombo, G., and Altieri, D. C. (2006). Antileukemic activity of shepherdin and molecular diversity of Hsp90 inhibitors. J Natl Cancer Inst 98, 1068–1077.

    Google Scholar 

  • Hansen, J. B., Fisker, N., Westergaard, M., Kjaerulff, L. S., Hansen, H. F., Thrue, C. A., Rosenbohm, C., Wissenbach, M., Orum, H., and Koch, T. (2008). SPC3042: a proapoptotic survivin inhibitor. Mol Cancer Ther 7, 2736–2745.

    Google Scholar 

  • Hinds, M. G., Norton, R. S., Vaux, D. L., and Day, C. L. (1999). Solution structure of a baculoviral inhibitor of apoptosis (IAP) repeat. Nat Struct Biol 6, 648–651.

    Google Scholar 

  • Hoffman, W. H., Biade, S., Zilfou, J. T., Chen, J., and Murphy, M. (2002). Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem 277, 3247–3257.

    Google Scholar 

  • Honda, R., Korner, R., and Nigg, E. A. (2004). Exploring the functional interactions between aurora B, INCENP, and survivin in mitosis. Mol Biol Cell 14, 3325–3341.

    Google Scholar 

  • Huang, R.C., Chang, C.C., and Mold, D. (2006). Survivin-dependent and -independent pathways and the induction of cancer cell death by tetra-O-methyl nordihydroguaiaretic acid. Semin Oncol 33, 479–485.

    Google Scholar 

  • Hunter, A. M., Lacasse, E. C., and Korneluk, R. G. (2007). The inhibitor of apoptosis (IAPs) as cancer targets. Apoptosis 12, 1543–1568.

    Google Scholar 

  • Iwasa, T., Okamoto, I., Suzuki, M., Nakahara, T., Yamanaka, K., Hatashita, E., Yamada, Y., Fukuoka, M., Ono, K., Nakagawa, K. (2008). Radiosensitizing effect of YM155, a novel small-molecule survivin suppressant, in non-small cell lung cancer cell lines. Clin Cancer Res 14, 6496–6504.

    Google Scholar 

  • Jiang, Y., Saavedra, H. I., Holloway, M. P., Leone, G., and Altura, R. A. (2004). Aberrant regulation of survivin by the RB/E2F family of proteins. J Biol Chem 279, 40511–40520.

    Google Scholar 

  • Jiang, G., Li, J., Zeng, Z., and Xian, L. (2006). Lentivirus-mediated gene therapy by suppressing survivin in BALB/c nude mice bearing oral squamous cell carcinoma. Cancer Biol Ther 5, 435–440.

    Google Scholar 

  • Kappler, M., Rot, S., Taubert, H., Greither, T., Bartel, F., Dellas, K., Hänsgen, G., Trott, K. R., and Bache, M. (2007). The effects of knockdown of wild-type survivin, survivin-2B or survivin-Delta3 on the radiosensitization in a soft tissue sarcoma cells in vitro under different oxygen conditions. Cancer Gene Ther 14, 994–1001.

    Google Scholar 

  • Kim, P. J., Plescia, J., Clevers, H., Fearon, E. R., and Altieri, D. C. (2003). Survivin and molecular pathogenesis of colorectal cancer. Lancet 362, 205–209.

    Google Scholar 

  • Knauer, S.K., Bier, C., Schlag, P., Fritzmann, J., Dietmaier, W., Rödel, F., Klein-Hitpass, L., Kovács, A.F., Döring, C., Hansmann, M.L., Hofmann, W.K., Kunkel, M., Brochhausen, C., Engels, K., Lippert, B.M., Mann, W., and Stauber, R.H. (2007). The survivin isoform survivin-3B is cytoprotective and can function as a chromosomal passenger complex protein. Cell Cycle 6, 1502–1509.

    Google Scholar 

  • Lee, C. W., Raskett, C. M., Prudovsky, I., and Altieri, D. C. (2008). Molecular dependence of estrogen receptor-negative breast cancer on a Notch–survivin signaling axis. Cancer Res 68, 5273–5281.

    Google Scholar 

  • Lens, S. M., Wolthuis, R. M., Klompmaker, R., Kauw, J., Agami, R., Brummelkamp, T., Kops, G., and Medema, R. H. (2003). Survivin is required for a sustained spindle checkpoint arrest in response to lack of tension. EMBO J 22, 2934–2947.

    Google Scholar 

  • Lens, S. M., Vader, G., and Medema, R. H. (2006). The case for Survivin as mitotic regulator. Curr Opin Cell Biol 18, 616–622.

    Google Scholar 

  • Li, F. (2005). Role of survivin and its splice variants in tumorigenesis. Br J Cancer 92, 212–216.

    Google Scholar 

  • Li, F. and Altieri, D. C. (1999). The cancer antiapoptosis mouse survivin gene: characterization of locus and transcriptional requirements of basal and cell cycle-dependent expression. Cancer Res 59, 3143–3151.

    Google Scholar 

  • Li, F. and Ling, X. (2006). Survivin study: an update of “what is the next wave”? J Cell Physiol 208, 476–486.

    Google Scholar 

  • Li, F., Ambrosini, G., Chu, E. Y., Plescia, J., Tognin, S., Marchisio, P.C., and Altieri, D. C. (1998). Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396, 580–584.

    Google Scholar 

  • Li, Q. X., Zhao, J., Liu, J. Y., Jia, L. T., Huang, H. Y., Xu, Y. M., Zhang, Y., Zhang, R., Wang, C. J., Yao, L. B., Chen, S. Y., and Yang, A. G. (2006). Survivin stable knockdown by siRNA inhibits tumor cell growth and angiogenesis in breast and cervical cancers. Cancer Biol Ther 5, 860–866.

    Google Scholar 

  • Ling, X., Bernacki, R. J., Brattain, M. G., and Li, F. (2004). Induction of survivin expression by taxol (paclitaxel) is an early event, which is independent of taxol-mediated G2/M arrest. J Biol Chem 279, 15196–15203.

    Google Scholar 

  • Ling, X., Cheng, Q., Black, J. D., and Li, F. (2007). Forced Expression of Survivin-2B Abrogates Mitotic Cells and Induces Mitochondria-dependent Apoptosis by Blockade of Tubulin PolymerizationandModulation of Bcl-2, Bax,andSurvivin. J Biol Chem 282, 27204–27214.

    Google Scholar 

  • Liu, H., Guo, S., Roll, R., Li, J., Diao, Z., Shao, N., Riley, M. R., Cole, A. M., Robinson, J. P., Snead, N. M., Shen, G., and Guo, P. (2007). Phi29 pRNA vector for efficient escort of hammerhead ribozyme targeting survivin in multiple cancer cells. Cancer Biol Ther 6, 697–704.

    Google Scholar 

  • Liu, W. S., Yan, H. J., Qin, R. Y., Tian, R., Wang, M., Jiang, J. X., Shen, M., and Shi, C. J. (2008). siRNA Directed Against Survivin Enhances Pancreatic Cancer Cell Gemcitabine Chemosensitivity. Dig Dis Sci, 54, 89–96.

    Google Scholar 

  • Marconi, A., Dallaglio, K., Lotti, R., Vaschieri, C., Truzzi, F., Fantini, F., and Pincelli, C. (2007). Survivin identifies keratinocyte stemcells and it is down-regulated by anti- {beta}1 integrin during anoikis. Stem Cells 25, 149–155.

    Google Scholar 

  • Marusawa, H., Matsuzawa, S., Welsh, K., Zou, H., Armstrong, R., Tamm, I., and Reed, J. C. (2003). HBXIP functions as a cofactor of survivin in apoptosis suppression. EMBO J 22, 2729–2740.

    Google Scholar 

  • Meli, M., Pennati, M., Curto, M., Daidone, M. G., Plescia, J., Toba, S., Altieri, D. C., Zaffaroni, N., and Colombo, G. (2006). Small-molecule targeting of heat shock protein 90 chaperone function: rational identification of a new anticancer lead. J Med Chem 49, 7721–7730.

    Google Scholar 

  • Mesri, M., Wall, N. R., Li, J., Kim, R. W., and Altieri, D. C. (2001). Cancer gene therapy using a survivin mutant adneovirus. J Clin Invest 108, 981–990.

    Google Scholar 

  • Mita, M. M., Mita, A. C., and Tolcher, A. W. (2006). Apoptosis: mechanism and implications for cancer therapeutics. Targ Oncol 1, 197–214.

    Google Scholar 

  • Mitsiades, C. S., Mitsiades, N., Poulaki, V., Schlossman, R., Akiyama, M., Chauhan, D., Hideshima, T., Treon, S. P., Munshi, N. C., Richardson, P. G., and Anderson, K. C. (2002). Activation of NF-kB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene 21, 5673–5683.

    Google Scholar 

  • Moriai, R., Tsuji, N., Moriai, M., Kobayashi, D., and Watanabe, N. (2008). Survivin plays as a resistant factor against tamoxifen-induced apoptosis in human breast cancer cells. Breast Cancer Res Treat, 117, 261–271.

    Google Scholar 

  • Muchmore, S. W., Chen, J., Jakob, C., Zakula, D., Matayoshi, E. D., Wu, W., Zhang, H., Li, F., Ng, S. C., and Altieri, D. C. (2000). Crystal structure and mutagenic analysis of the inhibitor-of-apoptosis protein survivin. Mol. Cell 6, 173–182.

    Google Scholar 

  • Nakagawa, K., Satoh, T., Okamoto, I., Miyazaki, M., Morinaga, R., Tsuya, A., Hasegawa, Y., Terashima, M., Ueda, S., and Fukuoka, M. (2007). Phase I study of YM155,a new first-in-class survivin suppressant, in patient with advanced solid tumors in Japan. ASCO 25, 18S (abstract 3536).

    Google Scholar 

  • Nakahara, T., Takeuchi, M., Kinoyama, I., Minematsu, T., Shirasuna, K., Matsuhisa, A., Kita, A., Tominaga, F., Yamanaka, K., Kudoh, M., and Sasamata, M. (2007). YM155, a novel small-molecule survivin suppressant, induces regression of established human hormone-refractory prostate tumor xenografts. Cancer Res 67, 8014–8021.

    Google Scholar 

  • Nakano, K., Hamasaki, K., Ichikawa, T., Arima, K., Eguchi, K., and Ishii, N. (2006). Survivin downregulation by siRNA sensitizes human hepatoma cells to TRAIL-induced apoptosis. Oncol Rep 16, 389–392.

    Google Scholar 

  • Nomura, T., Yamasaki, M., Nomura, Y., and Mimata, H. (2005). Expression of the inhibitors of apoptosis proteins in cisplatin-resistant prostate cancer cells. Oncol Rep 14, 993–997.

    Google Scholar 

  • O’Connor, D. S., Grossmann, D., Plescia, J., Li, F., Zhang, H., Villa, A., Tognin, S., Marchisio, P. C., and Altieri, D. C. (2000). Regulation of apoptosis at cell division by p34cdc2 phosphorylation of surviving. Proc Natl Acad Sci 97, 13103–13107.

    Google Scholar 

  • O’Connor, D. S., Wall, N. R., Porter, A. C., and Altieri, D. C. (2002). A p34(cdc2) survival checkpoint in cancer. Cancer Cell 2, 43–54.

    Google Scholar 

  • Okada, H., Bakal, C., Shahinian, A., Elia, A., Wakeham, A., Suh, W. K., Duncan, G. S., Ciofani, M., Rottapel, R., Zúñiga-Pflücker, J. C., and Mak, T. W. (2004). Survivin loss in thymocytes triggers p53-mediated growth arrest and p53-independent cell death. J Exp Med 199, 399–410.

    Google Scholar 

  • Otto, K., Andersen, M. H., Eggert, A., Keikavoussi, P., Pedersen, L. O., Rath, J. C., Bock, M., Brocker, E. B., Straten, P. T., Kampgen, E., and Becker, J. C. (2005). Lack of toxicity of therapy-induced T cell responses against the universal tumour antigen survivin. Vaccine 23, 884–889.

    Google Scholar 

  • Paduano, F., Villa, R., Pennati, M., Folini, M., Binda, M., Daidone, M. G., and Zaffaroni, N. (2006). Silencing of survivin gene by small interfering RNAs produces supra-additive growth suppression in combination with 17-allylamino-17-demethoxygeldanamycin in human prostate cancer cells. Mol Cancer Ther 5, 179–186.

    Google Scholar 

  • Paik, S., Shak, S., Tang, G., Kim, C., Baker, J., Cronin, M., Baehner, F. L., Walker, M. G., Watson, D., Park, T., Hiller, W., Fisher, E. R., Wickerham, D. L., Bryant, J., and Wolmark, N. (2004). A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351, 2817–2826.

    Google Scholar 

  • Park, R., Chang, C. C., Liang, Y. C., Chung, Y., Henry, R. A., Lin, E., Mold, D. E., and Huang, R. C. (2005). Systemic treatment with tetra-O-methyl nordihydroguaiaretic acid suppresses the growth of human xenograft tumors. Clin Cancer Res 11, 4601–4609.

    Google Scholar 

  • Pennartz, S., Belvindrah, R., Tomiuk, S., Zimmer, C., Hofmann, K., Conradt, M., Bosio, A., and Cremer, H. (2004). Purification of neuronal precursors from the adult mouse brain: comprehensive gene expression analysis provides new insights into the control of cell migration, differentiation, and homeostasis. Mol Cell Neurosci 25, 692–706.

    Google Scholar 

  • Pennati, M., Colella, G., Folini, M., Citti, L., Daidone, M. G., and Zaffaroni, N. (2002). Ribozyme-mediated attenuation of survivin expression sensitizes human melanoma cells to cisplatin-induced apoptosis. J Clin Invest 109, 285–286.

    Google Scholar 

  • Pennati, M., Binda, M., Colella, G., Folini, M., Citti, L., Villa, R., Daidone, M. G., and Zaffaroni, N. (2003). Radiosensitization of human melanoma cells by ribozyme-mediated inhibition of survivin expression. J Invest Dermatol 120, 648–654.

    Google Scholar 

  • Pennati, M., Binda, M., Colella, G., Zoppe’, M., Folini, M., Vignati, S., Valentini, A., Citti, L., De Cesare, M., Pratesi, G., Giacca, M., Daidone, M. G., and Zaffaroni, N. (2004a). Ribozyme-mediated inhibition of survivin expression increases spontaneous and drug-induced apoptosis and decreases the tumorigenic potential of human prostate cancer cells. Oncogene 23, 386–394.

    Google Scholar 

  • Pennati, M., Binda, M., De Cesare, M., Pratesi, G., Folini, M., Citti, L., Daidone, M. G., Zunino, F., and Zaffaroni, N. (2004b). Ribozyme-mediated down-regulation of survivin expression sensitizes human melanoma cells to topotecan in vitro and in vivo. Carcinogenesis 25, 1129–1136.

    Google Scholar 

  • Pennati, M., Campbell, A. J., Curto, M., Binda, M., Cheng, Y., Wang, L. Z., Curtin, N., Golding, B. T., Griffin, R. J., Hardcastle, I. R., Henderson, A., Zaffaroni, N., and Newell, D. R. (2005). Popentiation of paclitaxel-induced apoptosis by the novel cyclin-dependent kinase inhibitor NU6140: a possible role for survivin down-regulation. Mol Cancer Ther 4, 1328–1337.

    Google Scholar 

  • Pennati, M., Folini, M., and Zaffaroni, N. (2007). Targeting survivin in cancer therapy; fulfilled promises and open questions. Carcinogenesis 28, 1133–1139.

    Google Scholar 

  • Plescia, J., Salz, W., Xia, F., Pennati, M., Zaffaroni, N., Daidone. M. G., Meli, M., Dohi, T., Fortugno, P., Nefedova, Y., Gabrilovich, D. I., Colombo, G., and Altieri, D. C. (2005). Rational design of shepherdin, a novel anticancer agent. Cancer Cell 7, 457–468.

    Google Scholar 

  • Reker, S., Meier, A., Holten-Andersen, L., Svane, I. M., Becker, J. C., Straten, P. T., and Andersen, M. H. (2004). Identification of novel survivin-derived CTL epitopes. Cancer Biol Ther 3, 173–179.

    Google Scholar 

  • Rodel, C., Haas, J., Groth, A., Grabenbauer, G. G., Sauer, R., and Rodel, F. (2003). Spontaneous and radiation-induced apoptosis in colorectal carcinoma cells with different intrinsic radiosensitivities: survivin as a radioresistance factor. Int J Radiat Oncol Biol Phys 55, 1341–1347.

    Google Scholar 

  • Rodel, F., Hoffmann, J., Distel, L., Herrmann, M., Noistenig, T., Papadopoulos, T., Sauer, R., and Rodel, C. (2005). Survivin as a radioresistance factor, and prognostic and therapeutic target for radiotherapy in rectal cancer. Cancer Res 65, 4881–4887.

    Google Scholar 

  • Rodel, F., Frey, B., Leitmann, W., Capalbo, G., Weiss, C., and Rodel, C. (2008). Survivin antisense oligonucleotides effectively radiosensitize colorectal cancer cells in both tissue culture and murine xenograft models. Int J Radiat Oncol Biol Phys 71, 247–255.

    Google Scholar 

  • Rohayem, J., Diestelkoetter, P., Weigle, B., Oehmichen, A., Schmitz, M., Mehlhorn, J., Conrad, K., and Rieber, E. P. (2000). Antibody response to the tumor-associated inhibitor of apoptosis protein in cancer patients. Cancer Res 60, 1815–1817.

    Google Scholar 

  • Sah, N. K., Munshi, A., Hobbs, M., Carter, B. Z., Andreeff, M., and Meyn, R. E. (2006). Effect of downregulation of survivin expression on radiosensitivity of human epidermoid carcinoma cells. Int J Radiat Oncol Biol Phys 66, 852–859.

    Google Scholar 

  • Sarthy, A. V., Morgan-Lappe, S. E., Zakula, D., Vernetti, L., Schurdak, M., Packer, J. C., Anderson, M. G., Shirasawa, S., Sasazuki, T., and Fesik, S. W. (2007). Survivin depletion preferentially reduces the survival of activated K-Ras-transformed cells. Mol Cancer Ther 6, 269–276.

    Google Scholar 

  • Schmidt, S. M., Schag, K., Muller, M. R., Weck, M. M., Appel, S., Kanz, L., Grunebach, F., and Brossart, P. (2003). Survivin is a shered tumor-associated antigen expressed in a broad variety of malignancies and recognized by specific cytotoxic T cells. Blood 102, 571–576.

    Google Scholar 

  • Schmitz, M., Diestelkoetter, P., Weigle, B., Schmachtenberg, F., Stevanovic, S., Ockert, D., Rammensee, H. G., and Rieber, E. P. (2000). Generation of survivin-specific CD8+ T effector cells by dendritic cells pulsed with protein or selected peptides. Cancer Res 60, 4845–4849.

    Google Scholar 

  • Sharma, H., Sen, S., Lo Muzio, L., Mariggio, A., and Singh, N. (2005). Antisense-mediated downregulation of anti-apoptotic proteins induces apoptosis and sensitizes head and neck squamous cell carcinoma cells to chemotherapy. Cancer Biol Ther 4, 720–727.

    Google Scholar 

  • Sommer, K. W., Schamberger, C. J., Schmidt, G. E., Sasgary, S., and Cerni, C. (2003). Inhibitor of apoptosis protein (IAP) survivin is up-regulated by oncogenic c-H-Ras. Oncogene 22, 4266–4280.

    Google Scholar 

  • Song, J., So, T., Cheng, M., Tang, X., and Croft, M. (2005). Sustained survivin expression from OX40 costimulatory signals drives T cell clonal expansion. Immunity 22, 621–631.

    Google Scholar 

  • Span, P. N., Tjan-Heijnen, V. C., Manders, P., van Tienoven, D., Lehr, J., and Sweep, F. C. (2006). High survivin predicts a poor response to endocrine therapy but a good response to chemotherapy in advanced breast cancer. Brest Cancer Res Treat 98, 223–230.

    Google Scholar 

  • Sun, C., Cai, M., Gunasekera, A. H., Meadows, R. P., Wang, H., Chen, J., Zhang, H., Wu, W., Xu, N., Ng, S. C., and Fesik, S. W. (1999). NMR structure and mutagenesis of the inhibitor-ofapoptosis protein XIAP. Nature 401, 818–822.

    Google Scholar 

  • Talbot, D. C., Davies, J., Callies, S., Andre, V., Lahn, M., Ang, J., De Bono, J. S., Ranson, M. (2008). First human dose study evaluating safety and pharmacokinetics of LY2181308, an antisense oligonucleotide designed to inhibit survivin. J Clin Oncol 26, abstr 3518.

    Google Scholar 

  • Taubert, H., Würl, P., Greither, T., Kappler, M., Bache, M., Bartel, F., Kehlen, A., Lautenschläger, C., Harris, L. C., Kaushal, D., Füssel, S., Meye, A., Böhnke, A., Schmidt, H., Holzhausen, H. J., Hauptmann, S. (2007). Stemcell-associated genes are extremely poor prognostic factors for soft-tissue sarcoma patients. Oncogene 26, 7170–7174.

    Google Scholar 

  • Tirro, E., Consoli, M. L., Massimino, M., Manzella, L., Frasca, F., Sciacca, L., Vicari, L., Stassi, G., Messina, L., Messina, A., and Vigneri, P. (2006). Altered expression of c-IAP1, survivin, and Smac contributes to chemotherapy resistance in thyroid cancer cells. Cancer Res 66, 4263–4272.

    Google Scholar 

  • Tolcher, A. W., Mita, A., Lewis, L. D., Garrett, C. R., Till, E., Daud, A. I., Patnaik, A., Papadopoulos, K., Takimoto, C., Bartels, P., Keating, A., Antonia, S. (2008). Phase I and pharmacokinetic study of YM155, a small-molecule inhibitor of survivin. J Clin Oncol 26, 5198–5203.

    Google Scholar 

  • Tran, J., Master, Z., Yu, J. L., Rak, J., Dumont, D. J., and Kerbel, R. S. (2002). A role for survivin in chemoresistance of endothelial cells mediated by VEGF. Proc Natl Acad Sci USA 99, 4349–4354.

    Google Scholar 

  • Tsuruma, T., Hata, F., Torigoe, T., Furuhata, T., Idenoue, S., Kurotaki, T., Yamamoto, M., Yagihashi, A., Ohmura, T., Yamaguchi, K., Katsuramaki, T., Yasoshima, T., Sasaki, K., Mizushima, Y., Minamida, H., Kimura, H., Akiyama, M., Hirohashi, Y., Asanuma, H., Tamura, Y., Shimozawa, K., Sato, N., and Hirata, K. (2004). Phase I clinical study of antiapoptosis protein, survivin-derived peptide vaccine therapy for patients with advanced or recurrent colorectal cancer. J Transl Med 2,19.

    Google Scholar 

  • Tu, S. P., Cui, J. T., Liston, P., Huajiang, X., Xu, R., Lin, M. C., Zhu, Y. B., Zou, B., Ng, S. S., Jiang, S. H., Xia, H. H., Wong, W. M., Chan, A. O., Yuen, M. F., Lam, S. K., Kung, H. F., and Wong, B. C. (2005). Gene therapy for colon cancer by adeno-associated viral vector-mediated transfer of survivin Cys84Ala mutant. Gastroenterology 128, 361–375.

    Google Scholar 

  • Vagnarelli, P. and Earnshaw, W. C. (2004). Chromosomal passengers: the four-dimensional regulation of mitotic events. Chromosoma 113, 211–222.

    Google Scholar 

  • Vaira, V., Lee, C. W., Goel, H. L., Bosari, S., Languino, L. R., and Altieri, D. C. (2006). Regulation of survivin expression by IGF-1/mTOR signalling. Oncogene 26, 1–7.

    Google Scholar 

  • Van Geelen, C. M., De Vries, E. G., and De Jong, S. (2004). Lessons from TRAIL-resistance mechanisms in colorectal cancer cells: paving the road to patient-tailored therapy. Drug Resist Updat 7, 345–358.

    Google Scholar 

  • Vaux, D. L. and Silke, J. (2005). IAPs-the ubiquitin connection. Cell Death Diff 12, 1205–1207.

    Google Scholar 

  • Velculescu, V. E., Madden, S. L., Zhang, L., Lash, A. E., Yu, J., Rago, C., Lal, A., Wang, C. J., Beaudry, G. A., Ciriello, K. M., Cook, B. P., Dufault, M. R., Ferguson, A. T., Gao, Y., He, T. C., Hermeking, H., Hiraldo, S. K., Hwang, P. M., Lopez, M. A., Luderer, H. F., Mathews, B., Petroziello, J. M., Polyak, K., Zawel, L., and Kinzler, K. W. (1999). Analysis of human transcriptomes. Nat Gen 23, 387–388.

    Google Scholar 

  • Vogelstein, B. and Kinzler, K.W. (2004). Cancer genes and the pathways they control. Nat Med 10, 789–799.

    Google Scholar 

  • Vong, Q. P., Cao, K., Li, H. Y., Iglesias, P. A., and Zheng, Y. (2005). Chromosome alignment and segregation regulated by ubiquitination of survivin. Science 310, 1499–1504.

    Google Scholar 

  • Wheatley, S. P., Carvalho, A., Vagnarelli, P., and Earnshaw, W. C. (2001). INCENP is required for proper targeting of survivin to the centromeres and the anaphase spindle during mitosis. Curr Biol 11, 886–890.

    Google Scholar 

  • Wheatley, S. P., Henzing, A. J., Dodson, H., Khaled, W., and Earnshaw, W. C. (2004). Aurora-B phosphorylation in vitro identifies a residue of survivin that is essential for its localization and binding to inner centromere protein (INCENP) in vivo. J Biol Chem 279, 5655–5660.

    Google Scholar 

  • Wuttig, D., Kunze, D., Fuessel, S., Toma, M., Stade, J., Kotzsch, M., Kappler, M., Taubert, H., Schwenzer, B., Baretton, G., Hakenberg, O. W., Meye, A., and Wirth, M. P. (2007). Are overexpressed alternative survivin transcripts in human bladder cancer suitable targets for siRNA-mediated in vitro inhibition? Int J Oncol 30, 1317–1324.

    Google Scholar 

  • Xia, F. and Altieri, D. C. (2006). Mitosis-independent survivin gene expression in vivo and regulation by p53. Cancer Res 66, 3392–3395.

    Google Scholar 

  • Yan, H., Thomas, J., Liu, T., Raj, D., London, N., Tandeski, T., Leachman, S. A., Lee, R. M., and Grossman, D. (2006). Induction of melanoma cell apoptosis and inhibition of tumor growth using a cell-permeable Survivin antagonist. Oncogene 25, 6968–6974.

    Google Scholar 

  • Yang, D., Welm, A., and Bishop, J. M. (2004). Cell division and cell survival in the absence of survivin. Proc Natl Acad Sci 101, 15100–15105.

    Google Scholar 

  • Yang, H., Fu, J. H., Hu, Y., Huang, W. Z., Zheng, B., Wang, G., Zhang, X., and Wen, J. (2008). Influence of SiRNA targeting survivin on chemosensitivity of H460/cDDP lung cancer cells. J Int Med Res 36, 734–747.

    Google Scholar 

  • Yonesaka, K., Tamura, K., Kurata, T., Satoh, T., Ikeda, M., Fukuoka, M., and Nakagawa, K. (2006). Small interfering RNA targeting survivin sensitizes lung cancer cell with mutant p53 to adriamycin. Int J Cancer 118, 812–820.

    Google Scholar 

  • Zaffaroni, N., Pennati, M., Coltella, G., Perego, P., Supino, R., Gatti, L., Pilotti, S., Zunino, F., and Daidone, M. G. (2002). Expression of the anti-apoptotic gene survivin correlates with taxol resistance in human ovarian cancer. Cell Mol. Life Sci 59, 1406–1412.

    Google Scholar 

  • Zhang, M., Mukherjee, N., Bermudez, R. S., Latham, D. E., Delaney, M. A., Zietman, A. L., Shipley, W. U., and Chakravarti, A. (2005a) Adenovirus-mediated inhibition of survivin expression sensitizes human prostate cancer cells to paclitaxel in vitro and in vivo. Prostate 64, 293–302.

    Google Scholar 

  • Zhang, M., Latham, D. E., Delaney, M. A., and Chakravarti, A. (2005b). Survivin mediates resistance to antiandrogen therapy in prostate cancer. Oncogene 24, 2474–2482.

    Google Scholar 

  • Zhang, R., Wang, T., Li, K. N., Qin, W. W., Chen, R., Wang, K., Jia, L. T., Zhao, J., Wen, W. H., Meng, Y. L., Yao, L. B., and Yang, A. G. (2008). A survivin double point mutant has potent inhibitory effect on the growth of hepatocellular cancer cells. Cancer Biol Ther 7, 547–554.

    Google Scholar 

  • Zhang, T., Otevrel, T, Gao, Z., Ehrlich, S. M., Fields, J. Z., and Boman, B. M. (2001). Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res 61, 8664–8667.

    Google Scholar 

  • Zhou, J., O’Brate, A., Zelnak, A., and Giannakakou, P. (2004). Survivin deregulation in beta-tubulin mutant ovarian cancer cells underlies their compromised mitotic response to taxol. Cancer Res 64, 8708–8714.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Zaffaroni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pennati, M., Folini, M., Zaffaroni, N. (2010). Targeting Survivin in Cancer Therapy: Pre-clinical Studies. In: Cecconi, F., D'Amelio, M. (eds) Apoptosome. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3415-1_8

Download citation

Publish with us

Policies and ethics