Skip to main content

Part of the book series: Developments in Hydrobiology ((DIHY,volume 207))

Abstract

It is important to view eutrophication as an increase in the supply of organic matter to an ecosystem rather than as a simple problem of nutrient pollution. This emphasizes that eutrophication is a fundamental change in the energetic base that may propagate through the system in various ways and produce a variety of changes. Some of these changes may be desirable (e.g., increased secondary production) and some may not (e.g., hypoxia). Defining eutrophication in terms of changing nutrient concentrations or chlorophyll levels or species composition confuses symptoms with the underlying phenomenon. While nutrient enrichment is the most common cause of eutrophication, it is not the only one. As recent and ongoing nutrient reductions make an impact in the coastal waters of the wealthier nations, we will see an increasing number of systems in which primary production is decreasing. This reduction in the supply of organic matter is here defined as oligotrophication, a phenomenon now well documented in lakes. So far, there has been little appreciation of this limnological study by coastal marine ecologists or managers, but there is much we can learn from it. The great ecologist H.T. Odum long argued that we need ‘macroscopes’ to help ecologists see the problems they study as they are embedded in the larger scales of nature and society. Marine eutrophication (and oligotrophication) is a perfect example of a problem that must be studied with a view toward the larger scales as well as toward the microscopic details. While much of the hardware (e.g., satellite imagery) for the mythical macroscope has been developed in the last 30 years, many ecologists and managers still look at eutrophication as a local problem linked to local sources of nutrient enrichment. Such a parochial view isolates eutrophication from its long intellectual history—a history that is linked to the development of our understanding of production in coastal waters. It also neglects the intellectual richness and complexity of eutrophication. One example of the importance of the macroscopic view is the emerging importance of climate-induced changes in phenology and the consequences of changing phenology on productivity. These changes may lead to eutrophication or oligotrophication. Climate changes may also exacerbate or alleviate conditions such as hypoxia that are associated with eutrophication. Seeing eutrophication in the macroscopic view is important for understanding and managing the phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, N. J., E. Jeppesen & M. Soendergaard, 2005. Ecological effects of reduced nutrient loading (oligotrophication) on lakes: an introduction. Freshwater Biology 50: 1589–1593.

    Article  CAS  Google Scholar 

  • Andersen, J. H., L. Schlüter & G. Ærtebjerg, 2006. Coastal eutrophication: recent developments in definitions and implications for monitoring strategies. Journal of Plankton Research 28: 621–628.

    Article  CAS  Google Scholar 

  • Bergondo, D. L., D. Kester, H. Stoffel & W. Woods, 2005. Time-series observations during the low sub-surface oxygen events in Narragansett Bay during summer 2001. Marine Chemistry 97: 90–103.

    Article  CAS  Google Scholar 

  • Borkman, D., 2002. Analysis and simulation of Skeletonema costatum (Grev.) Cleve annual abundance patterns in Lower Narragansett Bay 1959–1996. Ph.D. Thesis, University of Rhode Island.

    Google Scholar 

  • Brush, M. J., J. W. Brawley, S. W. Nixon & J. N. Kremer, 2002. Modeling phytoplankton production: problems with the Eppley curve and an empirical alternative. Marine Ecology Progress Series 238: 31–45.

    Article  Google Scholar 

  • Carstensen, J., D. Conley, J. Andersen & G. Ærtebjerg, 2006. Coastal eutrophication and trend reversal: a Danish case study. Limnology and Oceanography 51: 398–408.

    Google Scholar 

  • Cloern, J. E., 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–253.

    Article  CAS  Google Scholar 

  • Cloern, J. E., A. Jassby, J. Thompson & K. Hieb, 2007. A cold phase of the East Pacific triggers new phytoplankton blooms in San Francisco Bay. Proceedings on National Academy of Sciences 104: 18561–18565.

    Article  CAS  Google Scholar 

  • Colombo, G., I. Ferrari, V. Ceccherelli & R. Rossi (eds), 1992. Marine Eutrophication and Population Dynamics. Olsen and Olsen, Fredensborg

    Google Scholar 

  • Conley, D., J. Carstensen, G. Ærtebjerg, P. Christensen, T. Dalsgaard, J. Hansen & A. Josefson, 2007. Long-term changes and impacts of hypoxia in Danish coastal waters. Ecological Applications 17: S165–S184.

    Article  Google Scholar 

  • Cushing, D. H., 1975. Marine Ecology and Fisheries. Cambridge University Press, London.

    Google Scholar 

  • de Jong, F., 2006. Marine Eutrophication in Perspective—On the Relevance of Ecology and Environmental Policy. Springer, Berlin.

    Google Scholar 

  • Deacutis, C. & S. Kiernan, 2006. Sensors monitor water quality in Narragansett Bay. 410 N. 3: 7–8. Rhode Island Sea Grant, University of Rhode Island. Available on line at: http://seagrant.gso.uri.edu/41N.

    Google Scholar 

  • Edwards, M. & A. Richardson, 2004. Impact of climate change in marine pelagic phenology and trophic mismatch. Nature 430: 881–884.

    Article  CAS  Google Scholar 

  • Fulweiler, R. W. & S. W. Nixon, 2008. Responses of benthicpelagic coupling to climate change in a temperate estuary. Hydrobiologia (this volume).

    Google Scholar 

  • Fulweiler, R. W., S. Nixon, B. Buckley & S. Granger, 2007. Reversal of the net dinitrogen gas flux in coastal marine sediments. Nature 448: 180–182.

    Article  CAS  Google Scholar 

  • Grall, J. & L. Chauvaud, 2002. Marine eutrophication and benthos: the need for new approaches and concepts. Global Change Biology 8: 813–830.

    Article  Google Scholar 

  • Granger, S., M. Brush, B. Buckley, M. Traber, M. Richardson & S. Nixon, 2000. An assessment of eutrophication in Greenwich Bay. In Schwartz, M. (ed.), Restoring Water Quality in Greenwich Bay: A White Paper Series. Paper No. 1. Rhode Island Sea Grant, Narragansett.

    Google Scholar 

  • Grebmeier, J., J. Overland, S. Moore, E. Farley, E. Carmack, L. Cooper, K. Frey, J. Helle, F. McLaughlin & S. McNutt, 2006. A major ecosystem shift in the northern Bering Sea. Science 311: 1461–1464.

    Article  CAS  Google Scholar 

  • Greening, H. & A. Janicki, 2006. Toward reversal of eutrophic conditions in a subtropical estuary:water quality and seagrass response to nitrogen loading reductions in Tampa Bay, Florida, USA. Environmental Management 38: 163–178.

    Article  Google Scholar 

  • Hamlin, C., 1990. A Science of Impurity—Water Analysis in Nineteenth Century Britain. University of California Press, California.

    Google Scholar 

  • Harris, L. A., C. M. Duarte & S. W. Nixon, 2006. Allometric laws and prediction in estuarine and coastal ecology. Estuaries and Coasts 29: 340–344.

    Article  Google Scholar 

  • Hawk, J., 1998. The role of the North Atlantic Oscillation in winter climate variability as it relates to the winter-spring bloom in Narragansett Bay. M.S. Thesis, University of Rhode Island.

    Google Scholar 

  • Heck, K. L. & J. Vallentine, 2007. The primacy of top-down effects in shallow benthic ecosystems. Estuaries and Coasts 30: 371–381.

    Article  Google Scholar 

  • Heip, C., 1995. Eutrophication and zoobenthos dynamics. Ophelia 41: 113–136.

    Google Scholar 

  • Howarth, R. W. & R. Marino, 2006. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnology and Oceanography 51: 364–376.

    Article  CAS  Google Scholar 

  • Husby, D. M. & C. Nelson, 1982. Turbulence and vertical stability in the California Current. CalCOFI Report 23: 113–129.

    Google Scholar 

  • Jeppesen, E., J. Jensen & M. Soendergaard, 2002. Response of phytoplankton, zooplankton, and fish to re-oligotrophication: an 11 year study of 23 Danish lakes. Aquatic Ecosystem Health and Management 5: 31–43.

    Article  Google Scholar 

  • Jeppesen, E., M. Soendergaard, J. Jensen, K. Havens, O. Anneville, L. Carvalho, M. Coveney, R. Deneke & M. Dokulil, 2005. Lake responses to reduced nutrient loading—An analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.

    Article  CAS  Google Scholar 

  • Keller, A., 1988a. An empirical model of primary productivity (14C) using mesocosm data along a nutrient gradient. Journal of Plankton Research 10: 813–834.

    Article  CAS  Google Scholar 

  • Keller, A., 1988b. Estimating phytoplankton productivity from light availability and biomass in the MERL mesocosms and Narragansett Bay. Marine Ecology Progress Series 45: 159–168.

    Article  Google Scholar 

  • Keller, A., C. Oviatt, H. Walker & J. Hawk, 1999. Predicted impacts of elevated temperature on the magnitude of the winter-spring phytoplankton bloom in temperate coastal waters: a mesocosm study. Limnology and Oceanography 44: 344–356.

    Article  Google Scholar 

  • Ketchum, B. H., 1972. The Water’s Edge: Critical Problems of the Coastal Zone. MIT Press, Cambridge.

    Google Scholar 

  • Lauff, G. H. (ed.), 1967. Estuaries. American Association for the Advancement of Science, Pub. No 83.

    Google Scholar 

  • Li, Y. & T. Smayda, 1998. Temporal variability of chlorophyll in Narragansett Bay 1973–1990. ICES Journal of Marine Science 55: 661–667.

    Article  Google Scholar 

  • Melrose, D., C. Oviatt & M. Berman, 2007. Hypoxic events in Narragansett Bay, Rhode Island, during the summer of 2001. Estuaries and Coasts 30: 47–53.

    CAS  Google Scholar 

  • Mills, E. L., 1989. Biological Oceanography: An Early History, 1870–1960. Cornell University Press, NY.

    Google Scholar 

  • National Research Council, 1993. Managing Wastewater in Coastal Urban Areas. National Academy Press, Washington DC.

    Google Scholar 

  • Ney, J. J., 1996. Oligotrophication and its discontents: effects of reduced nutrient loading on reservoir fisheries. American Fisheries Society Symposium 16: 285–295.

    Google Scholar 

  • Niiler, P. P. & E. Kraus, 1977. One-dimensional models of the upper ocean. In Krauss, E. (ed.), Modelling and Prediction of the Upper Layers of the Ocean. Pergamon Press, NY: 1443–1472.

    Google Scholar 

  • Nixon, S. W., 1988. Physical energy inputs and the comparative ecology of lake and marine ecosystems. Limnology and Oceanography 33: 1005–1025.

    Article  CAS  Google Scholar 

  • Nixon, S. W., 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41: 199–219.

    Google Scholar 

  • Nixon, S. W., 1996. Regional coastal research—What is it? Why do it? What role should NAML play? Biological Bulletin 190: 252–259.

    Article  Google Scholar 

  • Nixon, S. & B. Buckley, 2002. ‘A strikingly rich zone’—Nutrient enrichment and secondary production in coastal marine ecosystems. Estuaries 25: 782–796.

    Article  Google Scholar 

  • Nixon, S. W., C. A. Oviatt, J. Frithsen & B. Sullivan, 1986. Nutrients and the productivity of estuarine and coastal marine ecosystems. Journal of the Limnological Society of Southern Africa 12: 43–71.

    CAS  Google Scholar 

  • Nixon, S. W., B. Buckley, S. Granger & J. Bintz, 2001. Responses of very shallow marine ecosystems to nutrient enrichment. Human and Ecological Risk Assessment 7: 1457–1481.

    Article  Google Scholar 

  • Nixon, S. W., S. Granger, B. Buckley, M. Lamont & B. Rowell, 2004. A one hundred and seventeen year coastal water temperature record from Woods Hole, Massachusetts. Estuaries 27: 397–404.

    Article  Google Scholar 

  • Nixon, S., B. Buckley, S. Granger, L. Harris, A. Oczkowski, L. Cole & R. Fulweiler, 2005. Anthropogenic Nutrient Inputs to Narragansett Bay: A Twenty-Five Year Perspective. Report to the Narragansett Bay Commission and Rhode Island Sea Grant. Available at http://seagrant.gso.uri.edu/research/news.html.

    Google Scholar 

  • Nixon, S., B. Buckley, S. Granger, L. Harris, A. Oczkowski, R. Fulweiler & L. Cole, 2008. Nutrient inputs to Narragansett Bay: past, present, and future. In Desbonnet, A. & B. Costa-Pierce (eds), Science for Ecosystem-Based Management: Narragansett Bay in the 21st Century. Springer-Verlag, NY: 101–175.

    Chapter  Google Scholar 

  • Odum, H. T., 1993. In Platt, D. (ed.), 1993. The System in the Sea. Island Institute, Rockland: 34–40.

    Google Scholar 

  • Odum, H. T. & C. Hoskin, 1958. Comparative studies of the metabolism of Texas bays. Publications of the Institute of Marine Science, University of Texas 5: 16–46.

    Google Scholar 

  • Oviatt, C. A., 2004. The changing ecology of temperate coastal waters during a warming trend. Estuaries 27: 895–904.

    Article  Google Scholar 

  • Oviatt, C. A., P. Doering, B. Nowicki, L. Reed, J. Cole & J. Frithsen, 1995. An ecosystem level experiment on nutrient limitation in temperate coastal marine environments. Marine Ecology Progress Series 16: 247–254.

    Google Scholar 

  • Oviatt, C. A., A. Keller & L. Reed, 2002. Annual primary production in Narragansett Bay with no bay-wide winter-spring phytoplankton bloom. Estuarine, Coastal and Shelf Science 54: 1013–1026.

    Article  CAS  Google Scholar 

  • Ozaki, K., S. Uye, T. Kusumoto & T. Hagino, 2004. Interannual variability of the ecosystem of the Kii Channel, the Inland Sea of Japan, as influenced by bottom intrusion of cold and nutrient-rich water from the Pacific Ocean, and a recent trend of warming and oligotrophication. Fisheries Oceanography 13: 65–79.

    Article  Google Scholar 

  • Paine, R. T.,2005. Cross environmental talk in ecology: fact or fantasy? Marine Ecology Progress Series 304: 271–307.

    Article  Google Scholar 

  • Pearson, T. H. & R. Rosenberg, 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Annual Review of Oceanography and Marine Biology 16: 229–311.

    Google Scholar 

  • Philippart, C., J. Beukema, G. Cadee, R. Dekker, P. Goedhart, J. vanIperen, M. Leopold & P. Herman, 2007. Impacts of nutrient reduction on coastal communities. Ecosystems 10: doi:10.1007/s10021-006-9006-7.

    Google Scholar 

  • Pilson, M., 1985. Annual cycles of nutrients and chlorophyll in Narragansett Bay, Rhode Island. Journal of Marine Research 43: 849–873.

    Article  CAS  Google Scholar 

  • Pilson, M., 2008. Narragansett Bay amidst a globally changing climate. In Desbonnet, A. & B. Costa-Pierce (eds), Science for Ecosystem-Based Estuary Management. Narragansett Bay in the 21st Century. Springer-Verlag, NY: 35–46.

    Google Scholar 

  • Platt, D. D. (ed.), 1993. The System in the Sea: Applying Ecosystems principles to Marine Fisheries. The Island Institute, Rockland.

    Google Scholar 

  • Rabalais, N., 2002. Nitrogen in aquatic ecosystems. Ambio 31: 102–112.

    Google Scholar 

  • Rabalais, N. N. & S. W. Nixon, 2002. Nutrient over-enrichment in coastal waters: global patterns of cause and effect. Estuaries 25: 4B.

    Google Scholar 

  • Revelle, R. & H. E. Suess, 1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase in atmospheric CO2 during the past decades. Tellus 9: 18–27.

    Article  CAS  Google Scholar 

  • Richardson, K. & J. P. Heilmann, 1995. Primary production in the Kattegat: past and present. Ophelia 41: 317–328.

    Google Scholar 

  • Rigler, F. H. & R. H. Peters, 1995. Science and Limnology. Excellence in Ecology, Vol. 6. The Ecology Institute, Oldendorf/Luhe, Germany.

    Google Scholar 

  • Ryther, J. H., 1954. The ecology of phytoplankton blooms in Moriches bay and Great South Bay, Long Island, New York. Biological Bulletin 106: 198–209.

    Article  Google Scholar 

  • Ryther, J. H., 1989. Historical perspective of phytoplankton blooms on Long Island and the Green Tides of the 1950s. In Cosper, E. M., V. M. Bricelj & E. J. Carpenter (eds), Novel Phytoplankton Blooms. Springer-Verlag, NY: 375–382.

    Google Scholar 

  • Ryther, J. H. & C. S. Yentsch, 1957. The estimation of phytoplankton production in the ocean from chlorophyll and light data. Limnology and Oceanography 2: 282–286.

    Google Scholar 

  • Sand-Jensen, K. & J. Borum, 1991. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquatic Botany 41: 137–175.

    Article  Google Scholar 

  • Schell, D. M., 2000. Declining carrying capacity in the Bering Sea: isotopic evidence from whale baleen. Limnology and Oceanography 45: 459–462.

    Article  CAS  Google Scholar 

  • Schindler, D. W., 1981. Studies of eutrophication in lakes and their relevance to the estuarine environment. In Neilson, B. & L. E. Cronin (eds), Estuaries and Nutrients. Humans Press, NY: 71–82.

    Google Scholar 

  • Schindler, D. W., 2006. Recent advances in the understanding and management of eutrophication. Limnology and Oceanography 51: 356–363.

    Article  Google Scholar 

  • Schulman, A., 2005. A warm unwelcome — Seabirds suffer as climate change unravels North Sea food web. Grist Environmental News & Commentary. http://www.grist.org/news/maindish2005/01/25/schulman-seabirds/.

    Google Scholar 

  • Schwartz, M. D. (ed.), 2003. Phenology: An Integrative Environmental Science. Kluwer, Dordrecht.

    Google Scholar 

  • Sfriso, A., B. Pavoni & A. Marcomini, 1989. Macroalgae and phytoplankton standing crops in the central Venice Lagoon: primary production and nutrient balance. Science of the Total Environment 80: 139–159.

    Article  CAS  Google Scholar 

  • Smil, V., 2001. Enriching the Earth. MIT Press, Cambridge.

    Google Scholar 

  • Smith, V. H., S. B. Joye & R. W. Howarth, 2006. Eutrophication of freshwater and marine ecosystems. Limnology and Oceanography 51: 351–355.

    Article  CAS  Google Scholar 

  • Soetaert, K., J. Middelburg, C. Heip, P. Meire, S. Van Damme & T. Maris, 2006. Long-term change in dissolved inorganic nutrients in the heterotrophic Scheld Estuary (Belgium, The Netherlands). Limnology and Oceanography 51: 409–423.

    Article  CAS  Google Scholar 

  • Steffen, W., P. Crutzen & J. McNeill, 2007. The anthropocene: are humans now overwhelming the great forces of nature? Ambio 36: 614–621.

    Article  CAS  Google Scholar 

  • Stockner, J. G., E. Rydin & P. Hyenstrand, 2000. Cultural oligotrophication: causes and consequences for fisheries resources. Fisheries 25: 7–14.

    Article  Google Scholar 

  • Stoddard, A., J. Harcum, J. Simpson, J. Pagenkopf & R. Bastian, 2002. Municipal Wastewater Treatment: Evaluating Improvements in National Water Quality. John Wiley & Sons, New York.

    Google Scholar 

  • Sullivan, B. K., D. Van Keuren & M. Clancy, 2001. Timing and size of blooms of the ctenophore Mnemiopsis leidi in relation to temperature in Narragansett Bay, Rhode Island. Hydrobiologia 451: 113–120.

    Article  Google Scholar 

  • Townsend, D. & L. Cammen, 1988. Potential importance of the timing of spring plankton blooms to benthic-pelagic coupling and recruitment of juvenile demersal fishes. Biological Oceanography 5: 215–229.

    Google Scholar 

  • Ulanowicz, R. E., 1986. A phenomenological perspective of ecological development. In Poston, T. & R. Purdy (eds), Aquatic Toxicology and Environmental Fate, Vol. 9. American Society for Testing and Materials, Philadelphia: 73–81.

    Chapter  Google Scholar 

  • Valiela, I., 2006. Global Coastal Change. Blackwell Publishing, Oxford.

    Google Scholar 

  • Vollenweider, R. A., R. Marchetti & R. Viviani (eds), 1992. Marine Coastal Eutrophication. Elsevier, Amsterdam.

    Google Scholar 

  • Wulff, F., 1990. Overall conclusions. In Lancelot, C., G. Billen & H. Barth (eds), Eutrophication and Algal Blooms in North Sea Coastal Zones, the Baltic and Adjacent Areas: Prediction and Assessment of Preventive Actions. Water Pollution Research Report 12. Commission of the European Communities’ Environmental Program, Brussels: 267–271.

    Google Scholar 

  • Yamamoto, T., 2003. The Seto Inland Sea—Eutrophic or oligotrophic? Marine Pollution Bulletin 47: 37–42.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Nixon, S.W. (2009). Eutrophication and the macroscope. In: Andersen, J.H., Conley, D.J. (eds) Eutrophication in Coastal Ecosystems. Developments in Hydrobiology, vol 207. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3385-7_2

Download citation

Publish with us

Policies and ethics