Skip to main content

Short-term effect of oxic to anoxic transition on benthic microbial activity and solute fluxes in organic-rich phytotreatment ponds

  • Chapter
Eutrophication in Coastal Ecosystems

Part of the book series: Developments in Hydrobiology ((DIHY,volume 207))

  • 1790 Accesses

Abstract

Manipulative experiments to test the short-term effect of oxygen depletion events on microbial activity and benthic fluxes in organic-rich sediments were carried out in March and June 2004. Oxic-anoxic transitions were induced by prolonged dark incubation of sealed sediment cores collected in phytotreatment ponds. Benthic fluxes of oxygen (O2), carbon dioxide (CO2), inorganic nutrients, and free sulfides were measured before (oxic) and after (anoxic) the transition occurred. A multifactorial design was employed for monitoring esoenzymatic activity, heterotrophic bacterial production, total prokaryotic abundance, actively respiring bacterial cells, and the biochemical composition of sedimentary organic matter. The oxic to anoxic transition resulted in a significant increase of esoenzymatic activity and bacterial production in March, due to the profound modification of the benthic community and the release of labile organic compounds which followed the onset of anoxia. In parallel, net efflux rates of dissolved inorganic carbon (DIC) and ammonium (NH4 +) sharply decreased, soluble reactive phosphorus (SRP) influx reversed, and sulfide was buffered within the oxidized sediments. From March to June, ponds evolved toward oxygen deficit and reducing conditions in the upper sediment horizon, losing benthic fauna and biogeochemical buffering capacity. Thus, the oxic to anoxic transition had a much smaller effect on microbial activity and net flux exchange, while S2− was consistently delivered from the sediment to the water column. Overall data from this study suggest that the short-term response of benthic microbial activity and solute fluxes to anoxic events may have a significant impact on sediment biogeochemistry (e.g., at the oxic-anoxic interface), and that this impact may vary greatly depending on the sediment features, mainly its organic content and redox condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aller, R. C., 1980. Diagenetic processes near the sediment-water interface of Long Island Sound. I. Decomposition and nutrient element geochemistry (S, N, P). Advances in Geophysics 22: 237–350.

    CAS  Google Scholar 

  • Aller, R. C., 1994. Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chemical Geology 114: 331–345.

    Article  CAS  Google Scholar 

  • Amtoft Neubauer, A. T., A. G. Underlien Pedersen, K. Finster, R. A. Herbert, A. P. Donnelly, P. Viaroli, G. Giordani, R. De Wit & B. A. Lomstein, 2004. Benthic decomposition of Zostera marina roots: a controlled laboratory experiment. Journal of Experimental Marine Biology and Ecology 313: 105–124.

    Article  Google Scholar 

  • Andersen, F. Ø., 1996. Fate of organic carbon added as diatom cells to oxic and anoxic marine sediment microcosms. Marine Ecology Progress Series 134: 225–233.

    Article  CAS  Google Scholar 

  • Andersen, F. O. & E. Kristensen, 1988. The influence of macrofauna on estuarine benthic community metabolism: a microcosm study. Marine Biology 99: 591–603.

    Article  CAS  Google Scholar 

  • APHA, 1975. Standard Methods for the Examination of Water and Wastewaters, 14th Edition. American Public Health Association, Washington, DC.

    Google Scholar 

  • Aspila, K. I., H. Agemian & A. S. Y. Chau, 1976. A semiautomated method for the determination of inorganic, organic and total phosphate in sediments. Analyst 101: 187–197.

    Article  CAS  Google Scholar 

  • Azzoni, R., G. Giordani & P. Viaroli, 2005. Iron-sulphurphosphorus interactions: implications for sediment buffering capacity in a Mediterranean eutrophic lagoon (Sacca di Goro, Italy). Hydrobiologia 550: 131–148.

    Article  CAS  Google Scholar 

  • Bartoli, M., D. Nizzoli, M. Naldi, L. Vezzulli, S. Porrello, M. Lenzi & P. Viaroli, 2005. Inorganic nitrogen control in wastewater treatment ponds from a fish farm (Orbetello, Italy): denitrification versus Ulva uptake. Marine Pollution Bulletin 50: 1386–1397.

    Article  CAS  Google Scholar 

  • Battin, T. J., 1997. Assessment of fluorescein diacetate hydrolysis as a measure of total esterase activity in natural stream sediment biofilms. Science of the Total Environment 198: 51–60.

    Article  CAS  Google Scholar 

  • Bernard, C. & T. Fenchel, 1995. Mats of colourless sulphur bacteria. II. Structure, composition of biota and successional patterns. Marine Ecology Progress Series 128: 171–179.

    Article  Google Scholar 

  • Bhupathiraju, V. K., M. Hernandez, P. Krauter & L. Alvarez-Cohen, 1999. A new direct microscopy based method for evaluating in situ bioremediation. Journal of Hazardous Materials 67: 299–312.

    Article  CAS  Google Scholar 

  • Bower, C. E. & T. Holm Hansen, 1986. A salicylate-hypochlorite method for determining ammonia in seawater. Canadian Journal of Fisheries and Aquatic Science 37: 794–798.

    Article  Google Scholar 

  • Brune, A., P. Frenzel & H. Cypionka, 2000. Life at the oxicanoxic interface: microbial activities and adaptations. FEMS Microbiology Review 24: 691–710.

    CAS  Google Scholar 

  • Canfield, D. E. & D. J. DesMarais, 1993. Biogeochemical cycles of carbon, sulphur, and free oxygen in a microbial mat. Geochimica et Cosmochimica Acta 57: 3971–3984.

    Article  CAS  Google Scholar 

  • Castel, J., P. Caumette, & R. Herbert, 1996. Eutrophication gradients in coastal lagoons as exemplified by the bassin d’Arcachon and the Étang du Prévost. Hydrobiologia 329: ix–xxviii.

    Article  Google Scholar 

  • Cline, J. D., 1969. Spectrophotometric determination of hydrogen sulphide in natural waters. Limnology and Oceanography 14: 454–459.

    Article  CAS  Google Scholar 

  • Crossland, C. J., H. H. Kremer, H. J. Lindeboom, J. I. Marshall Crossland, & M. D. A. Le Tissier, 2005. Coastal Fluxes in the Anthropocene. The Land-Ocean Interactions in the Coastal Zone Project of the International Geosphere-Biosphere Programme. Global Change—The IGBP Series n XX. Springer.

    Google Scholar 

  • Dalsgaard, T., L. P. Nielsen, V. Brotas, P. Viaroli, G. J. C. Underwood, D. B. Nedwell, K. Sundbäck, S. Rysgaard, A. Miles, M. Bartoli, L. Dong, D. C. O. Thornton, L. D. M. Ottosen, G. Castaldelli & N. Risgaard-Petersen, 2000. Protocol Handbook for NICE-Nitrogen Cycling in Estuaries: A Project Under the EU Research Programme. Marine Science and Technology (MAST III). National Environmental Research Institute, Silkeborg, Denmark.

    Google Scholar 

  • De Wit, R., L. J. Stal, B. A. Lomstein, R. A. Herbert, H. van Gemerden, P. Viaroli, V. U. Ceccherelli, F. Rodríguez-Valera, M. Bartoli, G. Giordani, R. Azzoni, B. Shaub, D. T. Welsh, A. Donnely, A. Cifuentes, J. Anton, K. Finster, L. P. Nielsen, A. G. Underlien Pedersen, A. T. Neubauer, M. A. Colangelo & S. K. Heijs, 2001. ROBUST: The ROle of BUffering capacities in STabilising coastal lagoon ecosystems. Continental Shelf Research 21: 2021–2041.

    Article  Google Scholar 

  • Del Giorgio, P. A. & J. J. Cole, 1998. Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology and Systematics 29: 503–541.

    Article  Google Scholar 

  • Diaz, R. J. & R. Rosenberg, 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology: An Annual Review 33: 245–303.

    Google Scholar 

  • Dilly, O., 2003. Regulation of the respiratory quotient of soil microbiota by availability of nutrients. FEMS Microbiology Ecology 43: 375–381.

    Article  CAS  Google Scholar 

  • Duarte, C. M., 1995. Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41: 87–112.

    Google Scholar 

  • Dubois, M., K. Gilles, J. K. Hamilton, P. A. Rebers & F. Smith, 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350–356.

    Article  CAS  Google Scholar 

  • Fabiano, M., D. Marrale & C. Misic, 2003. Bacteria and organic matter dynamics during a bioremediation treatment of organic-rich harbour sediments. Marine Pollution Bulletin 46: 1164–1173.

    Article  CAS  Google Scholar 

  • Fenchel, T., G. M. King, & T. H. Blackburn, 1998. Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling, 2nd Edition. Academic Press, London.

    Google Scholar 

  • Gallizia, I., L. Vezzulli & M. Fabiano, 2004. Oxygen supply for biostimulation of enzymatic activity in organic-rich marine ecosystems. Soil Biology and Biochemistry 36: 1645–1652.

    Article  CAS  Google Scholar 

  • Gamelink, I., A. Jahn, K. Vopel & O. Giere, 1996. Hypoxia and sulphide as structuring factors in a macrozoobenthic community on the Baltic Sea shore: colonisation studies and tolerance experiments. Marine Ecology Progress Series 144: 73–85.

    Article  Google Scholar 

  • Gee, J. M., R. M. W. Warwick, M. Schaanning, J. A. Berge & W. G. Ambrose Jr, 1985. Effects of organic enrichment on meiofaunal abundance and community structure in sublittoral soft sediments. Journal of Experimental Marine Biology and Ecology 91: 247–262.

    Article  Google Scholar 

  • Hartree, E. F., 1972. Determination of proteins: a modification of the Lowry methods that give a linear photometric response. Analytical Biochemistry 48: 422–427.

    Article  CAS  Google Scholar 

  • Heijs, S. K., R. Azzoni, G. Giordani, H. M. Jonkers, D. Nizzoli, P. Viaroli & H. Gemerden, 2000. Sulphide-induced release of phosphate from sediments of coastal lagoons and the possible relation to the disappearance of Ruppia sp. Aquatic Microbial Ecology 23: 85–95.

    Article  Google Scholar 

  • Hobbie, J. E., R. J. Daley & S. Jasper, 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Applied Environmental Microbiology 33: 1225–1228.

    CAS  Google Scholar 

  • Holmer, M., 1999. The effect of oxygen depletion on anaerobic organic matter degradation in marine sediments. Estuarine, Coastal and Shelf Science 48: 383–390.

    Article  Google Scholar 

  • Holmer, M. & E. Kristensen, 1996. Seasonality of sulphate reduction and pore water solutes in a marine fish farm sediment: the importance of temperature and sedimentary organic matter. Biogeochemistry 32: 15–39.

    Article  CAS  Google Scholar 

  • Hoppe, H. G., 1993. Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumberlliferyl-substrate. Marine Ecology Progress Series 80: 191–201.

    Google Scholar 

  • Hyland, J., L. W. Balthis, I. Karakassis, P. Magni, A. Petrov, J. R. Shine, O. Vestergaard & R. Warwick, 2005. Organic carbon content of sediments as an indicator of stress in the marine benthos. Marine Ecology Progress Series 295: 91–103.

    Article  CAS  Google Scholar 

  • Jørgensen, B. B., 1996. Material flux in the sediment. In Richardson, K. & B. B. Jorgensen (eds.), Eutrophication in Coastal Marine Ecosystems. American Geophysical Union, Washington, DC: 115–135.

    Google Scholar 

  • Kristensen, E., 1988. Benthic fauna and biogeochemical processes in marine sediments: microbial activities and fluxes. In Blackburn, T. H. & J. Sørensen (eds), Nitrogen Cycling in Coastal Marine Environments. Wiley, New York: 276–299.

    Google Scholar 

  • Kristensen, E. & K. Hansen, 1999. Transport of carbon dioxide and ammonium in bioturbated (Nereis diversicolor) coastal, marine sediments. Biogeochemistry 45: 147–168.

    Google Scholar 

  • Kristensen, E. & M. Holmer, 2001. Decomposition of plant materials in marine sediment exposed to different electron acceptors (O2, NO3 and SO4 2−), with emphasis on substrate origin, degradation kinetics and the role of bioturbation. Geochimica et Cosmochimica Acta 65: 419–434.

    Article  CAS  Google Scholar 

  • Kristensen, E., S. I. Ahmed & A. H. Devol, 1995. Aerobic and anaerobic decomposition of organic matter in marine sediments: which is fastest? Limnology and Oceanography 40: 1430–1437.

    Article  CAS  Google Scholar 

  • Lomstein, B., L. Bonne Guldberg, A. T. Amtoft Neubauer, J. Hansen, A. P. Donnelly, R. A. Herbert, P. Viaroli, G. Giordani, R. Azzoni, R. De Wit & K. Finster, 2006. Benthic decomposition of Ulva lactuca: a controlled laboratory experiment. Aquatic Botany 85: 271–281.

    Article  Google Scholar 

  • Manini, E., C. Fiordelmondo, C. Gambi, A. Pusceddu & R. Danovaro, 2003. Benthic microbial loop functioning in coastal lagoons: a comparative approach. Oceanologica Acta 26: 27–38.

    Article  CAS  Google Scholar 

  • Meyer-Reil, L. A., 1986. Measurement of hydrolytic activity and incorporation of dissolved organic substrate by microorganisms in marine sediments. Marine Ecology Progress Series 31: 143–149.

    Article  CAS  Google Scholar 

  • Meyer-Reil, L. A. & M. Köster, 2000. Eutrophication of marine waters: effects on benthic microbial communities. Marine Pollution Bulletin 41: 255–263.

    Article  CAS  Google Scholar 

  • Nizzoli, D., M. Bartoli, M. Cooper, G. Underwood & P. Viaroli, 2007. Implications for oxygen and nutrient fluxes and denitrification rates during sediment colonization by the polychaete Nereis spp. in four estuaries. Estuarine, Coastal and Shelf Science 75: 125–134.

    Article  Google Scholar 

  • Pelegrì, S. P. & T. H. Blackburn, 1995. Effect of bioturbation by Nereis sp., Mya arenaria and Cerastoderma sp. on nitrification and denitrification in estuarine sediments. Ophelia 42: 289–299.

    Google Scholar 

  • Porrello, S., M. Lenzi, E. Persia, P. Tomassetti & M. G. Finoia, 2003. Reduction of aquaculture wastewater eutrophication by phytotreatment ponds system. I. Dissolved and particulate nitrogen and phosphorus. Aquaculture 219: 515–529.

    Article  CAS  Google Scholar 

  • Proctor, L. M. & A. C. Souza, 2001. Method for enumeration of 5-cyano-2,3-ditoyl tetrazolium chloride (CTC)-active cells and cell-specific CTC activity of benthic bacteria in riverine, estuarine and coastal sediments. Journal of Microbiological Methods 43: 213–222.

    Article  CAS  Google Scholar 

  • Rabalais, N. N., R. E. Turner, B. K. Sen Gupta, E. Platon & M. L. Parson, 2007. Sediments tell the history of eutrophication and anoxia in the northern Gulf of Mexico. Ecological Applications 17: S129–S143.

    Article  Google Scholar 

  • Rickard, D. & J. W. Morse, 2005. Acid Volatile Sulphide (AVS). Marine Chemistry 97: 141–197.

    Article  CAS  Google Scholar 

  • Rozan, T. F., M. Taillefert, R. E. Trouwborst, B. T. Glazer, S. Ma, J. Herszage, L. M. Valdes, K. S. Price & G. W. Luther III, 2002. Iron-sulphur-phosphorus cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic macroalgal blooms. Limnology and Oceanography 47: 1346–1354.

    Article  CAS  Google Scholar 

  • Schramm, W., 1999. Factors influencing seaweed responses to eutrophication: some results from EU-project EUMAC. Journal of Applied Phycology 11: 69–78.

    Article  Google Scholar 

  • Sun, M. Y., S. G. Wakeham & C. Lee, 1997. Rates and mechanisms of fatty acid degradation in oxic and anoxic coastal marine sediments of Long Island Sound, New York, USA. Geochimica et Cosmochimica Acta 61: 341–355.

    Article  CAS  Google Scholar 

  • Talling, J. F., 1973. The application of some electrochemical methods to the measurements of photosynthesis and respiration in fresh water. Freshwater Biology 3: 335–362.

    Article  Google Scholar 

  • Unanue, M., B. Ayo, M. Agis, D. Slezak, G. J. Herndl & J. Iriberri, 1999. Ectoenzymatic activity and uptake of monomers in marine bacterioplankton described by a biphasic kinetic model. Microbial Ecology 37: 36–48.

    Article  CAS  Google Scholar 

  • Valderrama, J. C., 1977. Methods used by the Hydrographic Department of National Board of Fisheries, Sweden. In Grasshof, K. (ed.), Report of the Baltic Intercalibration Workshop. Annex, Interim Commission for the Protection of the Environment of the Baltic Sea: 13–40.

    Google Scholar 

  • Valderrama, J. C., 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry 10: 109–122.

    Article  CAS  Google Scholar 

  • Van Duyl, F. C. & A. J. Kop, 1994. Bacterial variation in North Sea sediments: clues to seasonal and spatial variations. Marine Biology 120: 323–337.

    Article  Google Scholar 

  • Viaroli, P., M. Bartoli, C. Bondavalli, R. R. Christian, G. Giordani & M. Naldi, 1996. Macrophyte communities and their impact on benthic fluxes of oxygen, sulphides and nutrients in shallow eutrophic environments. Hydrobiologia 329: 105–119.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bartoli, M. et al. (2009). Short-term effect of oxic to anoxic transition on benthic microbial activity and solute fluxes in organic-rich phytotreatment ponds. In: Andersen, J.H., Conley, D.J. (eds) Eutrophication in Coastal Ecosystems. Developments in Hydrobiology, vol 207. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3385-7_11

Download citation

Publish with us

Policies and ethics