Skip to main content

Part of the book series: Developments in Hydrobiology ((DIHY,volume 208))

Abstract

IJsselmeer was formed in 1932 through the closure of the Afsluitdijk that separated the artificial lake from the former Zuiderzee estuary. The palaeoecology of IJsselmeer was studied on a 63-cm-long sediment core. Lithology and microfossil data, particularly the diatom flora, clearly show the transition from the marine Zuiderzee into the freshwater IJsselmeer. Trophic conditions in IJsselmeer since 1932 have been inferred by qualitative and quantitative diatom-based approaches: by plotting the distribution of trophic categories based on published trophic indicator values, by a canonical correspondence analysis (CCA) yielding relative total phosphorus (TP) changes and by applying a transfer function in order to calculate TP concentrations. All three approaches indicate that IJsselmeer initially was meso- to eutrophic. A first hypertrophic period is indicated for the mid-1940s, likely due to internal loading. After 1960, the phosphorus load steadily increased and TP in IJsselmeer reached highest concentrations (ca. 150 µg l−1) in the 1980s as confirmed by monitoring data since 1975. The monitored data show that the TP concentration continuously decreased after 1985 due to successful environmental protection measures. This trend is not (or not yet) evidenced by the diatom data and thus, the diatom-inferred TP concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Battarbee, R. W., 1973. A new method for estimation of absolute microfossil numbers, with reference especially to diatoms. Limnology and Oceanography 18: 647–653.

    Article  Google Scholar 

  • Bennion, H. & R. W. Battarbee, 2007. The European Union Water Framework Directive: opportunities for palaeolimnology. Journal of Paleolimnology 38: 285–295.

    Article  Google Scholar 

  • Bennion, H., S. Wunsam & R. Schmidt, 1995. The validation of diatom-phosphorus transfer functions: an example from Mondsee, Austria. Freshwater Biology 34: 271–283.

    Article  Google Scholar 

  • Blom, G. & H. J. Winkels, 1998. Modelling sediment accumulation and dispersion of contaminants in Lake IJsselmeer (The Netherlands). Water Science and Technology 37: 17–24.

    Article  CAS  Google Scholar 

  • Bohncke, S. J. P., J. A. A. Bos, S. Engels, O. Heiri & C. Kasse, 2008. Rapid climate events as recorded in Middle Weichselian thermokarst lake sediments. Quaternary Science Reviews 27: 162–174.

    Article  Google Scholar 

  • Bradshaw, E. G. & N. J. Anderson, 2001. Validation of a diatom-phosphorus calibration set for Sweden. Freshwater Biology 46: 1035–1048.

    Article  CAS  Google Scholar 

  • Christophoridis, C. & K. Fytianos, 2006. Conditions affecting the release of phosphorus from surface lake sediments. Journal of Environmental Quality 35: 1181–1192.

    Article  CAS  Google Scholar 

  • Cremer, H. & F. P. M. Bunnik, 2006. Paleowaterkwaliteit van het IJsselmeer sinds de aanleg van de Afsluitdijk in 1932. [Paleo-water quality of Dutch lakes: reconstruction of the development of the phosphorus content of IJsselmeer base don fossil diatom assemblages.] TNO report 2006-UR0133-B, Utrecht, 45 pp (in Dutch).

    Google Scholar 

  • De Leeuw, J. J., C. Deerenberg, W. Dekker, R. van Hal & H. Jansen, 2006. Veranderingen in de visstand van het IJsselmeergebied: trends en oorzaken. Nederlands Instituut voor Visserijonderzoek [Paleo-water quality of Dutch lakes: reconstruction of the development of the phosphorus content of IJsselmeer base don fossil diatom assemblages.] TNO report C022-06, IJmuiden, 33 pp (in Dutch).

    Google Scholar 

  • European Union, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities L327: 1–73.

    Google Scholar 

  • Jones, V. J. & S. Juggins, 1995. The construction of a diatom-based nutrient transfer function and its application at three lakes on Signy Island (maritime Antarctic) subject to differing degrees of nutrient enrichment. Freshwater Biology 34: 433–445.

    Article  CAS  Google Scholar 

  • Juggins, S., 2007. C2 Version 1.5 User guide. Software for ecological and palaeoecological data analysis and visualisation. Newcastle University, Newcastle upon Tyne, UK: 73.

    Google Scholar 

  • Lammens, E., F. van Luijn, Y. Wessels, H. Bouwhuis, R. Noordhuis, R. Portielje & D. van der Molen, 2008. Towards ecological goals for the heavily modified lakes in the IJsselmeer area, The Netherlands. Hydrobiologia 599:239–247.

    Article  Google Scholar 

  • Lotter, A. F., 1998. The recent eutrophication of Baldeggersee (Switzerland) as assessed by fossil diatom assemblages. The Holocene 8: 395–405.

    Article  Google Scholar 

  • Sayer, C. D., 2001. Problems with the application of diatomtotal phosphorus transfer functions: examples from a shallow English lake. Freshwater Biology 46: 743–757.

    Article  CAS  Google Scholar 

  • Taylor, D., C. Dalton, M. Leira, P. Jordan, G. Cheng, L. Leon-Vintro, K. Irvine, H. Bennion & T. Nolan, 2006. Recent histories of six productive lakes in the Irish Ecoregion based on multiproxi palaeolimnological evidence. Hydrobiologia 571: 237–259.

    Article  CAS  Google Scholar 

  • Ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Article  Google Scholar 

  • Ter Braak, C. J. F. & P. Šmilauer, 1998. CANOCO reference manual and user’s guide to CANOCO for Windows: software for canonical community ordination (version 4). Microcomputer Power Ithaca, New York: 351.

    Google Scholar 

  • Van Dam, H., A. Mertens & J. Sinkeldam, 1994. A coded checklist and ecological indicator values of freshwater diatoms from The Netherlands. Netherlands Journal of Aquatic Ecology 28: 117–133.

    Article  Google Scholar 

  • Xie, L. Q., P. Xie & H. J. Tang, 2003. Enhancement of dissolved phosphorus release from sediment to lake water by Microcystis blooms—an enclosure experiment in a hypereutrophic, subtropical Chinese lake. Environmental Pollution 122: 391–399.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Cremer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cremer, H., Bunnik, F.P.M., Kirilova, E.P., Lammens, E.H.R.R., Lotter, A.F. (2009). Diatom-inferred trophic history of IJsselmeer (The Netherlands). In: Buczkó, K., Korponai, J., Padisák, J., Starratt, S.W. (eds) Palaeolimnological Proxies as Tools of Environmental Reconstruction in Fresh Water. Developments in Hydrobiology, vol 208. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3387-1_17

Download citation

Publish with us

Policies and ethics