Skip to main content

Chemical Regulation of the Apoptosome: New Alternative Treatments for Cancer

  • Chapter
  • First Online:
Apoptosome

Abstract

Many chemotherapeutic drugs and treatments initiate apoptotic cell death by inducing the release of cytochrome c from the mitochondria, which activates Apaf-1. This large (approximately 130–140 kDa) protein is a mammalian homolog of CED-4, an essential protein involved in programmed cell death in the nematode Caenorhabditis elegans. Cytochrome c activates Apaf-1, which oligomerizes to form the Apaf-1 apoptosome complex, which recruits caspase-9, an initiator caspase, to form a holoenzyme complex.

Subsequently, the Apaf-1/caspase-9 holoenzyme complex recruits and processes effector caspases-3 and -7, thereby initiating the caspase cascade that is responsible for the execution phase of apoptosis. Intracellular levels of XIAP, an inhibitor of apoptosis protein, and at least two mitochondrial-released proteins, Smac/DIABLO and Omi/Htra2, a serine protease, tightly regulate formation and function of the apoptosome. The formation, structure and functioning of the apoptosome complex have been extensively studied, and are reviewed in this chapter. Emerging evidence which is reviewed in this chapter suggests that defects in this pathway can also lead or contribute to drug-resistant cancers, particularly melanomas.

However, new evidence also suggests that in the absence of Apaf-1, mitochondrial stress and cytochrome c release can still kill cells by inducing caspase-independent cell death. Although this form of cell death seems to be a slower process, it still ultimately destroys the cell and implies that Apaf-1 is not essential for cell death in terminally differentiated cells. However, it is clear that the presence of Apaf-1 and a functioning apoptosome pathway greatly enhances or accelerates cell death by rapid activation of the caspases. Significantly, a number of studies have shown that a variety of small molecules can directly activate or inhibit caspase activation by acting on the formation and function of the apoptosome complex. These results suggest that compounds which can activate or synergize the apoptosome pathway in cancer cells could provide new alternative treatments for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acehan,D., Jiang,X., Morgan,D.G., Heuser,J.E., Wang,X., and Akey,C.W. (2002). Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell 9, 423–432.

    CAS  PubMed  Google Scholar 

  • Adrain,C., Brumatti,G., and Martin,S.J. (2006). Apoptosomes: protease activation platforms to die from. Trends Biochem. Sci. 31, 243–247.

    CAS  PubMed  Google Scholar 

  • Adrain,C. and Martin,S.J. (2001). The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem. Sci. 26, 390–397.

    CAS  PubMed  Google Scholar 

  • Allan,L.A. and Clarke,P.R. (2007). Phosphorylation of caspase-9 by CDK1/cyclin B1 protects mitotic cells against apoptosis. Mol. Cell 26, 301–310.

    CAS  PubMed  Google Scholar 

  • Allan,L.A., Morrice,N., Brady,S., Magee,G., Pathak,S., and Clarke,P.R. (2003). Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nat. Cell Biol. 5, 647–654.

    CAS  PubMed  Google Scholar 

  • Almond,J., Snowden,R.T., Dinsdale,D., Hunter,A., Cain,K., and Cohen,G.M. (2001). Proteasome inhibitor-induced apoptosis of B-chronic lymphocytic leukaemia cells involves cytochrome c release and caspase activation, accompanied by formation of an  ~ 700 kDa apaf-1 containing apoptosome complex. Leukemia 15, 1388–1397.

    CAS  PubMed  Google Scholar 

  • Antignani,A. and Youle,R.J. (2006). How do Bax and Bax lead to permeabilization of the outer mitochondrial membrane? Curr. Opin. Cell Biol. 18, 685–689.

    CAS  PubMed  Google Scholar 

  • Antonsson,B., Montessuit,S., Sanchez,B., and Martinou,J.C. (2001). Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol. Chem. 276, 11615–11623.

    CAS  PubMed  Google Scholar 

  • Baines,C.P., Kaiser,R.A., Sheiko,T., Craigen,W.J., and Molkentin,J.D. (2007). Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat. Cell Biol. 9, 550–555.

    CAS  PubMed  Google Scholar 

  • Bao,Q., Lu,W., Rabinowitz,J.D., and Shi,Y. (2007). Calcium blocks formation of apoptosome by preventing nucleotide exchange in Apaf-1. Mol. Cell 25, 181–192.

    CAS  PubMed  Google Scholar 

  • Bao,Q. and Shi,Y. (2007). Apoptosome: a platform for the activation of initiator caspases. Cell Death. Differ. 14, 56–65.

    CAS  PubMed  Google Scholar 

  • Beere,H.M. and Green,D.R. (2001). Stress management - heat shock protein-70 and the regulation of apoptosis. Trends Cell Biol. 11, 6–10.

    CAS  PubMed  Google Scholar 

  • Beere,H.M., Wolf,B.B., Cain,K., Mosser,D.D., Mahboubi,A., Kuwana,T., Tailor,P., Morimoto,R.I., Cohen,G.M., and Green,D.R. (2000). Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat. Cell Biol. 2, 469–475.

    CAS  PubMed  Google Scholar 

  • Benedict,M.A., Hu,Y., Inohara,N., and Nunez,G. (2000). Expression and Functional Analysis of Apaf-1 Isoforms. Extra wd-40 repeat is required for cytochrome c binding and regulated activation of procaspase-9. J. Biol. Chem. 275, 8461–8468.

    CAS  PubMed  Google Scholar 

  • Besse,B., Cande,C., Spano,J.P., Martin,A., Khayat,D., Le Chevalier,T., Tursz,T., Sabatier,L., Soria,J.C., and Kroemer,G. (2004). Nuclear localization of apoptosis protease activating factor-1 predicts survival after tumor resection in early-stage non-small cell lung cancer. Clin. Cancer Res. 10, 5665–5669.

    CAS  PubMed  Google Scholar 

  • Boatright,K.M., Renatus,M., Scott,F.L., Sperandio,S., Shin,H., Pedersen,I.M., Ricci,J.E., Edris,W.A., Sutherlin,D.P., Green,D.R., and Salvesen,G.S. (2003). A unified model for apical caspase activation. Mol. Cell 11, 529–541.

    CAS  PubMed  Google Scholar 

  • Bouillet,P. and Strasser,A. (2002). BH3-only proteins - evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death. J. Cell Sci. 115, 1567–1574.

    CAS  PubMed  Google Scholar 

  • Brady,S.C., Allan,L.A., and Clarke,P.R. (2005). Regulation of caspase 9 through phosphorylation by protein kinase C zeta in response to hyperosmotic stress. Mol. Cell Biol. 25, 10543–10555.

    CAS  PubMed  Google Scholar 

  • Bratton,S.B., MacFarlane,M., Cain,K., and Cohen,G.M. (2000). Protein complexes activate distinct caspase cascades in death receptor and stress-induced apoptosis. Exp. Cell Res. 256, 27–33.

    CAS  PubMed  Google Scholar 

  • Bratton,S.B., Walker,G., Roberts,D.L., Cain,K., and Cohen,G.M. (2001a). Caspase-3 cleaves Apaf-1 into an approximately 30 kDa fragment that associates with an inappropriately oligomerized and biologically inactive approximately 1.4 MDa apoptosome complex. Cell Death. Differ. 8, 425–433.

    CAS  Google Scholar 

  • Bratton,S.B., Walker,G., Srinivasula,S.M., Sun,X.M., Butterworth,M., Alnemri,E.S., and Cohen,G.M. (2001b). Recruitment, activation and retention of caspases-9 and -3 by Apaf-1 apoptosome and associated XIAP complexes. EMBO J. 20, 998–1009.

    CAS  PubMed  Google Scholar 

  • Broker,L.E., Kruyt,F.A.E., and Giaccone,G. (2005). Cell Death Independent of Caspases: A Review. Clin Cancer Res 11, 3155–3162.

    PubMed  Google Scholar 

  • Cain,K. (2003). Chemical-induced apoptosis: formation of the Apaf-1 apoptosome. Drug Metab Rev. 35, 337–363.

    CAS  PubMed  Google Scholar 

  • Cain,K., Bratton,S.B., and Cohen,G.M. (2002). The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie 84, 203–214.

    CAS  PubMed  Google Scholar 

  • Cain,K., Bratton,S.B., Langlais,C., Walker,G., Brown,D.G., Sun,X.M., and Cohen,G.M. (2000). Apaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1.4-MDa apoptosome complexes. J. Biol. Chem. 275, 6067–6070.

    CAS  PubMed  Google Scholar 

  • Cain,K., Brown,D.G., Langlais,C., and Cohen,G.M. (1999). Caspase activation involves the formation of the aposome, a large (similar to 700 kDa) caspase-activating complex. J. Biol. Chem. 274, 22686–22692.

    CAS  PubMed  Google Scholar 

  • Cain,K., Langlais,C., Sun,X.M., Brown,D.G., and Cohen,G.M. (2001). Physiological concentrations of K + inhibit cytochrome c-dependent formation of the apoptosome. J. Biol. Chem. 276, 41985–41990.

    CAS  PubMed  Google Scholar 

  • Cardone,M.H., Roy,N., Stennicke,H.R., Salvesen,G.S., Franke,T.F., Stanbridge,E., Frisch,S., and Reed,J.C. (1998). Regulation of cell death protease caspase-9 by phosphorylation. Science 282, 1318–1321.

    CAS  PubMed  Google Scholar 

  • Chai,J., Du,C., Wu,J.W., Kyin,S., Wang,X., and Shi,Y. (2000). Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406, 855–862.

    CAS  PubMed  Google Scholar 

  • Chai,J., Wu,Q., Shiozaki,E., Srinivasula,S.M., Alnemri,E.S., and Shi,Y. (2001). Crystal structure of a procaspase-7 zymogen. Mechanisms of activation and substrate binding. Cell 107, 399–407.

    CAS  Google Scholar 

  • Chandra,D., Bratton,S.B., Person,M.D., Tian,Y., Martin,A.G., Ayres,M., Fearnhead,H.O., Gandhi,V., and Tang,D.G. (2006). Intracellular nucleotides act as critical prosurvival factors by binding to cytochrome C and inhibiting apoptosome. Cell 125, 1333–1346.

    CAS  PubMed  Google Scholar 

  • Chao,Y., Shiozaki,E.N., Srinivasula,S.M., Rigotti,D.J., Fairman,R., and Shi,Y. (2005). Engineering a dimeric caspase-9: a re-evaluation of the induced proximity model for caspase activation. PLoS. Biol. 3, e183.

    PubMed  Google Scholar 

  • Chau,B.N., Cheng,E.H.Y., Kerr,D.A., and Hardwick,J.M. (2000). Aven, a novel inhibitor of caspase activation, binds Bcl-x(L) and Apaf-1. Molecular Cell 6, 31–40.

    CAS  PubMed  Google Scholar 

  • Chen,F.L., Hersh,B.M., Conradt,B., Zhou,Z., Riemer,D., Gruenbaum,Y., and Horvitz,H.R. (2000). Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death. Science 287, 1485–1489.

    CAS  PubMed  Google Scholar 

  • Chipuk,J.E., Fisher,J.C., Dillon,C.P., Kriwacki,R.W., Kuwana,T., and Green,D.R. (2008). Mechanism of apoptosis induction by inhibition of the anti-apoptotic BCL-2 proteins. Proc. Natl. Acad. Sci. USA 105, 20327–20332.

    CAS  PubMed  Google Scholar 

  • Cho,D.H., Hong,Y.M., Lee,H.J., Woo,H.N., Pyo,J.O., Mak,T.W., and Jung,Y.K. (2004). Induced inhibition of ischemic/hypoxic injury by APIP, a novel Apaf-1-interacting protein. J. Biol. Chem. 279, 39942–39950.

    CAS  PubMed  Google Scholar 

  • Cohen,G.M. (1997). Caspases: the executioners of apoptosis. Biochem. J. 326, 1–16.

    CAS  PubMed  Google Scholar 

  • Conradt,B. and Horvitz,H.R. (1998). The C-elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93, 519–529.

    CAS  PubMed  Google Scholar 

  • Creagh,E.M. and Martin,S.J. (2001). Caspases: cellular demolition experts. Biochem. Soc. Trans. 29, 696–702.

    CAS  PubMed  Google Scholar 

  • Dai,D.L., Martinka,M., Bush,J.A., and Li,G. (2004). Reduced Apaf-1 expression in human cutaneous melanomas. Br. J. Cancer 91, 1089–1095.

    CAS  PubMed  Google Scholar 

  • Danial,N.N. and Korsmeyer,S.J. (2004). Cell death: critical control points. Cell 116, 205–219.

    CAS  PubMed  Google Scholar 

  • Desagher,S. and Martinou,J.C. (2000). Mitochondria as the central control point of apoptosis. Trends Cell Biol. 10, 369–377.

    CAS  PubMed  Google Scholar 

  • Deveraux,Q.L. and Reed,T.C. (1999). IAP family proteins - suppressors of apoptosis. Genes Dev. 13, 239–252.

    CAS  PubMed  Google Scholar 

  • Earnshaw,W.C. (1999). Apoptosis - A cellular poison cupboard. Nature 397, 387.

    CAS  PubMed  Google Scholar 

  • Ellis,H.M. and Horvitz,H.R. (1986). Genetic control of programmed cell death in the nematode C. elegans. Cell 44, 817–829.

    CAS  PubMed  Google Scholar 

  • Enari,M., Sakahira,H., Yokoyama,H., Okawa,K., Iwamatsu,A., and Nagata,S. (1998). A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43–50.

    CAS  PubMed  Google Scholar 

  • Eskes,R., Desagher,S., Antonsson,B., and Martinou,J.C. (2000). Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol. Cell. Biol. 20, 929–935.

    CAS  PubMed  Google Scholar 

  • Fischer,U., Janicke,R.U., and Schulze-Osthoff,K. (2003). Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death. Differ. 10, 76–100.

    CAS  PubMed  Google Scholar 

  • Fortin,A., Cregan,S.P., MacLaurin,J.G., Kushwaha,N., Hickman,E.S., Thompson,C.S., Hakim,A., Albert,P.R., Cecconi,F., Helin,K., Park,D.S., and Slack,R.S. (2001). APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death. J. Cell Biol. 155, 207–216.

    CAS  PubMed  Google Scholar 

  • Freathy,C., Brown,D.G., Roberts,R.A., and Cain,K. (2000). Transforming growth factor-beta(1) induces apoptosis in rat FaO hepatoma cells via cytochrome c release and oligomerization of Apaf-1 to form a approximately 700-kd apoptosome caspase-processing complex. Hepatology 32, 750–760.

    CAS  PubMed  Google Scholar 

  • Fu,W.N., Bertoni,F., Kelsey,S.M., McElwaine,S.M., Cotter,F.E., Newland,A.C., and Jia,L. (2003). Role of DNA methylation in the suppression of Apaf-1 protein in human leukaemia. Oncogene 22, 451–455.

    CAS  PubMed  Google Scholar 

  • Fuentes-Prior,P. and Salvesen,G.S. (2004). The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem. J. 384, 201–232.

    CAS  PubMed  Google Scholar 

  • Gallenne,T., Gautier,F., Oliver,L., Hervouet,E., Noel,B., Hickman,J.A., Geneste,O., Cartron,P.F., Vallette,F.M., Manon,S., and Juin,P. (2009). Bax activation by the BH3-only protein Puma promotes cell dependence on antiapoptotic Bcl-2 family members. J Cell Biol. 185, 279–290.

    CAS  PubMed  Google Scholar 

  • Goyal,L. (2001). Cell death inhibition: keeping caspases in check. Cell 104, 805–808.

    CAS  PubMed  Google Scholar 

  • Harlin,H., Reffey,S.B., Duckett,C.S., Lindsten,T., and Thompson,C.B. (2001). Characterization of XIAP-deficient mice. Mol. Cell Biol. 21, 3604–3608.

    CAS  PubMed  Google Scholar 

  • Harris,S.L. and Levine,A.J. (2005). The p53 pathway: positive and negative feedback loops. Oncogene 24, 2899–2908.

    CAS  PubMed  Google Scholar 

  • Hengartner,M. (1998). Apoptosis. Death by crowd control. Science 281, 1298–1299.

    CAS  Google Scholar 

  • Hill,M.M., Adrain,C., Duriez,P.J., Creagh,E.M., and Martin,S.J. (2004). Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. EMBO J. 23, 2134–2145.

    CAS  PubMed  Google Scholar 

  • Hofmann,K., Bucher,P., and Tschopp,J. (1997). The CARD domain: a new apoptotic signalling motif. Trends Biochem. Sci. 22, 155–156.

    CAS  PubMed  Google Scholar 

  • Holcik,M. and Korneluk,R.G. (2001). OPINIONXIAP, the guardian angel. Nat. Rev. Mol. Cell Biol. 2, 550–556.

    CAS  PubMed  Google Scholar 

  • Hu,Y.M., Benedict,M.A., Ding,L.Y., and Nunez,G. (1999). Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J. 18, 3586–3595.

    CAS  PubMed  Google Scholar 

  • Hu,Y.M., Ding,L.Y., Spencer,D.M., and Nunez,G. (1998). WD-40 repeat region regulates Apaf-1 self-association and procaspase- 9 activation. J. Biol. Chem. 273, 33489–33494.

    CAS  PubMed  Google Scholar 

  • Jaattela,M. (2004). Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 23, 2746–2756.

    PubMed  Google Scholar 

  • Jia,L., Srinivasula,S.M., Liu,F.T., Newland,A.C., Fernandes-Alnemri,T., Alnemri,E.S., and Kelsey,S.M. (2001). Apaf-1 protein deficiency confers resistance to cytochrome c-dependent apoptosis in human leukemic cells. Blood 98, 414–421.

    CAS  PubMed  Google Scholar 

  • Jiang,X., Kim,H.E., Shu,H., Zhao,Y., Zhang,H., Kofron,J., Donnelly,J., Burns,D., Ng,S.c., Rosenberg,S., and Wang,X. (2003). Distinctive Roles of PHAP Proteins and Prothymosin-alpha in a Death Regulatory Pathway. Science 299, 223–226.

    Google Scholar 

  • Johnson,C., Huang,Y., Parrish,A., Wechsler-Reya,R., Deshmukh,M., and Kornbluth,S. (2007). Differential Apaf-1 levels allow cytochrome c to induce apoptosis in brain tumors but not in normal neural tissues. Neuro-Oncology 9, 474.

    Google Scholar 

  • Kim,H.E., Du,F., Fang,M., and Wang,X. (2005). Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. Proc. Natl. Acad. Sci. USA 102, 17545–17550.

    CAS  PubMed  Google Scholar 

  • Kim,H.E., Jiang,X., Du,F., and Wang,X. (2008). PHAPI, CAS, and Hsp70 promote apoptosome formation by preventing Apaf-1 aggregation and enhancing nucleotide exchange on Apaf-1. Mol. Cell 30, 239–247.

    CAS  PubMed  Google Scholar 

  • Kluck,R.M., Ellerby,L.M., Ellerby,H.M., Naiem,S., Yaffe,M.P., Margoliash,E., Bredesen,D., Mauk,A.G., Sherman,F., and Newmeyer,D.D. (2000). Determinants of cytochrome c pro-apoptotic activity. The role of lysine 72 trimethylation. J. Biol. Chem. 275, 16127–16133.

    CAS  PubMed  Google Scholar 

  • Lademann,U., Cain,K., Hansen,G.M., Brown,D., Peters,D., and Jaattela,M. (2003). Diarlyurea compounds inhibit caspase activation by preventing the formation of  ~ 700 kDa apoptosome complex. Mol. Cell Biol. 23, 7829–7837

    Google Scholar 

  • Lauber,K., Appel,H.A., Schlosser,S.F., Gregor,M., Schulze-Osthoff,K., and Wesselborg,S. (2001). The adapter protein apoptotic protease-activating factor-1 (apaf-1) is proteolytically processed during apoptosis. J. Biol. Chem. 276, 29772–29781.

    CAS  PubMed  Google Scholar 

  • Leoni,L.M., Chao,Q., Cottam,H.B., Genini,D., Rosenbach,M., Carrera,C.J., Budihardjo,I., Wang,X.D., and Carson,D.A. (1998). Induction of an apoptotic program in cell-free extracts by 2-chloro- 2′-deoxyadenosine 5′-triphosphate and cytochrome c. Proc. Natl. Acad. Sci. USA 95, 9567–9571.

    CAS  PubMed  Google Scholar 

  • Letai,A., Bassik,M.C., Walensky,L.D., Sorcinelli,M.D., Weiler,S., and Korsmeyer,S.J. (2002). Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183–192.

    CAS  PubMed  Google Scholar 

  • Letai,A.G. (2008). Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat. Rev. Cancer 8, 121–132.

    CAS  PubMed  Google Scholar 

  • Lettre,G. and Hengartner,M.O. (2006). Developmental apoptosis in C. elegans: a complex CEDnario. Nat. Rev. Mol. Cell Biol. 7, 97–108.

    CAS  Google Scholar 

  • Li,P., Nijhawan,D., Budihardjo,I., Srinivasula,S.M., Ahmad,M., Alnemri,E.S., and Wang,X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489.

    CAS  PubMed  Google Scholar 

  • Liu,J.R., Opipari,A.W., Tan,L.J., Jiang,Y.B., Zhang,Y.J., Tang,H.J., and Nunez,G. (2002). Dysfunctional apoptosome activation in ovarian cancer: Implications for chemoresistance. Cancer Res. 62, 924–931.

    CAS  PubMed  Google Scholar 

  • Liu,X., Kim,C.N., Yang,J., Jemmerson,R., and Wang,X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147–157.

    CAS  PubMed  Google Scholar 

  • Luthi,A.U. and Martin,S.J. (2007). The CASBAH: a searchable database of caspase substrates. Cell Death. Differ. 14, 641–650.

    CAS  PubMed  Google Scholar 

  • Magdalena,C., Dominguez,F., Loidi,L., and Puente,J.L. (2000). Tumour prothymosin alpha content, a potential prognostic marker for primary breast cancer. Br. J. Cancer 82, 584–590.

    CAS  PubMed  Google Scholar 

  • Malicet,C., Giroux,V., Vasseur,S., Dagorn,J.C., Neira,J.L., and Iovanna,J.L. (2006). Regulation of apoptosis by the p8/prothymosin alpha complex. Proc. Natl. Acad. Sci. USA 103, 2671–2676.

    CAS  PubMed  Google Scholar 

  • Markova,O.V., Evstafieva,A.G., Mansurova,S.E., Moussine,S.S., Palamarchuk,L.A., Pereverzev,M.O., Vartapetian,A.B., and Skulachev,V.P. (2003). Cytochrome c is transformed from anti- to pro-oxidant when interacting with truncated oncoprotein prothymosin alpha. Biochim. Biophys. Acta 1557, 109–117.

    CAS  PubMed  Google Scholar 

  • Martin,M.C., Allan,L.A., Lickrish,M., Sampson,C., Morrice,N., and Clarke,P.R. (2005). Protein kinase A regulates caspase-9 activation by Apaf-1 downstream of cytochrome c. J. Biol. Chem. 280, 15449–15455.

    CAS  PubMed  Google Scholar 

  • Martinou,J.C. and Green,D.R. (2001). Breaking the mitochondrial barrier. Nat. Rev. Mol. Cell Biol. 2, 63–67.

    CAS  PubMed  Google Scholar 

  • Marzo,I., Brenner,C., Zamzami,N., Susin,S.A., Beutner,G., Brdiczka,D., Remy,R., Xie,Z.H., Reed,J.C., and Kroemer,G. (1998). The permeability transition pore complex: A target for apoptosis regulation by caspases and Bcl-2-related proteins. J. Exp. Med. 187, 1261–1271.

    CAS  PubMed  Google Scholar 

  • Moriishi,K., Huang,D.C.S., Cory,S., and Adams,J.M. (1999). Bcl-2 family members do not inhibit apoptosis by binding the caspase activator Apaf-1. Proc. Natl. Acad. Sci. USA 96, 9683–9688.

    CAS  PubMed  Google Scholar 

  • Morison,I.M., Cramer Borde,E.M., Cheesman,E.J., Cheong,P.L., Holyoake,A.J., Fichelson,S., Weeks,R.J., Lo,A., Davies,S.M., Wilbanks,S.M., Fagerlund,R.D., Ludgate,M.W., Silva Tatley,F.M., Coker,M.S., Bockett,N.A., Hughes,G., Pippig,D.A., Smith,M.P., Capron,C., and Ledgerwood,E.C. (2008). A mutation of human cytochrome c enhances the intrinsic apoptotic pathway but causes only thrombocytopenia. Nat. Genet. 40, 387–389.

    CAS  PubMed  Google Scholar 

  • Moroni,M.C., Hickman,E.S., Denchi,E.L., Caprara,G., Colli,E., Cecconi,F., Muller,H., and Helin,K. (2001). Apaf-1 is a transcriptional target for E2F and p53. Nat. Cell Biol. 3, 552–558.

    CAS  PubMed  Google Scholar 

  • Nguyen,J.T. and Wells,J.A. (2003). Direct activation of the apoptosis machinery as a mechanism to target cancer cells. Proc. Natl. Acad. Sci. USA 100, 7533–7538.

    CAS  PubMed  Google Scholar 

  • Nicholson,D.W. and Thornberry,N.A. (2003). APOPTOSIS: Life and Death Decisions. Science 299, 214–215.

    CAS  PubMed  Google Scholar 

  • Nicotera,P., Leist,M., and FerrandoMay,E. (1999). Apoptosis and necrosis: different execution of the same death. Biochem Soc Symp 69–73.

    Google Scholar 

  • Oberst,A., Bender,C., and Green,D.R. (2008). Living with death: the evolution of the mitochondrial pathway of apoptosis in animals. Cell Death. Differ. 15, 1139–1146.

    CAS  PubMed  Google Scholar 

  • Ogawa,T., Shiga,K., Hashimoto,S., Kobayashi,T., Horii,A., and Furukawa,T. (2003). APAF-1-ALT, a novel alternative splicing form of APAF-1, potentially causes impeded ability of undergoing DNA damage-induced apoptosis in the LNCaP human prostate cancer cell line. Biochem. Biophys. Res. Commun. 306, 537–543.

    CAS  PubMed  Google Scholar 

  • Ow,Y.P., Green,D.R., Hao,Z., and Mak,T.W. (2008). Cytochrome c: functions beyond respiration. Nat. Rev. Mol. Cell Biol. 9, 532–542.

    CAS  PubMed  Google Scholar 

  • Pandey,P., Saleh,A., Nakazawa,A., Kumar,S., Srinivasula,S.M., Kumar,V., Weichselbaum,R., Nalin,C., Alnemri,E.S., Kufe,D., and Kharbanda,S. (2000). Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J. 19, 4310–4322.

    CAS  PubMed  Google Scholar 

  • Patel,S. and Latterich,M. (1998). The AAA team: related ATPases with diverse functions. Trends Cell Biol. 8, 65–71.

    CAS  PubMed  Google Scholar 

  • Peltenburg,L.T.C., de Bruin,E.C., Meersma,D., Smit,N.P.M., Schrier,P.I., and Medema,J.P. (2005). Expression and function of the apoptosis effector Apaf-1 in melanoma. Cell Death Differ. 12, 678–679.

    CAS  PubMed  Google Scholar 

  • Pineiro,A., Cordero,O.J., and Nogueira,M. (2000). Fifteen years of prothymosin alpha: contradictory past and new horizons. Peptides 21, 1433–1446.

    CAS  PubMed  Google Scholar 

  • Pop,C., Timmer,J., Sperandio,S., and Salvesen,G.S. (2006). The apoptosome activates caspase-9 by dimerization. Mol Cell 22, 269–275.

    CAS  PubMed  Google Scholar 

  • Purring,C., Zou,H., Wang,X.D., and McLendon,G. (1999). Stoichiometry, free energy, and kinetic aspects of cytochrome c: Apaf-1 binding in apoptosis. J. Am. Chem. Soc. 121, 7435–7436.

    CAS  Google Scholar 

  • Purring-Koch,C. and McLendon,G. (2000). Cytochrome c binding to Apaf-1: the effects of dATP and ionic strength. Proc. Natl. Acad. Sci. USA 97, 11928–11931.

    CAS  PubMed  Google Scholar 

  • Puthalakath,H., Huang,D.C.S., OReilly,L.A., King,S.M., and Strasser,A. (1999). The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol. Cell 3, 287–296.

    CAS  PubMed  Google Scholar 

  • Puthalakath,H. and Strasser,A. (2002). Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death. Differ. 9, 505–512.

    CAS  PubMed  Google Scholar 

  • Qin,H.X., Srinivasula,S.M., Wu,G., FernandesAlnemri,T., Alnemri,E.S., and Shi,Y.G. (1999). Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature 399, 549–557.

    CAS  PubMed  Google Scholar 

  • Renatus,M., Stennicke,H.R., Scott,F.L., Liddington,R.C., and Salvesen,G.S. (2001). Dimer formation drives the activation of the cell death protease caspase 9. Proc. Natl. Acad. Sci. USA 98, 14250–14255.

    CAS  PubMed  Google Scholar 

  • Riedl, S. J., Fuentes-Prior, P., Renatus, M., Kairies, N., Krapp, S., Huber, R, Salvesen, G. S., and Bode, W. (2001). Structural basis for the activation of human procaspase-7. Proc.Natl.Acad.Sci.USA 98, 14790–14795.

    Google Scholar 

  • Riedl,S.J., Li,W., Chao,Y., Schwarzenbacher,R., and Shi,Y. (2005). Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature 434, 926–933.

    CAS  PubMed  Google Scholar 

  • Robles,A.I., Bemmels,N.A., Foraker,A.B., and Harris,C.C. (2001). APAF-1 is a transcriptional target of p53 in DNA damage-induced apoptosis. Cancer Res. 61, 6660–6664.

    CAS  PubMed  Google Scholar 

  • Rodina,A., Vilenchik,M., Moulick,K., Aguirre,J., Kim,J., Chiang,A., Litz,J., Clement,C.C., Kang,Y., She,Y., Wu,N., Felts,S., Wipf,P., Massague,J., Jiang,X., Brodsky,J.L., Krystal,G.W., and Chiosis,G. (2007). Selective compounds define Hsp90 as a major inhibitor of apoptosis in small-cell lung cancer. Nat. Chem. Biol. 3, 498–507.

    CAS  PubMed  Google Scholar 

  • Rodriguez, J., Chen,H., Lin S., and Lazebnik, Y. (2000). Caspase phosphorylation, cell death and species variability. Science 287, 1363.

    Google Scholar 

  • Rodriguez,J. and Lazebnik,Y. (1999). Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev. 13, 3179–3184.

    CAS  PubMed  Google Scholar 

  • Roman-Gomez,J., Jimenez-Velasco,A., Castillejo,J.A., Agirre,X., Barrios,M., Navarro,G., Molina,F.J., Calasanz,M.J., Prosper,F., Heiniger,A., and Torres,A. (2004). Promoter hypermethylation of cancer-related genes: a strong independent prognostic factor in acute lymphoblastic leukemia. Blood 104, 2492–2498.

    CAS  PubMed  Google Scholar 

  • Rotonda,J., Nicholson,D.W., Fazil,K.M., Gallant,M., Gareau,Y., Labelle,M., Peterson,E.P., Rasper,D.M., Ruel,R., Vaillancourt,J.P., Thornberry,N.A., and Becker,J.W. (1996). The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat. Struct. Biol. 3, 619–625.

    CAS  PubMed  Google Scholar 

  • Ryoo,H.D., Bergmann,A., Gonen,H., Ciechanover,A., and Steller,H. (2002). Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nat. Cell Biol. 4, 432–438.

    CAS  PubMed  Google Scholar 

  • Saleh,A., Srinivasula,S.M., Balkir,L., Robbins,P.D., and Alnemri,E.S. (2000). Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat. Cell Biol. 2, 476–483.

    CAS  PubMed  Google Scholar 

  • Salvesen,G.S. and Abrams,J.M. (2004). Caspase activation - stepping on the gas or releasing the brakes? Lessons from humans and flies. Oncogene 23, 2774–2784.

    CAS  PubMed  Google Scholar 

  • Salvesen,G.S. and Dixit,V.M. (1999). Caspase activation: The induced-proximity model. Proc. Natl. Acad. Sci. USA 96, 10964–10967.

    CAS  PubMed  Google Scholar 

  • Salvesen,G.S. and Duckett,C.S. (2002). IAP proteins: blocking the road to death’s door. Nat. Rev. Mol. Cell Biol. 3, 401–410.

    CAS  PubMed  Google Scholar 

  • Scaffidi,C., Schmitz,I., Zha,J.P., Korsmeyer,S.J., Krammer,P.H., and Peter,M.E. (1999). Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J. Biol. Chem. 274, 22532–22538.

    CAS  PubMed  Google Scholar 

  • Schafer,Z.T. and Kornbluth,S. (2006). The apoptosome: physiological, developmental, and pathological modes of regulation. Dev. Cell 10, 549–561.

    CAS  PubMed  Google Scholar 

  • Schafer,Z.T., Parrish,A.B., Wright,K.M., Margolis,S.S., Marks,J.R., Deshmukh,M., and Kornbluth,S. (2006). Enhanced sensitivity to cytochrome c-induced apoptosis mediated by PHAPI in breast cancer cells. Cancer Res. 66, 2210–2218.

    CAS  PubMed  Google Scholar 

  • Shimizu,S., Konishi,A., Kodama,T., and Tsujimoto,Y. (2000). BH4 domain of antiapoptotic Bcl-2 family members closes voltage- dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc. Natl. Acad. Sci. USA 97, 3100–3105.

    CAS  PubMed  Google Scholar 

  • Shimizu,S., Narita,M., and Tsujimoto,Y. (1999). Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483–487.

    CAS  PubMed  Google Scholar 

  • Shinoura,N., Sakurai,S., Asai,A., Kirino,T., and Hamada,H. (2001). Over-expression of APAF-1 and caspase-9 augments radiation-induced apoptosis in U-373MG glioma cells. Int. J. Cancer 93, 252–261.

    CAS  PubMed  Google Scholar 

  • Shiozaki,E.N., Chai,J., Rigotti,D.J., Riedl,S.J., Li,P., Srinivasula,S.M., Alnemri,E.S., Fairman,R., and Shi,Y. (2003). Mechanism of XIAP-mediated inhibition of caspase-9. Mol. Cell 11, 519–527.

    CAS  PubMed  Google Scholar 

  • Skoog,L.a.B.G. (1974). Nuclear and cytoplasmic pools of deoxyribonucleoside triphosphates in chinese hamster ovary cells. J. Biol. Chem. 249, 6434–6438.

    Google Scholar 

  • Slee,E.A., Harte,M.T., Kluck,R.M., Wolf,B.B., Casiano,C.A., Newmeyer,D.D., Wang,H.G., Reed,J.C., Nicholson,D.W., Alnemri,E.S., Green,D.R., and Martin,S.J. (1999). Ordering the cytochrome c-initiated caspase cascade: Hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9- dependent manner. J. Cell Biol. 144, 281–292.

    CAS  PubMed  Google Scholar 

  • Slee,E.A., O’Connor,D.J., and Lu,X. (2004). To die or not to die: how does p53 decide? Oncogene 23, 2809–2818.

    CAS  PubMed  Google Scholar 

  • Soengas,M.S., Capodieci,P., Polsky,D., Mora,J., Esteller,M., Opitz-Araya,X., McCombie,R., Herman,J.G., Gerald,W.L., Lazebnik,Y.A., Cordon-Cardo,C., and Lowe,S.W. (2001). Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409, 207–211.

    CAS  PubMed  Google Scholar 

  • Soengas,M.S. and Lowe,S.W. (2003). Apoptosis and melanoma chemoresistance. Oncogene 22, 3138–3151.

    CAS  PubMed  Google Scholar 

  • Srinivasula,S.M., Ahmad,M., FernandesAlnemri,T., and Alnemri,E.S. (1998). Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol. Cell 1, 949–957.

    CAS  PubMed  Google Scholar 

  • Srinivasula,S.M., Hegde,R., Saleh,A., Datta,P., Shiozaki,E., Chai,J., Lee,R.A., Robbins,P.D., Fernandes-Alnemri,T., Shi,Y., and Alnemri,E.S. (2001). A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410, 112–116.

    CAS  PubMed  Google Scholar 

  • Steel,R., Doherty,J.P., Buzzard,K., Clemons,N., Hawkins,C.J., and Anderson,R.L. (2004). Hsp72 inhibits apoptosis upstream of the mitochondria and not through interactions with Apaf-1. J Biol. Chem. 279, 51490–51499.

    CAS  PubMed  Google Scholar 

  • Stennicke,H.R., Deveraux,Q.L., Humke,E.W., Reed,J.C., Dixit,V.M., and Salvesen,G.S. (1999). Caspase-9 can be activated without proteolytic processing. J. Biol. Chem. 274, 8359–8362.

    CAS  PubMed  Google Scholar 

  • Sun,Y., Orrenius,S., Pervaiz,S., and Fadeel,B. (2005). BLOOD constitute a novel mechanism of chemoresistance in B lymphoma. Blood 105, 4070–4077.

    CAS  PubMed  Google Scholar 

  • Svingen,P.A., Loegering,D., Rodriquez,J., Meng,X.W., Mesner,P.W., Jr., Holbeck,S., Monks,A., Krajewski,S., Scudiero,D.A., Sausville,E.A., Reed,J.C., Lazebnik,Y.A., and Kaufmann,S.H. (2004). Components of the cell death machine and drug sensitivity of the National Cancer Institute Cell Line Panel. Clin. Cancer Res. 10, 6807–6820.

    CAS  PubMed  Google Scholar 

  • Tashker,J.S., Olson,M., and Kornbluth,S. (2002). Post-cytochrome C protection from apoptosis conferred by a MAPK pathway in Xenopus egg extracts. Mol. Biol. Cell 13, 393–401.

    CAS  PubMed  Google Scholar 

  • Tenev,T., Zachariou,A., Wilson,R., Ditzel,M., and Meier,P. (2005). IAPs are functionally non-equivalent and regulate effector caspases through distinct mechanisms. Nat. Cell Biol. 7, 70–77.

    CAS  PubMed  Google Scholar 

  • Thompson,G.J., Langlais,C., Cain,K., Conley,E.C., and Cohen,G.M. (2001). Elevated extracellular. Biochem. J. 357, 137–145.

    CAS  PubMed  Google Scholar 

  • Thornberry,N.A. (1999). Caspases and their roles in apoptosis. FASEB J. 13, A1335.

    Google Scholar 

  • Tong,Q.S., Zheng,L.D., Wang,L., Zeng,F.Q., Chen,F.M., Dong,J.H., and Lu,G.C. (2005). Downregulation of XIAP expression induces apoptosis and enhances chemotherapeutic sensitivity in human gastric cancer cells. Cancer Gene Ther 12, 509–514.

    CAS  PubMed  Google Scholar 

  • Twiddy,D., Brown,D.G., Adrain,C., Jukes,R., Martin,S.J., Cohen,G.M., MacFarlane,M., and Cain,K. (2004). Pro-apoptotic proteins released from the mitochondria regulate the protein composition and caspase-processing activity of the native Apaf-1/caspase-9 apoptosome complex. J Biol. Chem. 279, 19665–19682.

    CAS  PubMed  Google Scholar 

  • Twiddy,D. and Cain,K. (2007). Caspase-9 cleavage, do you need it? Biochem. J 405, e1–e2.

    CAS  Google Scholar 

  • Twiddy,D., Cohen,G.M., MacFarlane,M., and Cain,K. (2006). Caspase-7 is directly activated by the approximately 700-kDa apoptosome complex and is released as a stable XIAP-caspase-7 approximately 200-kDa complex. J Biol. Chem. 281, 3876–3888.

    CAS  PubMed  Google Scholar 

  • van Loo,G., Saelens,X., van Gurp,M., MacFarlane,M., Martin,S.J., and Vandenabeele,P. (2002). The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death. Differ. 9, 1031–1042.

    PubMed  Google Scholar 

  • Vogler,M., Dinsdale,D., Dyer,M.J., and Cohen,G.M. (2009). Bcl-2 inhibitors: small molecules with a big impact on cancer therapy. Cell Death. Differ. 16, 360–367.

    CAS  PubMed  Google Scholar 

  • Vogler,M., Dinsdale,D., Sun,X.M., Young,K.W., Butterworth,M., Nicotera,P., Dyer,M.J., and Cohen,G.M. (2008). A novel paradigm for rapid ABT-737-induced apoptosis involving outer mitochondrial membrane rupture in primary leukemia and lymphoma cells. Cell Death. Differ. 15, 820–830.

    CAS  PubMed  Google Scholar 

  • Walker,J.E., Saraste,M., Runswick,M.J., and Gay,N.J. (1982). Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945–951.

    CAS  PubMed  Google Scholar 

  • Wei,M.C., Zong,W.X., Cheng,E.H., Lindsten,T., Panoutsakopoulou,V., Ross,A.J., Roth,K.A., MacGregor,G.R., Thompson,C.B., and Korsmeyer,S.J. (2001). Proapoptotic Bax and Bax: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730.

    CAS  PubMed  Google Scholar 

  • Wei,Y., Fox,T., Chambers,S.P., Sintchak,J., Coll,J.T., Golec,J.M., Swenson,L., Wilson,K.P., and Charifson,P.S. (2000). The structures of caspases-1, -3, -7 and -8 reveal the basis for substrate and inhibitor selectivity. Chem. Biol. 7, 423–432.

    CAS  PubMed  Google Scholar 

  • Wilson,K.P., Black,J.A.F., Thomson,J.A., Kim,E.E., Griffith,J.P., Navia,M.A., Murcko,M.A., Chambers,S.P., Aldape,R.A., Raybuck,S.A., and Livingston,D.J. (1994). Structure and mechanism of interleukin-1-beta converting-enzyme. Nature 370, 270–275.

    CAS  PubMed  Google Scholar 

  • Wing,J.P., Schreader,B.A., Yokokura,T., Wang,Y., Andrews,P.S., Huseinovic,N., Dong,C.K., Ogdahl,J.L., Schwartz,L.M., White,K., and Nambu,J.R. (2002). Drosophila Morgue is an F box/ubiquitin conjugase domain protein important for grim-reaper mediated apoptosis. Nat. Cell Biol. 4, 451–456.

    CAS  PubMed  Google Scholar 

  • Yang,X.L., Chang,H.Y., and Baltimore,D. (1998). Essential role of CED-4 oligomerization in CED-3 activation and apoptosis. Science 281, 1355–1357.

    CAS  PubMed  Google Scholar 

  • Yu,T., Wang,X., Purring-Koch,C., Wei,Y., and McLendon,G.L. (2001). A mutational epitope for cytochrome C binding to the apoptosis protease activation factor-1. J. Biol. Chem. 276, 13034–13038.

    CAS  PubMed  Google Scholar 

  • Yu,X., Acehan,D., Menetret,J.F., Booth,C.R., Ludtke,S.J., Riedl,S.J., Shi,Y., Wang,X., and Akey,C.W. (2005). A structure of the human apoptosome at 12.8 A resolution provides insights into this cell death platform. Structure. (Camb.) 13, 1725–1735.

    Google Scholar 

  • Yuan,J.Y., Shaham,S., LeDoux,S., Ellis,H.M., and Horvitz,H.R. (1993). The c-elegans cell-death gene ced-3 encodes a protein similar to mammalian interleukin-1-beta-converting enzyme. Cell 75, 641–652.

    CAS  PubMed  Google Scholar 

  • Zamzami,N. and Kroemer,G. (2001). The mitochondrion in apoptosis: how Pandora’s box opens. Nat. Rev. Mol. Cell Biol. 2, 67–71.

    CAS  PubMed  Google Scholar 

  • Zanon,M., Piris,A., Bersani,I., Vegetti,C., Molla,A., Scarito,A., and Anichini,A. (2004). Apoptosis Protease Activator Protein-1 Expression Is Dispensable for Response of Human Melanoma Cells to Distinct Proapoptotic Agents. Cancer Res. 64, 7386–7394.

    CAS  PubMed  Google Scholar 

  • Zhou,P., Chou,J., Olea,R.S., Yuan,J.Y., and Wagner,G. (1999). Solution structure of Apaf-1 CARD and its interaction with caspase-9 CARD: A structural basis for specific adaptor/caspase interaction. Proc. Natl. Acad. Sci. USA 96, 11265–11270.

    CAS  PubMed  Google Scholar 

  • Zou,H., Li,Y., Liu,X., and Wang,X. (1999). An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11549–11556.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelvin Cain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cain, K. (2010). Chemical Regulation of the Apoptosome: New Alternative Treatments for Cancer. In: Cecconi, F., D'Amelio, M. (eds) Apoptosome. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3415-1_3

Download citation

Publish with us

Policies and ethics