Skip to main content

Lifetime of Superheated Water in a Micrometric Synthetic Fluid Inclusion

  • Conference paper
Metastable Systems under Pressure

Abstract

A synthetic pure water fluid inclusion showing a wide temperature range of metastability (Th − Tn ͌ 50°C; temperature of homogenization Th = 144°C and nucleation temperature of Tn = 89°C) was selected to make a kinetic study of the lifetime of an isolated microvolume of superheated water. The occluded liquid was placed in the metastable field by isochoric cooling and the duration of the metastable state was measured repetitively for 7 fixed temperatures above Tn. Statistically, metastability lifetimes for the 7 data sets follow the exponential reliability distribution, i.e., the probability of non nucleation within time t equals e −λt. This enabled us to calculate the half-life periods of metastability ρ for each of the selected temperature, and then to predict ρ at any temperature T>Tn for the considered inclusion, according to the equation ρ(s) = 22. l × e1.046×ΔT, (ΔT = T − Tn). Hence we conclude that liquid water in water-filled reservoirs with an average pore size ͌ 10 4μm3 can remain superheated over geological timelengths (1013 s), when placed in the metastable field at 24°C above the average nucleation temperature, which often corresponds to high liquid tensions (͌ −50 MPa).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pettenati, M., Mercury, L., and Azaroual, M. (2008) Capillary geochemistry in non-saturated zone of soils. Water content and geochemical signatures, Applied Geochem. 23(12), 3799–3818

    Article  Google Scholar 

  2. Meslin, P.Y., Sabroux, J.-C., Berger, L., Pineau, J.-F., and Chassefière, E. (2006) Evidence of 210Po on martian dust at meridiani planum. J. Geophys. Res. 111, art. E09012, 14 p

    Article  Google Scholar 

  3. Jouglet, D., Poulet, F., Milliken, R. E., Mustard, J. F., Bibring, J. P., Langevin, Y., Gondet B., and Gomez, C. (2007) Hydration state of the Martian surface as seen by Mars Express OMEGA: 1. Analysis of the 3 μm hydration feature, J. Geophys. Res. 112, art. E08S06, 20 p

    Article  Google Scholar 

  4. Ramboz, C., and Danis, M. (1990). Superheating in the Red Sea? The heat-mass balance of the Atlantis II Deep revisited, Earth Planet. Sci. Lett. 97, 190–210

    Article  ADS  Google Scholar 

  5. Shmulovich, K. I., and Graham, C. M. (2004). An experimental study of phase equilibria in the systems H2O−CO2−CaCl2 and H2O−CO2−NaCl at high pressures and temperatures (500–800°C, 0.5–0.9 GPa): geological and geophysical applications, Contr. Mineral. Petrol. 146, 450–462

    Article  ADS  Google Scholar 

  6. Wagner, W., and Pruss, A. (2002) The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, J. Phys. Chem. Ref. Data 31, 387–535

    Article  ADS  Google Scholar 

  7. Kiselev, S. B., and Ely, J. F. (2001) Curvature effect on the physical boundary of metastable states in liquids, Physica A 299, 357–370

    Article  ADS  Google Scholar 

  8. Speedy, R. J. (1982) Stability-limit conjecture. An interpretation of the properties of water, J. Phys. Chem. 86, 982–991

    Article  Google Scholar 

  9. Debenedetti, P.G., and D'Antonio, M.C. (1986) On the nature of the tensile instability in metastable liquids and its relationship to density anomalies, J. Chem. Phys. 84(6), 3339–3345

    Article  ADS  Google Scholar 

  10. Poole, P. H., Sciortino, F., Essmann, U., and Stanley, H. E. (1992) Phase behaviour of metastable water, Nature 360, 324–328

    Article  ADS  Google Scholar 

  11. Mishima, O., and Stanley, H.E. (1998) The relationship between liquid, supercooled and glassy water, Nature 396, 329–335

    Article  ADS  Google Scholar 

  12. Sastry, S., Debenedetti, P. G., Sciortino, F., and Stanley, H. E. (1996) Singularity-free interpretation of the thermodynamics of supercooled water, Phys. Rev. E 53, 6144–6154

    Article  ADS  Google Scholar 

  13. Stanley, H.E., and Teixeira, J. (1980) Interpretation of the unusual behavior of H2O and D2O at low temperatures: tests of a percolation model, J. Chem. Phys. 73(7), 3404–3422

    Article  MathSciNet  ADS  Google Scholar 

  14. Shmulovich, K.I., Mercury, L., Thiéry, R., Ramboz, C., and El Mekki, M. (2008) Experimental superheating of water and aqueous solutions. Geochim, Cosmochim. Acta, submitted. Shmulovich K.I. (2008) Long-living superheated aqueous solutions: experiment, thermodynamics, geochemical applications, this volume.

    Google Scholar 

  15. Mercury, L., Azaroual, M., Zeyen, H., and Tardy, Y. (2003) Thermodynamic properties of solutions in metastable systems under negative or positive pressures, Geochim. Cosmochim, Acta 67, 1769–1785

    Article  ADS  Google Scholar 

  16. Span, R., and Wagner, W. (1993) On the extrapolation behavior of empirical equation of state, Int. J. Thermophys. 18(6), 1415–1443

    Article  ADS  Google Scholar 

  17. Roedder, E. (1967) Metastable superheated ice in liquid-water inclusions under high negative pressure, Science 155, 1413–1417

    Article  ADS  Google Scholar 

  18. Green, J. L., Durben, D. J., Wolf, G. H., and Angell, C. A. (1990) Water and solutions at negative pressure: Raman spectroscopic study to -80 Megapascals, Science 249, 649–652

    Article  ADS  Google Scholar 

  19. Zheng, Q., Durben, D. J., Wolf, G. H., and Angell, C. A. (1991) Liquids at large negative pressures: water at the homogeneous nucleation limit, Science 254, 829–832

    Article  ADS  Google Scholar 

  20. Alvarenga, A. D., Grimsditch, M., and Bodnar, R. J. (1993) Elastic properties of water under negative pressures, J. Chem. Phys. 98, 11, 8392– 8396

    Article  ADS  Google Scholar 

  21. Ramboz, C., Orphanidis, E., Oudin, E., Thisse, Y., and Rouer, O. (2008), Metastable fluid discharge by the Atlantis Deep submarine geyser: the heat-mass balance of the stratified lower brine revisited in the light of new fluid inclusion data. This volume.

    Google Scholar 

  22. Debenedetti, P. G. (1996) Metastable liquids. Concepts and principles. Princeton University Press, Princeton, 411 p

    Google Scholar 

  23. Takahashi, M., Izawa, E., Etou, J., and et Ohtani, T. (2002) Kinetic characteristic of bubble nucleation in superheated water using fluid inclusions, J. Phys. Soc. Japan 71(9), 2174–2177

    Article  ADS  Google Scholar 

  24. Mercury, L., Pinti, D. L., and Zeyen, H. (2004) The effect of the negative pressure of capillary water on atmospheric noble gas solubility in ground water and palaeotemperature reconstruction, Earth & Planetary Sci. Lett. 223, 147–161

    Article  ADS  Google Scholar 

  25. Lassin, A., Azaroual, M., and Mercury, L. (2005) Geochemistry of unsaturated soil systems: aqueous speciation and solubility of minerals and gases in capillary solutions, Geochim. Cosmochim, Acta 69, 22, 5187–5201

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Mekki, M.E., Ramboz, C., Perdereau, L., Shmulovich, K., Mercury, L. (2010). Lifetime of Superheated Water in a Micrometric Synthetic Fluid Inclusion. In: Rzoska, S., Drozd-Rzoska, A., Mazur, V. (eds) Metastable Systems under Pressure. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3408-3_20

Download citation

Publish with us

Policies and ethics