Skip to main content

Reactor Core Methods

  • Chapter
  • First Online:
Nuclear Computational Science
  • 1800 Accesses

Abstract

This chapter addresses the simulation flow chart that is currently used for reactor-physics simulations. The methodologies presented are more appropriate to the context of power reactors, and the chapter focuses particularly on the three-dimensional (3D) aspect of core calculations. Software design that is currently used to achieve accurate numerical simulations of reactor cores is also studied from a practical nuclear engineering point of view. The focus here is on processes and the needs for reactor physicists or nuclear engineers to use modern-day software with confidence and reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams MMR (2003) NEA-1706/01 CD package. Canadian and early British Energy Reports on Nuclear Reactor Theory (1940–1946). Nuclear Energy Agency Data Bank, OECD, Paris. Available at http://www.nea.fr/abs/html/nea-1706.html

  2. Davison B (with coll. Sykes JB) (1957) Neutron transport theory. Oxford University Press, Oxford/England

    MATH  Google Scholar 

  3. Lee CE (1962) The discrete Sn approximation to transport theory. Report LA-2595, Los Alamos Scientific Laboratory, New Mexico, USA

    Google Scholar 

  4. Bell GI, Glasstone S (1970) Nuclear reactor theory. Van Nostrand Reinhold, New York

    Google Scholar 

  5. MacFarlane RE, Boicourt RM (1975) NJOY: a neutron and photon processing system. Trans Am Nucl Soc 22:720

    Google Scholar 

  6. Askew JR (1972) A characteristics formulation of the neutron transport equation in complicated geometries. Report AEEW-M 1108. United Kingdom Atomic Energy Establishment, Winfrith, England

    Google Scholar 

  7. Roy R (1996) Application of the Bn theory to unit cell calculations. Nucl Sci Eng 123:358–368

    Google Scholar 

  8. Bussac J, Reuss P (1978) Traité de neutronique. Hermann, Paris, France

    Google Scholar 

  9. Honeck HC (1961) THERMOS, a thermalization transport theory code for reactor lattice calculations. Report BNL-5826, Brookhaven National Laboratory (code available at NEA data bank: http://www.nea.fr/abs/html/nea-0043.html)

  10. Askew JR, Fayers FJ, Kemshell PB (1966) A general description of the lattice code WIMS. J Br Nucl Energy Soc 5:564–585

    Google Scholar 

  11. Hoffman A, Jeanpierre F, Kavenoky A, Livolant M, Lorrain H (1973) APOLLO: Code Multigroupe de résolution de l’équation du transport pour les neutrons thermiques et rapides. Report CEA-N-1610. Commissariat à l’énergie Atomique, Paris, France

    Google Scholar 

  12. Ahlin A, Edenius M (1977) CASMO – a fast transport theory assembly depletion code for LWR analysis. Trans Am Nucl Soc 26:604–605

    Google Scholar 

  13. Roy R, Marleau G, Tajmouati J, Rozon D (1994) Modelling of CANDU reactivity control devices with the lattice code DRAGON. Ann Nucl Energy 21:115–132 (code available at NEA data bank: http://www.oecdnea.org/abs/html/ccc-0647.html)

  14. Rahlfs S, Rimpault G, Ribon P, Finck P (1994) Recent developments of the sub-group method for use in the European cell code ECCO. Algorithms and Codes for Neutronics Calculations. Obninsk, Russia, 25–27 October

    Google Scholar 

  15. DeHart MD, Gauld IC, Williams ML (2007) High-fidelity lattice physics capabilities of the SCALE code system using TRITON. Proc. Math. & Comp. and Supercomputing in Nuclear Applications (M&C + SNA2007), 15–19 April

    Google Scholar 

  16. Koebke K (1981) Advances in homogenization and dehomogenization. Int. Top. Mtg advances in mathematical methods for the solution of nuclear engineering problems. München, Germany, 27–29 April

    Google Scholar 

  17. Smith KS (1980) Spatial homogenization methods for light water reactor analysis. Ph.D. thesis, Department of Nuclear Engineering, Massachusetts Institute of Technology, Boston, MA, USA

    Google Scholar 

  18. Smith MA, Lewis EE, Na BC (2003) Benchmark on deterministic 2-D/3-D MOX fuel assembly transport calculations without spatial homogenization (C5G7 MOX Benchmark). Report NEA/NSC/DOC (2003) 16, OCDE/NEA, Paris, France

    Google Scholar 

  19. Lewis EE, Palmiotti G, Taiwo T (1999) Space-angle approximations in the variational nodal method. Proc. Math. & Comp., Reactor physics and environmental analysis in nuclear applications. Madrid, Spain, 27–30 September

    Google Scholar 

  20. Gelbard EM (1961) Simplified spherical harmonics equations and their use in shielding problems. Report WAPD-T-1182. Bettis Atomic Power Laboratory, West Mifflin, PA, USA

    Google Scholar 

  21. Lawrence RD (1986) Progress in nodal methods for the solution of the neutron diffusion and transport equations. Prog Nucl Energy 17(3):271–301

    Article  MathSciNet  Google Scholar 

  22. Cho NZ (2005) Fundamentals and recent developments of reactor physics methods. Nucl Eng Tech 37(1):25–78

    Google Scholar 

  23. Rozon D (1992) Introduction à la cinétique des réacteurs nucléaires. Presses de l’École Polytechnique de Montréal, Québec (translated to English as Introduction to Nuclear Reactor Kinetics (1998)).

    Google Scholar 

  24. Hennart JP (1999) From primal to mixed-hybrid finite elements: a survey. Proc. Math. & Comp., Reactor physics and environmental analysis in nuclear applications. Madrid, Spain, 27–30 September

    Google Scholar 

  25. Brezi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, New York

    Google Scholar 

  26. Delp DL, Fisher DL, Harriman JM, Stedwell MJ (1964) FLARE – a three-dimensional boiling water reactor simulator. Report GEAP-4598, General Electric Company (code available at NEA data bank: http://www.nea.fr/abs/html/nesc0167.html)

  27. Fowler TB, Vondy DR, Cunningham GW (1971) Nuclear reactor core analysis code CITATION. Report ORNL-TM-2496, Oak Ridge National Laboratory, USA (code available at NEA data bank: http://www.nea.fr/abs/html/nesc0387.html)

  28. Langenbuch S, Velkov K, Pevec D, Grgic D (1996) Capability of the QUABOX/CUBBOX-ATHLET coupled code system. Int. Conf. Nucl. Option in Countries with small and medium electricity grids. Opatija, Croatia, 7–9 October

    Google Scholar 

  29. Greenman G, Smith KS, Henry AF (1979) Recent advances in an analytic nodal method for static and transient reactor analysis. Comp. Methods in Nucl. Eng. Williamsburg, VA, USA, 23–25 April

    Google Scholar 

  30. Derstine KL (1982) DIF3D: a code to solve one-, two-, and three-dimensional finite difference diffusion theory problems. Report Argonne-82–64, Argonne National Laboratory, USA

    Google Scholar 

  31. Palmiotti G, Carrico CB, Lewis EE (1993) Variational nodal methods with anisotropic scattering. Nucl Sci Eng 115:223–243

    Google Scholar 

  32. Sissaoui MT, Marleau G, Rozon D (1999) CANDU reactor simulations using the feedback model with Actinide burnup history. Nucl Tech 125:197–212

    Google Scholar 

  33. Rempe KR, Smith KS, Henry AF (1989) SIMULATE-3 pin power reconstruction: methodology and benchmarking. Nucl Sci Eng 103:334–342

    Google Scholar 

  34. Bahadir T, Lindahl S-T, Palmtag SP (2005) SIMULATE-4 multigroup nodal code with microscopic depletion, Math. and Comp., Supercomputing, reactor physics and nuclear and biological applications. Avignon, France, 12–15 September

    Google Scholar 

  35. Rozon D, Varin E, Roy R, Brissette D (1997) Generalized perturbation theory estimates of zone level response to refuelling perturbations in a CANDU600 reactor. Advances in nuclear fuel management. Myrtle Beach, USA, 23–26 March

    Google Scholar 

  36. Varin E, Hébert A, Roy R, Koclas J (2005) A user guide for DONJON 3.01, Report IGE-208 Rev. 1. Institut de génie nucléaire, École Polytechnique de Montréal, Québec

    Google Scholar 

  37. Marleau G, Hébert A, Roy R (2006) A user guide for DRAGON 3.05C, Report IGE-174 Rev. 6C. Institut de génie nucléaire, École Polytechnique de Montréal, Québec

    Google Scholar 

  38. Trkov A, Leszczynski F, Lopez Aldama D (2006) WIMS-D library update, final report of a co-ordinated research project, IAEA, Vienna (WLUP libraries available at NEA data bank: http://www.nea.fr/abs/html/iaea1408.html)

  39. Holt J (2004) UML FPR Systems Engineering – 2nd Edn. IEE Prof Appl Comp Ser 4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Roy .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Roy, R. (2010). Reactor Core Methods. In: Nuclear Computational Science. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3411-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3411-3_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3410-6

  • Online ISBN: 978-90-481-3411-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics