Skip to main content

Resonance Theory in Reactor Applications

  • Chapter
  • First Online:
Book cover Nuclear Computational Science

Abstract

The most essential objective in reactor physics is to provide an accurate account of the intricate balance between the neutrons produced by the fission process and those lost due to the absorption process as well as those leaking out of the reactor. The presence of resonance structures in neutron cross sections obviously plays an important role in such processes. Therefore, the treatment of neutron resonance phenomena has constituted one of the most fundamental subjects in reactor physics since its conception. It is the area where the concepts of nuclear reaction and the treatment of the neutronic balance in reactor lattices over a wide span of energy become intertwined. The basic issue here is how to apply the microscopic neutron cross sections in the macroscopic reactor systems. Because of its importance to reactor physics, much of the existing nuclear data and a significant portion of all cross-section processing codes downstream are devoted to the treatment of resonance phenomena prior to any meaningful neutronic calculations via either the deterministic or Monte Carlo approaches.

Deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fermi E (1962) Collected papers of E. Fermi, vol 1. University of Chicago Press, Chicago, IL

    Google Scholar 

  2. Wigner EP (1955) Nuclear reactor issue. J Appl Phys 26:257

    Google Scholar 

  3. Wigner EP, Creutz JH, Snyder TJ (1955) J Appl Phys 26:260

    Article  Google Scholar 

  4. Chernick J (1956) The theory of uranium-water lattices. In: Proceedings of the international conference on peaceful uses of atomic energy, New York, pp 603

    Google Scholar 

  5. Chernick J, Vernon, R (1958) Nucl Sci Eng 4:649

    Google Scholar 

  6. Dresner L (1960) Resonance absorption in nuclear reactors. Pergamon, New York

    Google Scholar 

  7. Gourevitch II, Pomeranchouk IY (1955) Theory of resonance absorption in heterogeneous systems. First Geneva Conference on Peaceful Use of Atomic Energy, vol 5, pp 466

    Google Scholar 

  8. Marchuk GI (1964) Methods of reactor calculations. Atomizdat, Moscow (1961) (in Russian) (English trans: Consultant Bureau). New York (1964)

    Google Scholar 

  9. Lukyanov AA (1978) Structures of neutron cross sections. Atomizdat, Moscow (in Russian)

    Google Scholar 

  10. Lukyanov AA (1974) Slowing-down and absorption of resonance neutrons. Atomizdat, Moscow (in Russian)

    Google Scholar 

  11. Breit G, Wigner EP (1936) Phys Rev 49:519

    Article  MATH  Google Scholar 

  12. Hummel HH, Okrent D (1970) Reactivity coefficients in large fast power reactors. Monograph series on nuclear science and technology, American Nuclear Society

    Google Scholar 

  13. Rose PF, Dunford CL (eds) (1990) ENDF-102 Data formats and procedures for evaluated nuclear data file ENDF-6, BNL-NCS-44945. Brookhaven National Laboratory

    Google Scholar 

  14. Hwang RN (1992) R-Matrix parameters in reactor applications. In: Dunford CL (ed) Proceedings of the symposium on nuclear data evaluation methodology, Brookhaven National Laboratory, New York, pp 316–326

    Google Scholar 

  15. Lane M, Thomas RG (1958) Rev Mod Phys 30:257

    Article  MathSciNet  Google Scholar 

  16. Lynn JE (1968) The theory of neutron resonance reactions. Clarendon, Oxford

    Google Scholar 

  17. Fröhner FH (1978) Applied resonance theory, KFK-2669. Kernforschungszentrum Karlsruhe

    Google Scholar 

  18. Wigner EP, Eisenbud L (1947) Phys Rev 72:29

    Article  Google Scholar 

  19. Kapur PL, Peierls R (1938) Proc R Soc Lond A 166:277

    Article  Google Scholar 

  20. Adler DB, Adler FT (1963) Neutron cross sections in fissile elements. In: Proceedings of the conference on breeding, economics and safety in fast reactors, ANL-6792, 695, Argonne National Laboratory

    Google Scholar 

  21. Moldauer PA, Hwang RN, Garbow BS (1969) MATDIAG, a program for computing multilevel S-Matrix resonance parameters, ANL-7569, Argonne National Laboratory

    Google Scholar 

  22. deSaussure G, Perez RB (1969) POLLA, a Fortran program to convert R-Matrix-type multilevel resonance parameters for Fissile nuclei into equivalent Kapur–Peierls-type parameters. ORNL-2599, Oak Ridge National Laboratory

    Google Scholar 

  23. Reich CW, Moore MS (1958) Phys Rev 111:929

    Article  Google Scholar 

  24. Hwang RN (1987) Nucl Sci Eng 96:192

    Google Scholar 

  25. Humblet J, Rosenfeld L (1961) Nucl Phys 26:529

    Article  MATH  Google Scholar 

  26. Hwang RN (1992) Nucl Sci Eng 111:113

    Google Scholar 

  27. Solbrig AW, Jr (1961) Nucl Sci Eng 10:167

    Google Scholar 

  28. Osborn RK, Yip S (1964) Foundations of neutron transport theory. Am Nucl Soc Monograph

    Google Scholar 

  29. Lamb WE (1939) Phys Rev 55:190

    Article  MATH  Google Scholar 

  30. Egelstaff PA (1962) Nucl Sci Eng 12:250

    Google Scholar 

  31. Nelkin M, Parks DE (1960) Phys Rev 119:1060

    Article  Google Scholar 

  32. Adkins CR (1966) Effects of chemical binding on the Doppler broadened cross section of Uranium in a UO2 lattice. Ph.D. thesis, Carnegie Institute of Technology

    Google Scholar 

  33. Dolling G, Cowley RA, Woods ADB (1965) The crystal dynamics of uranium dioxide. Can J Phys 43(8):1397

    Google Scholar 

  34. Hwang RN (1998) An analytical method for computing Doppler-broadening of cross sections, ANL-NT-69, Argonne National Laboratory

    Google Scholar 

  35. O’Shea DM, Thacher HC (1963) Computations of resonance line-shape functions. Trans Am Nucl Soc 6:36

    Google Scholar 

  36. Turing AM (1943) Proc Lond Math Soc 48:130

    MathSciNet  Google Scholar 

  37. Henrici P (1963) Some applications of the quotient-difference algorithm. Proc Symp Appl Math 15:159

    MathSciNet  Google Scholar 

  38. Goodwin ET (1949) Proc Cambridge Phil Soc 45:241

    Article  MATH  MathSciNet  Google Scholar 

  39. Bhat MR, Lee-Whiting GE (1967) A computer program to evaluate the complex probability integral. Nucl Instr Meth 47:277–280

    Article  Google Scholar 

  40. Fröhner FH (1980) New techniques for multi-level cross section calculation and fittings. KFK- 3081, Kernforschungszentrum Karlsruhe

    Google Scholar 

  41. Steen NM, Byrne GD, Gelbard EM (1969) Math Comp 23:107

    MathSciNet  Google Scholar 

  42. Cullen DE (1977) Program SIGMA1 (Version 77-1): Doppler broaden evaluated cross sections in the evaluated nuclear data file/Version B (ENDF/B) Format, UCRL-50400, vol. 17, Part B

    Google Scholar 

  43. MacFarlane RE, Muir DW (1994) NJOY nuclear data processing system, Version 91. LA-12740-M, Los Alamos National Laboratory

    Google Scholar 

  44. Hwang RN (1998) Critical examinations of commonly used numerical methods for Doppler-broadening of cross section, ANL-NT-72, Argonne National Laboratory

    Google Scholar 

  45. Dunford CL, Bramblett ET (1966) Doppler broadening of resonance data for Monte Carlo calculations, MAI-CE-MEMO-21, Atomic International

    Google Scholar 

  46. Leal LC, Hwang RN (1987) A finite difference method for treating the Doppler-broadening of cross sections. Tran Am Nucl Soc 55:340

    Google Scholar 

  47. Weinberg AM, Wigner EP (1958) The physical theory of neutron chain reactors. University of Chicago Press, Chicago, IL

    Google Scholar 

  48. Placzek G (1946) Phys Rev 69:423

    Article  MATH  MathSciNet  Google Scholar 

  49. Corngold (1957) Slowing down of neutrons in infinite homogeneous media. Proc Phy Soc Lond A 70:793

    Article  MATH  Google Scholar 

  50. Hwang RN (1965) Effects of the fluctuations in collision density on fast reactor Doppler effect calculations. In: Proceedings of the conference on safety, fuels, and core designs in large fast reactors, 449, ANL-7120

    Google Scholar 

  51. Goldstein R, Cohen ER (1962) Nucl Sci Eng 13:132

    Google Scholar 

  52. Nordheim LW (1961) A program of research and calculations of resonance absorption. GA-2527, General Atomic

    Google Scholar 

  53. Hwang RN (1973) Nucl Sci Eng 52:157

    Google Scholar 

  54. Henryson H, Toppel BJ, Stenberg CG (1976) MC2-2: a code to calculate fast-neutron spectra and multigroup cross sections. ANL-8144, Argonne National Laboratory

    Google Scholar 

  55. Stacey WM, Jr (1972) Advances in continuous slowing-down theory. In: Proceedings of the National Topical Meeting on New Developments in Reactor Physics and Shielding, Conf-720901 Book 1, 143

    Google Scholar 

  56. Goertzel G, Greuling E (1960) Nucl Sci Eng 7:69

    Google Scholar 

  57. Kier PH, Robba AA (1967) RABBLE, a program for computation of resonance absorption in multiregion reactor cells, ANL-7326

    Google Scholar 

  58. Olson AP (1970) An integral transport-theory code for neutron slowing-down in slab cells, ANL-7645

    Google Scholar 

  59. Case KM, de Hoffmann F, Placzek G (1963) Introduction to the theory of neutron diffusion, vol 1. Los Alamos Scientific Laboratory

    Google Scholar 

  60. Dancoff SM, Ginsburg M (1944) Surface resonance absorption in a closely packed lattice, USAEC-Report cp-2157

    Google Scholar 

  61. Rothenstein W (1959) Collision probabilities and resonance integrals for lattices. BNL-563 (T-151), Brookhaven National Laboratory

    Google Scholar 

  62. Corngold NC (1957) Resonance escape probability in slab lattices. J Nucl Energy 4:293

    Google Scholar 

  63. Takahashi H (1960) First flight collision probability in lattice systems. J Nucl Energy A12:1

    Google Scholar 

  64. Bickley WC, Nayler J (1935) Phil Mag 20(Series 7):343

    Google Scholar 

  65. Bell GL (1959) Nucl Sci Eng 5:138

    Google Scholar 

  66. Levine MM (1963) Nucl Sci Eng 16:271

    Google Scholar 

  67. Hummel HH, Hwang RN, Phillips K (1965) Recent investigations of fast reactor reactivity coefficients. In: Proceedings of the conference on safety, fuels, and core design in large fast power reactors, ANL-7120, pp 413–420

    Google Scholar 

  68. Hwang RN, Toppel BJ (1979) Mathematical behavior probabilities for annular regions. In: Proceedings of the topical meeting on computational methods in nuclear engineering, vol 2. Williamsburg, VA, pp 7–85

    Google Scholar 

  69. Moldauer PA (1964) Phys Rev 135(3B):642–659; 136B:947

    Article  MathSciNet  Google Scholar 

  70. Ericson T (1963) Ann Phys 23:390–414

    Article  Google Scholar 

  71. Porter CE (ed) (1965) Statistical theory of spectra: fluctuations. Academic, New York and London

    Google Scholar 

  72. Porter CE, Thomas RG (1956) Phys Rev 104:483

    Article  Google Scholar 

  73. Wigner EP (1957) Ann Math 53:36 (1951); 62:548 (1955); 65:203 (1957)

    Article  MathSciNet  Google Scholar 

  74. Dyson FJ (1962) J Math Phys 3(1):140

    Article  MathSciNet  Google Scholar 

  75. Ribon P, Maillard JM (1986) Les tables de probabilité applications au traitement des sections efficaces pour la neutronique. Report CEA-N, NEACRP-L-294

    Google Scholar 

  76. Hwang RN (1965) Nucl Sci Eng 21:523

    Google Scholar 

  77. Hwang RN, Henryson H, II (1975) Critical examination of low-order quadratures for statistical integrations. Trans Am Nucl Soc 22:712

    Google Scholar 

  78. Levitt LB (1971) The probability table method for treating unresolved resonances in Monte Carlo criticality calculations. Trans Am Nucl Soc 14:648

    Google Scholar 

  79. Nikolaev MN, et al. (1971) At Energy 29:11 (1970); 30:426 (1971)

    Google Scholar 

  80. Cullen DE (1974) Nucl Sci Eng 55:378

    Google Scholar 

  81. Lukyanov AA, Sirakov IA (1998) Combined method for resonance cross section parameterization. Bulg J Phys 25(3–4):112

    Google Scholar 

  82. Ouisloumen M, Sanchez R (2000) Nucl Sci Eng 107:189–200

    Google Scholar 

  83. Bouland O, Kolesov V, Rowlands JL (1994) The effects of approximations in the energy distributions of scattered neutrons on thermal reactor Doppler effects. International conference on nuclear data for science and technology, Gatlinburg, Tenn, pp 1006–1008

    Google Scholar 

  84. Gressier V, Naberejnev D, Mounier C (2000) Ann Nucl Energ 27:1115–1129

    Article  Google Scholar 

  85. Hwang RN (1998) Recent developments pertinent to processing of ENDF/B 6 resonance cross section data. In: Proceedings of the international conference on nuclear science and technology, Long Island, New York, pp 1241–1250

    Google Scholar 

  86. Koyumdjieva N, Sovova N, Janeva N, Lukyanov AA (1989) Bulg J Phys 16(1):13

    Google Scholar 

  87. Alami MN, Janeva NB, Lukyanov AA (1991) Bulg J Phys 9:16

    Google Scholar 

  88. Fröhner FH (1987) Information theory applied to unresolved resonance. In: Proceedings of the international conference on nuclear data for basic and applied science, Santa Fe, N. M. (1985); also Resent progress in compound nuclear theory and calculation of resonance-averaged cross section, IAEA Meeting on Nuclear Model for Fast Neutron Nuclear Data Evaluation, Beijing, IAEA TEC-DOC Series

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hwang†, R.N. (2010). Resonance Theory in Reactor Applications. In: Nuclear Computational Science. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3411-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3411-3_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3410-6

  • Online ISBN: 978-90-481-3411-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics