Heat Shock Protein and Inflammation

  • Fabiano Amorim
  • Pope L. MoseleyEmail author
Part of the Heat Shock Proteins book series (HESP, volume 5)


Heat Shock Proteins (HSP) are important modulators of both anti-inflammatory and pro-inflammatory responses. In this chapter, we address this apparent paradox by focusing on the effects of the highly heat inducible Hsp70 and its transcription machinery. This transcription machinery may exert important effects on inflammation through pathways, which are independent of heat shock proteins. We then discuss disease states where the balance between the anti-inflammatory and pro-inflammatory effectors is critical to disease outcome


Cytokines HSF-1 HSP inflammatory response syndrome heat stroke inflammation heat injury 



activator protein 1


antigen presenting cells


extracellular HSP




high-mobility group box 1 protein


human immunodeficiency virus


heat shock transcription factor 1


heat shock protein


heat shock response


inflammatory bowel diseases




IkappaB kinase


interleukin 6


c jun amino terminal kinase




mitogen-activated protein kinases


multiple organ dysfunction syndrome


nuclear factor kappa B


nuclear factor-IL6


natural killer cells


systemic inflammatory response syndrome


Toll like receptor


tumor necrosis factor alpha


  1. Asea A. Mechanisms of HSP72 release. J Biosci. 2007 Apr;32(3):579–84.PubMedGoogle Scholar
  2. Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol. 2000 Nov;12(11):1539–46.PubMedGoogle Scholar
  3. Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol. 2001 Sep;11(9):372–7.PubMedGoogle Scholar
  4. Bausero MA, Gastpar R, Multhoff G, Asea A. Alternative mechanism by which IFN-gamma enhances tumor recognition: active release of heat shock protein 72. J Immunol. 2005 Sep 1;175(5):2900–12.PubMedGoogle Scholar
  5. Baxter JK, Weinstein L. HELLP syndrome: the state of the art. Obstet Gynecol Surv. 2004;59:838–45.PubMedGoogle Scholar
  6. Beck SC, Paidas CN, Tan H, Yang J, De Maio A. Depressed expression of the inducible form of HSP 70 (HSP 72) in brain and heart after in vivo heat shock. Am J Physiol. 1995;269:R608–R13.PubMedGoogle Scholar
  7. Binder RJ, Harris ML, Ménoret A, Srivastava PK. Saturation, competition, and specificity in interaction of heat shock proteins (hsp) gp96, hsp90, and hsp70 with CD11b+ cells. J Immunol. 2000 Sep 1;165(5):2582–7.PubMedGoogle Scholar
  8. Blake MJ, Fargnoli J, Gershon D, Holbrook NJ. Concomitant decline in heat-induced hyperthermia and HSP70 mRNA expression in aged rats. Am J Physiol. 1991 Apr;260(4 Pt 2):R663–R7.PubMedGoogle Scholar
  9. Bouchama A, al-Sedairy S, Siddiqui S, Shail E, Rezeig M. Elevated pyrogenic cytokines in heatstroke. Chest. 1993 Nov;104(5):1498–502.PubMedGoogle Scholar
  10. Bouchama A, Knochel JP. Heat stroke. N Engl J Med. 2002 Jun 20;346(25):1978–88.PubMedGoogle Scholar
  11. Bouchama A, Parhar RS, el-Yazigi A, Sheth K, al-Sedairy S. Endotoxemia and release of tumor necrosis factor and interleukin 1 alpha in acute heatstroke. J Appl Physiol. 1991 Jun;70(6):2640–4.PubMedGoogle Scholar
  12. Brasier AR. The NF-kappaB regulatory network. Cardiovasc Toxicol. 2006;6(2):111–30.PubMedGoogle Scholar
  13. Breese EJ, Michie CA, Nicholls SW, Murch SH, Williams CB, Domizio P, Walker-Smith JA, MacDonald TT. Tumor necrosis factor alpha-producing cells in the intestinal mucosa of children with inflammatory bowel disease. Gastroenterology. 1994 Jun;106(6):1455–66.PubMedGoogle Scholar
  14. Broquet AH, Thomas G, Masliah J, Trugnan G, Bachelet M. Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J Biol Chem. 2003 Jun 13;278(24):21601–6.Google Scholar
  15. Böhrer H, Qiu F, Zimmermann T, Zhang Y, Jllmer T, Männel D, Böttiger BW, Stern DM, Waldherr R, Saeger HD, Ziegler R, Bierhaus A, Martin E, Nawroth PP. Role of NFkappaB in the mortality of sepsis. J Clin Invest. 1997 Sep 1;100(5):972–85.PubMedGoogle Scholar
  16. Cahill CM, Waterman WR, Xie Y, Auron PE, Calderwood SK. Transcriptional repression of the prointerleukin 1beta gene by heat shock factor 1. J Biol Chem. 1996 Oct 4;271(40):24874–9.PubMedGoogle Scholar
  17. Campisi J, Leem TH, Fleshner M. Stress-induced extracellular HSP72 is a functionally significant danger signal to the immune system. Cell Stress Chaperones. 2003 Fall;8(3):272–86.PubMedGoogle Scholar
  18. Chen Y, Currie RW. Small interfering RNA knocks down heat shock factor-1 (HSF-1) and exacerbates pro-inflammatory activation of NF-kappaB and AP-1 in vascular smooth muscle cells. Cardiovasc Res. 2006 Jan;69(1):66–75.PubMedGoogle Scholar
  19. Christman JW, Holden EP, Blackwell TS. Strategies for blocking the systemic effects of cytokines in the sepsis syndrome. Crit Care Med. 1995 May;23(5):955–63.PubMedGoogle Scholar
  20. Clayton A, Turkes A, Navabi H, Mason MD, Tabi Z. Induction of heat shock proteins in B-cell exosomes. J Cell Sci. 2005 Aug 15;118(Pt 16):3631–8. Epub 2005 Jul 26.PubMedGoogle Scholar
  21. Deitch EA. Multiple organ failure: pathophysiology and potential future therapies. Ann Surg. 1992;216:117–34.PubMedGoogle Scholar
  22. Deitch EA. Bacterial translocation or lymphatic drainage of toxic products from the gut: what is important in human beings? Surgery. 2002 Mar;131(3):241–4.PubMedGoogle Scholar
  23. De-Souza DA, Greene LJ. Intestinal permeability and systemic infections in critically ill patients: effect of glutamine. Crit Care Med. 2005 May;33(5):1125–35.PubMedGoogle Scholar
  24. Ding XZ, Fernandez-Prada CM, Bhattacharjee AK, Hoover DL. Over-expression of HSP-70 inhibits bacterial lipopolysaccharide-induced production of cytokines in human monocyte-derived macrophages. Cytokine. 2001 Dec 21;16(6):210–9.PubMedGoogle Scholar
  25. Dobbs RJ, Charlett A, Purkiss AG, Dobbs SM, Weller C, Peterson DW. Association of circulating TNF-alpha and IL-6 with ageing and parkinsonism. Acta Neurol Scand. 1999;100:34–41.PubMedGoogle Scholar
  26. Dokladny K, Kozak A, Wachulec M, Wallen ES, Menache MG, Kozak W, Kluger MJ, Moseley PL. Effect of heat stress on LPS-induced febrile response in D-galactosamine-sensitized rats. Am J Physiol Regul Integr Comp Physiol. 2001 Feb;280(2):R338–R44.PubMedGoogle Scholar
  27. Dokladny K, Wharton W, Lobb R, Ma TY, Moseley PL. Induction of physiological thermotolerance in MDCK monolayers: contribution of heat shock protein 70. Cell Stress Chaperones. 2006 Autumn;11(3):268–75.PubMedGoogle Scholar
  28. Dokladny K, Ye D, Kennedy JC, Moseley PL, Ma TY. Cellular and molecular mechanisms of heat stress-induced up-regulation of occludin protein expression: regulatory role of heat shock factor-1. Am J Pathol. 2008 Mar;172(3):659–70. Epub 2008 Feb 14.PubMedGoogle Scholar
  29. Dybdahl B, Slørdahl SA, Waage A, Kierulf P, Espevik T, Sundan A. Myocardial ischaemia and the inflammatory response: release of heat shock protein 70 after myocardial infarction. Heart. 2005 Mar;91(3):299–304.PubMedGoogle Scholar
  30. Dybdahl B, Wahba A, Haaverstad R, Kirkeby-Garstad I, Kierulf P, Espevik T, Sundan A. On-pump versus off-pump coronary artery bypass grafting: more heat-shock protein 70 is released after on-pump surgery. Eur J Cardiothorac Surg. 2004 Jun;25(6):985–92.PubMedGoogle Scholar
  31. Eaves-Pyles T, Wong HR, Alexander JW. Sodium arsenite induces the stress response in the gut and decreases bacterial translocation in a burned mouse model with gut-derived sepsis. Shock. 2000;13(4):314–9.PubMedGoogle Scholar
  32. Ehrenfried JA, Chen J, Li J, Evers BM. Glutamine-mediated regulation of heat shock protein expression in intestinal cells. Surgery. 1995 Aug;118(2):352–6.PubMedGoogle Scholar
  33. Eliasen MM, Winkler W, Jordan V, Pokar M, Marchetti M, Roth E, Allmaier G, Oehler R. Adaptive cellular mechanisms in response to glutamine-starvation. Front Biosci. 2006 Sep;1(11):3199–211.Google Scholar
  34. Ensor JE, Wiener SM, McCrea KA, Viscardi RM, Crawford EK, Hasday JD. Differential effects of hyperthermia on macrophage interleukin-6 and tumor necrosis factor-alpha expression. Am J Physiol. 1994 Apr;266(4 Pt 1):C967–C74.PubMedGoogle Scholar
  35. Exner R, Tamandl D, Goetzinger P, Mittlboeck M, Fuegger R, Sautner T, Spittler A, Roth E. Perioperative GLY–GLN infusion diminishes the surgery-induced period of immunosuppression: accelerated restoration of the lipopolysaccharide-stimulated tumor necrosis factor-alpha response. Ann Surg. 2003 Jan;237(1):110–15.PubMedGoogle Scholar
  36. Exner R, Wessner B, Manhart N, Roth E. Therapeutic potential of glutathione. Wien Klin Wochenschr. 2000 Jul 28;112(14):610–16.PubMedGoogle Scholar
  37. Fargnoli J, Kunisada T, Fornace AJ Jr, Schneider EL, Holbrook NJ. Decreased expression of heat shock protein 70 mRNA and protein after heat treatment in cells of aged rats. Proc Natl Acad Sci U S A. 1990 Jan;87(2):846–50.PubMedGoogle Scholar
  38. Flanagan SW, Ryan AJ, Gisolfi CV, Moseley PL. Tissue-specific HSP70 response in animals undergoing heat stress. Am J Physiol. 1995;268:R28–R32.PubMedGoogle Scholar
  39. Fleshner M, Johnson JD. Endogenous extra-cellular heat shock protein 72: releasing signal(s) and function. Int J Hyperthermia. 2005 Aug;21(5):457–71.Google Scholar
  40. Franceschelli S, Rosati A, Lerose R, De Nicola S, Turco MC, Pascale M. Bag3 gene expression is regulated by heat shock factor 1. J Cell Physiol. 2008 Jun;215(3):575–7.PubMedGoogle Scholar
  41. Gianotti L, Alexander JW, Gennari R, Pyles T, Babcock GF. Oral glutamine decreases bacterial translocation and improves survival in experimental gut-origin sepsis. JPEN J Parenter Enteral Nutr. 1995 Jan–Feb;19(1):69–74.PubMedGoogle Scholar
  42. Giercksky T, Boberg KM, Farstad IN, Halvorsen S, Schrumpf E. Severe liver failure in exertional heat stroke. Scand J Gastroenterol. 1999;34:824–7.PubMedGoogle Scholar
  43. Glotzer JB, Saltik M, Chiocca S, Michou AI, Moseley P, Cotten M. Activation of heat-shock response by an adenovirus is essential for virus replication. Nature. 2000 Sep 14;407(6801):207–11.PubMedGoogle Scholar
  44. Greig JE, Keast D, Garcia-Webb P, Crawford P. Inter-relationships between glutamine and other biochemical and immunological changes after major vascular surgery. Br J Biomed Sci. 1996 Jun;53(2):116–21.PubMedGoogle Scholar
  45. Griffiths RD, Allen KD, Andrews FJ, Jones C. Infection, multiple organ failure, and survival in the intensive care unit: influence of glutamine-supplemented parenteral nutrition on acquired infection. Nutrition. 2002 Jul–Aug;18(7–8):546–52.PubMedGoogle Scholar
  46. Griffiths RD, Jones C, Palmer TE. Six-month outcome of critically ill patients given glutamine-supplemented parenteral nutrition. Nutrition. 1997 Apr;13(4):295–302.PubMedGoogle Scholar
  47. Gromkowski SH, Yagi J, Janeway CA Jr. Elevated temperature regulates tumor necrosis factor-mediated immune killing. Eur J Immunol. 1989 Sep;19(9):1709–14.PubMedGoogle Scholar
  48. Guo S, Wharton W, Moseley P, Shi H. Heat shock protein 70 regulates cellular redox status by modulating glutathione-related enzyme activities. Cell Stress Chaperones. 2007 Autumn;12(3):245–54.PubMedGoogle Scholar
  49. Guzhova I, Kislyakova K, Moskaliova O, Fridlanskaya I, Tytell M, Cheetham M, Margulis B. In vitro studies show that HSP70 can be released by glia and that exogenous HSP70 can enhance neuronal stress tolerance. Brain Res. 2001 Sep 28;914(1–2):66–73.PubMedGoogle Scholar
  50. Hall DM, Xu L, Drake VJ, Oberley LW, Oberley TD, Moseley PL, Kregel KC. Aging reduces adaptive capacity and stress protein expression in the liver after heat stress. J Appl Physiol. 2000 Aug;89(2):749–59.PubMedGoogle Scholar
  51. Helqvist S, Polla BS, Johannesen J, Nerup J. Heat shock protein induction in rat pancreatic islets by recombinant human interleukin 1 beta. Diabetologia. 1991 Mar;34(3):150–6.PubMedGoogle Scholar
  52. Hiscock N, Petersen EW, Krzywkowski K, Boza J, Halkjaer-Kristensen J, Pedersen BK. Glutamine supplementation further enhances exercise-induced plasma IL-6. J Appl Physiol. 2003 Jul;95(1):145–8. Epub 2003 Feb 28.PubMedGoogle Scholar
  53. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003 Jan 9;348(2):138–50.PubMedGoogle Scholar
  54. Hunter-Lavin C, Davies EL, Bacelar MM, Marshall MJ, Andrew SM, Williams JH. HSP70 release from peripheral blood mononuclear cells. Biochem Biophys Res Commun. 2004 Nov 12;324(2):511–7.PubMedGoogle Scholar
  55. Jäättelä M. Overexpression of major heat shock protein HSP70 inhibits tumor necrosis factor-induced activation of phospholipase A2. J Immunol. 1993 Oct 15;151(8):4286–94.PubMedGoogle Scholar
  56. Jäättelä M, Wissing D. Heat-shock proteins protect cells from monocyte cytotoxicity: possible mechanism of self-protection. J Exp Med. 1993 Jan 1;177(1):231–6.PubMedGoogle Scholar
  57. Kew M, Bersohn I, Seftel H, Kent G. Liver damage in heatstroke. Am J Med. 1970;49:192–202.PubMedGoogle Scholar
  58. Kluger MJ, Rudolph K, Soszynski D, Conn CA, Leon LR, Kozak W, Wallen ES, Moseley PL. Effect of heat stress on LPS-induced fever and tumor necrosis factor. Am J Physiol. 1997 Sep;273(3 Pt 2):R858–R63.PubMedGoogle Scholar
  59. Kregel KC, Moseley PL. Differential effects of exercise and heat stress on liver HSP70 accumulation with aging. J Appl Physiol. 1996 Feb;80(2):547–51.PubMedGoogle Scholar
  60. Kregel KC, Moseley PL, Skidmore R, Gutierrez JA, Guerriero V Jr.. HSP70 accumulation in tissues of heat-stressed rats is blunted with advancing age. J Appl Physiol. 1995 Nov;79(5):1673–8.PubMedGoogle Scholar
  61. Kregel KC, Wall PT, Gisolfi CV. Peripheral vascular responses to hyperthermia in the rat. J Appl Physiol. 1988 Jun;64(6):2582–8.Google Scholar
  62. Kusher DI, Ware CF, Gooding LR. Induction of the heat shock response protects cells from lysis by tumor necrosis factor. J Immunol. 1990 Nov 1;145(9):2925–31.PubMedGoogle Scholar
  63. Lancaster GI, Febbraio MA. Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem. 2005 Jun 17;280(24):23349–55. Epub 2005 Apr 12.PubMedGoogle Scholar
  64. Langkamp-Henken B, Donovan TB, Pate LM, Maull CD, Kudsk KA. Increased intestinal permeability following blunt and penetrating trauma. Crit Care Med. 1995 Apr;23(4):660–4.PubMedGoogle Scholar
  65. Lau SS, Griffin TM, Mestril R. Protection against endotoxemia by HSP70 in rodent cardiomyocytes. Am J Physiol Heart Circ Physiol. 2000 May;278(5):H1439–H45.PubMedGoogle Scholar
  66. Levine JA. Heat stroke in the aged. Am J Med. 1969 Aug;47(2):251–8.PubMedGoogle Scholar
  67. Liu A, Lin Z, Choi H, Sorhage F, Li B. Attenuated induction of heat shock gene expression in aging diploid fibroblasts. J Biol Chem. 1989;264:12037–45.PubMedGoogle Scholar
  68. Ludwig D, Stahl M, Ibrahim ET, Wenzel BE, Drabicki D, Wecke A, Fellermann K, Stange EF. Enhanced intestinal expression of heat shock protein 70 in patients with inflammatory bowel diseases. Dig Dis Sci. 1999 Jul;44(7):1440–7.PubMedGoogle Scholar
  69. Ma TY, Iwamoto GK, Hoa NT, Akotia V, Pedram A, Boivin MA, Said HM. TNFalpha-induced increase in intestinal epithelial tight junction permeability requires NFkappa B activation. Am J Physiol Gastrointest Liver Physiol. 2004;286:G367–G76.PubMedGoogle Scholar
  70. Madách K, Molvarec A, Rigó J Jr, Nagy B, Pénzes I, Karádi I, Prohászka Z. Elevated serum 70 kDa heat shock protein level reflects tissue damage and disease severity in the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Eur J Obstet Gynecol Reprod Biol. 2008 Feb 2;139(2):133–8.PubMedGoogle Scholar
  71. Malhotra V, Wong HR. Interactions between the heat shock response and the nuclear factor-kappa B signaling pathway. Crit Care Med. 2002 Jan;30(1 Suppl):S89–S95.Google Scholar
  72. Matzinger P. The danger model: a renewed sense of self. Science. 2002 Apr 12;296(5566):301–5.PubMedGoogle Scholar
  73. Maynard N, Bihari D, Beale R, Smithies M, Baldock G, Mason R, McColl I. Assessment of splanchnic oxygenation by gastric tonometry in patients with acute circulatory failure. JAMA. 1993 Sep 8;270(10):1203–10.PubMedGoogle Scholar
  74. McClung JP, Hasday JD, He JR, Montain SJ, Cheuvront SN, Sawka MN, Singh IS. Exercise-heat acclimation in humans alters baseline levels and ex vivo heat inducibility of HSP72 and HSP90 in peripheral blood mononuclear cells. Am J Physiol Regul Integr Comp Physiol. 2008 Jan;294(1):R185–91.Google Scholar
  75. Melcher A, Todryk S, Hardwick N, Ford M, Jacobson M, Vile RG. Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nat Med. 1998 May;4(5):581–7.PubMedGoogle Scholar
  76. Melendez K, Wallen ES, Edwards BS, Mobarak CD, Bear DG, Moseley PL. Heat shock protein 70 and glycoprotein 96 are differentially expressed on the surface of malignant and nonmalignant breast cells. Cell Stress Chaperones. 2006 Winter;11(4):334–42.PubMedGoogle Scholar
  77. Molvarec A, Prohászka Z, Nagy B, Kalabay L, Szalay J, Füst G, Karádi I, Rigó J Jr.. Association of increased serum heat shock protein 70 and C-reactive protein concentrations and decreased serum alpha (2)-HS glycoprotein concentration with the syndrome of hemolysis, elevated liver enzymes, and low platelet count. J Reprod Immunol. 2007 Apr;73(2):172–9.PubMedGoogle Scholar
  78. Moore FA, Moore EE, Poggetti R, McAnena OJ, Peterson VM, Abernathy CM, Parsons PE. Gut bacterial translocation via the portal vein: a clinical perspective with major torso trauma. J Trauma. 1991 May;31(5):629–36, discussion 636–8.PubMedGoogle Scholar
  79. Morlion BJ, Stehle P, Wachtler P, Siedhoff HP, Köller M, König W, Fürst P, Puchstein C. Total parenteral nutrition with glutamine dipeptide after major abdominal surgery: a randomized, double-blind, controlled study. Ann Surg. 1998 Feb;227(2):302–8.PubMedGoogle Scholar
  80. Morrison AL, Dinges M, Singleton KD, Odoms K, Wong HR, Wischmeyer PE. Glutamine’s protection against cellular injury is dependent on heat shock factor-1. Am J Physiol Cell Physiol. 2006 Jun;290(6):C1625–C32.PubMedGoogle Scholar
  81. Moseley PL. Heat shock proteins and heat adaptation of the whole organism. J Appl Physiol. 1997 Nov;83(5):1413–7.PubMedGoogle Scholar
  82. Moseley PL, Gapen C, Wallen ES, Walter ME, Peterson MW. Thermal stress induces epithelial permeability. Am J Physiol. 1994 Aug;267(2 Pt 1):C425–C34.PubMedGoogle Scholar
  83. Multhoff G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels R. Heat shock protein 72 on tumor cells: a recognition structure for natural killer cells. J Immunol. 1997 May 1;158(9):4341–50.Google Scholar
  84. Multhoff G, Botzler C, Wiesnet M, Müller E, Meier T, Wilmanns W, Issels RD. A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int J Cancer. 1995 Apr 10;61(2):272–9.PubMedGoogle Scholar
  85. Nakano M, Knowlton AA, Yokoyama T, Lesslauer W, Mann DL. Tumor necrosis factor-alpha-induced expression of heat shock protein 72 in adult feline cardiac myocytes. Am J Physiol. 1996 Apr;270(4 Pt 2):H1231–H9.PubMedGoogle Scholar
  86. Nitta Y, Abe K, Aoki M, Ohno I, Isoyama S. Diminished heat shock protein 70 mRNA induction in aged rat hearts after ischemia. Am J Physiol. 1994 Nov;267(5 Pt 2):H1795–H803.PubMedGoogle Scholar
  87. Novak F, Heyland DK, Avenell A, Drover JW, Su X. Glutamine supplementation in serious illness: a systematic review of the evidence. Crit Care Med. 2002 Sep;30(9):2022–9.PubMedGoogle Scholar
  88. Oudemans-van Straaten HM, Bosman RJ, Treskes M, van der Spoel HJ, Zandstra DF. Plasma glutamine depletion and patient outcome in acute ICU admissions. Intensive Care Med. 2001 Jan;27(1):84–90.PubMedGoogle Scholar
  89. Pedersen BK, Steensberg A, Fischer C, Keller C, Ostrowski K, Schjerling P. Exercise and cytokines with particular focus on muscle-derived IL-6. Exerc Immunol Rev. 2001;7:18–31.Google Scholar
  90. Peng ZY, Hamiel CR, Banerjee A, Wischmeyer PE, Friese RS, Wischmeyer P. Glutamine attenuation of cell death and inducible nitric oxide synthase expression following inflammatory cytokine-induced injury is dependent on heat shock factor-1 expression. JPEN J Parenter Enteral Nutr. 2006 Sep–Oct;30(5):400–6.PubMedGoogle Scholar
  91. Petrof EO, Kojima K, Ropeleski MJ, Musch MW, Tao Y, De Simone C, Chang EB. Probiotics inhibit nuclear factor-kappaB and induce heat shock proteins in colonic epithelial cells through proteasome inhibition. Gastroenterology. 2004 Nov;127(5):1474–87.PubMedGoogle Scholar
  92. Pittet JF, Lee H, Morabito D, Howard MB, Welch WJ, Mackersie RC. Serum levels of HSP 72 measured early after trauma correlate with survival. J Trauma. 2002 Apr;52(4):611–7.PubMedGoogle Scholar
  93. Pockley AG, Georgiades A, Thulin T, de Faire U, Frostegård J. Serum heat shock protein 70 levels predict the development of atherosclerosis in subjects with established hypertension. Hypertension. 2003 Sep;42(3):235–8. Epub 2003 Aug 4.PubMedGoogle Scholar
  94. Pockley AG, Shepherd J, Corton JM. Detection of heat shock protein 70 (HSP70) and anti-HSP70 antibodies in the serum of normal individuals. Immunol Invest. 1998 Dec;27(6):367–77.PubMedGoogle Scholar
  95. Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002 Aug 8;347(6):417–29.PubMedGoogle Scholar
  96. Pugh LG, Corbett JL, Johnson RH. Rectal temperatures, weight losses, and sweat rates in marathon running. J Appl Physiol. 1967 Sep;23(3):347–52.Google Scholar
  97. Pritts TA, Wang Q, Sun X, Moon MR, Fischer DR, Fischer JE, Wong HR, Hasselgren PO. Induction of the stress response in vivo decreases nuclear factor-kappa B activity in jejunal mucosa of endotoxemic mice. Arch Surg. 2000 Jul;135(7):860–6.PubMedGoogle Scholar
  98. Ran R, Lu A, Zhang L, Tang Y, Zhu H, Xu H, Feng Y, Han C, Zhou G, Rigby AC, Sharp FR. Hsp70 promotes TNF-mediated apoptosis by binding IKK gamma and impairing NF-kappa B survival signaling. Genes Dev. 2004 Jun 15;18(12):1466–81.PubMedGoogle Scholar
  99. Roigas J, Wallen ES, Loening SA, Moseley PL. Heat shock protein (HSP72) surface expression enhances the lysis of a human renal cell carcinoma by IL-2 stimulated NK cells. Adv Exp Med Biol. 1998;451:225–9.PubMedGoogle Scholar
  100. Roth E, Funovics J, Mühlbacher F, Schemper M, Mauritz W, Sporn P, Fritsch A. Metabolic disorders in severe abdominal sepsis: Glutamine deficiency in skeletal muscle. Clin Nutr. 1982 Mar;1(1):25–41.PubMedGoogle Scholar
  101. Ryan AJ, Flanagan SW, Moseley PL, Gisolfi CV. Acute heat stress protects rats against endotoxin shock. J Appl Physiol. 1992 Oct;73(4):1517–22.PubMedGoogle Scholar
  102. Schett G, Steiner CW, Xu Q, Smolen JS, Steiner G. TNF-α mediates susceptibility to heat-induced apoptosis by protein phosphatase-mediated inhibition of the HSF1/HSP70 stress response. Cell Death Differ. 2003 Oct;10(10):1126–36.PubMedGoogle Scholar
  103. Schroeder S, Lindemann C, Hoeft A, Putensen C, Decker D, von Ruecker AA, Stüber F. Impaired inducibility of heat shock protein 70 in peripheral blood lymphocytes of patients with severe sepsis. Crit Care Med. 1999 Jun;27(6):1080–4.PubMedGoogle Scholar
  104. Semenza JC, Rubin CH, Falter KH, Selanikio JD, Flanders WD, Howe HL, Wilhelm JL. Heat-related deaths during the July 1995 heat wave in Chicago. N Engl J Med. 1996 Jul 11;335(2):84–90.PubMedGoogle Scholar
  105. Sharma HS, Weisensee D, Löw-Friedrich I. Tumor necrosis factor-alpha-induced cytoprotective mechanisms in cardiomyocytes. Analysis by mRNA phenotyping. Ann N Y Acad Sci. 1996 Sep;30(793):267–81.Google Scholar
  106. Singh IS, He JR, Calderwood S, Hasday JD. A high affinity HSF-1 binding site in the 5′-untranslated region of the murine tumor necrosis factor-alpha gene is a transcriptional repressor. J Biol Chem. 2002 Feb 15;277(7):4981–8.PubMedGoogle Scholar
  107. Singleton KD, Beckey VE, Wischmeyer PE. Glutamine prevents activation of NF-kappab and stress kinase pathways, attenuates inflammatory cytokine release, and prevents acute respiratory distress syndrome (ARDS) following sepsis. Shock. 2005a Dec;24(6):583–9.PubMedGoogle Scholar
  108. Singleton KD, Serkova N, Beckey VE, Wischmeyer PE. Glutamine attenuates lung injury and improves survival after sepsis: role of enhanced heat shock protein expression. Crit Care Med. 2005b Jun;33(6):1206–13.PubMedGoogle Scholar
  109. Singleton KD, Wischmeyer PE. Oral glutamine enhances heat shock protein expression and improves survival following hyperthermia. Shock. 2006 Mar;25(3):295–9.PubMedGoogle Scholar
  110. Singleton KD, Wischmeyer PE. Glutamine’s protection against sepsis and lung injury is dependent on heat shock protein 70 expression. Am J Physiol Regul Integr Comp Physiol. 2007 May;292(5):R1839–R45.PubMedGoogle Scholar
  111. Snyder YM, Guthrie L, Evans GF, Zuckerman SH. Transcriptional inhibition of endotoxin-induced monokine synthesis following heat shock in murine peritoneal macrophages. J Leukoc Biol. 1992 Feb;51(2):181–7.PubMedGoogle Scholar
  112. Spittler A, Winkler S, Götzinger P, Oehler R, Willheim M, Tempfer C, Weigel G, Függer R, Boltz-Nitulescu G, Roth E. Influence of glutamine on the phenotype and function of human monocytes. Blood. 1995 Aug 15;86(4):1564–9.PubMedGoogle Scholar
  113. Srivastava PK, Udono H, Blachere NE, Li Z. Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics. 1994;39(2):93–8.PubMedGoogle Scholar
  114. Sullivan CS, Pipas JM. The virus-chaperone connection. Virology. 2001 Aug 15;287(1):1–8.PubMedGoogle Scholar
  115. Sun D, Chen D, Du B, Pan J. Heat shock response inhibits NF-kappaB activation and cytokine production in murine Kupffer cells. J Surg Res. 2005 Nov;129(1):114–21.PubMedGoogle Scholar
  116. Tang D, Shi Y, Jang L, Wang K, Xiao W, Xiao X. Heat shock response inhibits release of high mobility group box 1 protein induced by endotoxin in murine macrophages. Shock. 2005 May;23(5):434–40.PubMedGoogle Scholar
  117. Ulmasov KA, Shammakov S, Karaev K, Evgen’ev MB. Heat shock proteins and thermoresistance in lizards. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1666–70.PubMedGoogle Scholar
  118. Van Deventer SJ. Tumour necrosis factor and Crohn’s disease. Gut. 1997 Apr;40(4):443–8.PubMedGoogle Scholar
  119. Van Hall G, Steensberg A, Fischer C, Keller C, Møller K, Moseley P, Pedersen BK. Interleukin-6 markedly decreases skeletal muscle protein turnover and increases non-muscle amino acid utilization in healthy individuals. J Clin Endocrinol Metab. 2008 Apr 22;93(7):2851–8.PubMedGoogle Scholar
  120. Vesali RF, Klaude M, Rooyackers O, Wernerman J. Amino acid metabolism in leg muscle after an endotoxin injection in healthy volunteers. Am J Physiol Endocrinol Metab. 2005 Feb;288(2):E360–4. Epub 2004 Sep 14.PubMedGoogle Scholar
  121. Walsh RC, Koukoulas I, Garnham A, Moseley PL, Hargreaves M, Febbraio MA. Exercise increases serum HSP72 in humans. Cell Stress Chaperones. 2001 Oct;6(4):386–93.PubMedGoogle Scholar
  122. Wang Y, Li C, Wang X, Zhang J, Chang Z. Heat shock response inhibits IL-18 expression through the JNK pathway in murine peritoneal macrophages. Biochem Biophys Res Commun. 2002 Aug 23;296(3):742–8.PubMedGoogle Scholar
  123. Whittall T, Wang Y, Kelly CG, Thompson R, Sanderson J, Lomer M, Soon SY, Bergmeier LA, Singh M, Lehner T. Tumour necrosis factor-alpha production stimulated by heat shock protein 70 and its inhibition in circulating dendritic cells and cells eluted from mucosal tissues in Crohn’s disease. Clin Exp Immunol. 2006 Mar;143(3):550–9.Google Scholar
  124. Weingartmann G, Oehler R, Derkits S, Oismüller C, Függer R, Roth E. HSP70 expression in granulocytes and lymphocytes of patients with polytrauma: comparison with plasma glutamine. Clin Nutr. 1999 Apr;18(2):121–4.PubMedGoogle Scholar
  125. Wirth D, Bureau F, Melotte D, Christians E, Gustin P. Evidence for a role of heat shock factor 1 in inhibition of NF-kappaB pathway during heat shock response-mediated lung protection. Am J Physiol Lung Cell Mol Physiol. 2004 Nov;287(5):L953–61. Epub 2004 Jun 25.PubMedGoogle Scholar
  126. Wischmeyer PE, Kahana M, Wolfson R, Ren H, Musch MM, Chang EB. Glutamine induces heat shock protein and protects against endotoxin shock in the rat. J Appl Physiol. 2001a Jun;90(6):2403–10.PubMedGoogle Scholar
  127. Wischmeyer PE, Kahana M, Wolfson R, Ren H, Musch MM, Chang EB. Glutamine reduces cytokine release, organ damage, and mortality in a rat model of endotoxemia. Shock. 2001b Nov;16(5):398–402.PubMedGoogle Scholar
  128. Wischmeyer PE, Lynch J, Liedel J, Wolfson R, Riehm J, Gottlieb L, Kahana M. Glutamine administration reduces Gram-negative bacteremia in severely burned patients: a prospective, randomized, double-blind trial versus isonitrogenous control. Crit Care Med. 2001c Nov;29(11):2075–80.PubMedGoogle Scholar
  129. Wischmeyer PE, Musch MW, Madonna MB, Thisted R, Chang EB. Glutamine protects intestinal epithelial cells: role of inducible HSP70. Am J Physiol. 1997 Apr;272(4 Pt 1):G879–84.PubMedGoogle Scholar
  130. Wong HR, Ryan M, Wispé JR. Stress response decreases NF-kappaB nuclear translocation and increases I-kappaBalpha expression in A549 cells. J Clin Invest. 1997 May 15;99(10):2423–8.PubMedGoogle Scholar
  131. Wright BH, Corton JM, El-Nahas AM, Wood RF, Pockley AG. Elevated levels of circulating heat shock protein 70 (HSP70) in peripheral and renal vascular disease. Heart Vessels. 2000;15(1):18–22.PubMedGoogle Scholar
  132. Xiao X, Zhang H, Tang D, Shi Y. Gene expression regulation of cytokines by heat shock factor 1 (hsf1) and HSP70 during endotoxemia. Shock. 2006;25(6):63–4.Google Scholar
  133. Xiao X, Zuo X, Davis AA, McMillan DR, Curry BB, Richardson JA, Benjamin IJ. HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J. 1999 Nov 1;18(21):5943–52.PubMedGoogle Scholar
  134. Xue H, Sawyer MB, Field CJ, Dieleman LA, Murray D, Baracos VE. Bolus oral glutamine protects rats against CPT-11-induced diarrhea and differentially activates cytoprotective mechanisms in host intestine but not tumor. J Nutr. 2008 Apr;138(4):740–6.PubMedGoogle Scholar
  135. Yamada PM, Amorim FT, Moseley P, Robergs R, Schneider SM. Effect of heat acclimation on heat shock protein 72 and interleukin-10 in humans. J Appl Physiol. 2007 Oct;103(4):1196–204Google Scholar
  136. Ye D, Ma I, Ma TY. Molecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier. Am J Physiol Gastrointest Liver Physiol. 2006;290:G496–504.PubMedGoogle Scholar
  137. Zhang G, Ghosh S. Molecular mechanisms of NF-kappaB activation induced by bacterial lipopolysaccharide through Toll-like receptors. J Endotoxin Res. 2000;6(6):453–7.PubMedGoogle Scholar
  138. Zhang HJ, Xu L, Drake VJ, Xie L, Oberley LW, Kregel KC. Heat-induced liver injury in old rats is associated with exaggerated oxidative stress and altered transcription factor activation. FASEB J. 2003 Dec;17(15):2293–5.PubMedGoogle Scholar
  139. Ziegler TR, Ogden LG, Singleton KD, Luo M, Fernandez-Estivariz C, Griffith DP, Galloway JR, Wischmeyer PE. Parenteral glutamine increases serum heat shock protein 70 in critically ill patients. Intensive Care Med. 2005 Aug;31(8):1079–86.PubMedGoogle Scholar
  140. Ziegler TR, Smith RJ, O’Dwyer ST, Demling RH, Wilmore DW. Increased intestinal permeability associated with infection in burn patients. Arch Surg. 1988 Nov;123(11):1313–9.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Internal MedicineUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations