Advertisement

Hsp60 and Hsp10 in Ageing

  • Francesco Cappello
  • Antonino Di Stefano
  • Everly Conway De Macario
  • Alberto J.L. MacarioEmail author
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 5)

Abstract

HSP and molecular chaperones, both referred to in this chapter as chaperones, are key players in development and senescence. With regard to senescence, several issues are critical: the role of normal chaperones in the process of ageing itself and in preventing and controlling age-associated diseases, the role of defective chaperones (chaperonopathies) in the onset and progression of senescence and in the etiology of old-age diseases, the interaction of chaperones with the immune system, and the potential of chaperones as therapeutic agents for counteracting the deleterious effects of ageing on molecules and cells and for treating proteinopathies of the elderly (chaperonotherapy). All these issues are discussed in this chapter, focusing on Hsp60 and Hsp10 (referred to as chaperonins for the purposes of this article) by examining a sample of publications dealing with pathological conditions prevalent in aged individuals, such as atherosclerosis and coronary syndromes, neurodegenerative and degenerative joint disorders, diabetes, chronic occlusive pulmonary disease, and glaucoma (cancer is omitted because it has recently been extensively discussed elsewhere). The data show that Hsp60 and Hsp10 undergo changes in levels and distribution inside cells and tissues, including invasion of the extracellular space and plasma, with age and health status and in relation with specific pathologies. The physiological and/or pathological significance of these changes is not yet fully understood but is being actively investigated. The role of chaperonopathies, particularly those due to aberrant post-translational modifications related to stressors such as ROS, on the aggravation of senescence ought to be examined in detail in the near future. Studies on the mechanisms by which defective chaperones (molecular chaperonopathies) accelerate senescence and contribute to pathogenesis and, thus, to the development of disease (clinical chaperonopathies) should provide key information useful for developing diagnostic and therapeutic means based on chaperone genes and proteins

Keywords

Hsp60 Hsp10 chaperones chaperonopathies chaperonotherapy chaperonins co-chaperonin immunocytochemistry immunohistochemistry arteriosclerosis coronary pathology heart disease neurodegenerative diseases degenerative joint disease diabetes glaucoma 

Abbreviations

AD

Alzheimer’s disease

ATS

atherosclerosis

CAD

coronary artery disease

CNS

central nervous system

CP

Clamydia pneumoniae

DAVS

degenerative aortic-valve stenosis

ECC

extracorporeal circulation

ERK

extracellular signal-regulated kinases

her2

human epidermal growth factor receptor2

HSP

heat shock proteins

IL-6

interleukin-6

LDL

low density lipoproteins

LPS

lipopolysaccharide

NF-κB

nuclear factor kappa-light-chain-enhancer of activated B cells

PD

Parkinson’s disease

Th-1

T helper-1

TLR

toll-like receptors

TNF-α

tumor necrosis factor-alpha

Notes

Acknowledgements

We thank Dr. Antonella Marino Gammazza for the pictures in Figure 1.

References

  1. Ausiello, C. M., Fedele, G., Palazzo, R., Spensieri, F., Ciervo, A. and Cassone, A. (2006) 60-kDa heat shock protein of Chlamydia pneumoniae promotes a T helper type 1 immune response through IL-12/IL-23 production in monocyte-derived dendritic cells. Microbes Infect. 8, 714–720.PubMedGoogle Scholar
  2. Azem, A., Diamant, S., Kessel, M., Weiss, C. and Goloubinoff, P. (1995) The protein-folding activity of chaperonins correlates with the symmetric GroEL14 (GroES7)2 heterooligomer. Proc. Natl. Acad. Sci. U. S. A. 92, 12021–12025.PubMedGoogle Scholar
  3. Bajramovic, J. J., Bsibsi, M., Geutskens, S. B., Hassankhan, R., Verhulst, K. C., Stege, G. J., de Groot, C. J. and van Noort, J. M. (2000) Differential expression of stress proteins in human adult astrocytes in response to cytokines. J. Neuroimmunol. 106, 14–22.PubMedGoogle Scholar
  4. Bhattacharyya, J., Shipova, E. V., Santhoshkumar, P., Sharma, K. K. and Ortwerth, B. J. (2007) Effect of a single AGE modification on the structure and chaperone activity of human alphaB-crystallin. Biochemistry 46, 14682–14692.PubMedGoogle Scholar
  5. Biasucci, L. M., Liuzzo, G., Ciervo, A., Petrucca, A., Piro, M., Angiolillo, D. J., Crea, F., Cassone, A. and Maseri, A. (2003) Antibody response to chlamydial heat shock protein 60 is strongly associated with acute coronary syndromes. Circulation 107, 3015–3017.PubMedGoogle Scholar
  6. Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D. C., Joachimiak, A., Horwich, A. L. and Sigler, P.B (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371, 578–586.PubMedGoogle Scholar
  7. Brennan, L. A. and Kantorow, M. (2009) Mitochondrial function and redox control in the aging eye: Role of MsrA and other repair systems in cataract and macular degenerations. Exp. Eye Res. 88, 195–203.Google Scholar
  8. Brocchieri, L., Conway de Macario, E. and Macario, A. J. L. (2007) Chaperonomics, a new tool to study ageing and associated diseases. Mechan Ageing Develop. 128, 125–136.Google Scholar
  9. Bross, P., Naundrup, S., Hansen, J., Nielsen, M. N., Christensen, J. H., Kruhøffer, M., Palmfeldt, J., Corydon, T. J., Gregersen, N., Ang, D., Georgopoulos, C., Nielsen, K. L. (2008) The HSP60-(P.val98ile) mutation associated with hereditary spastic paraplegia SPG13 compromises chaperonin function both in vitro and in vivo. J. Biol. Chem. 283, 15694–15700.PubMedGoogle Scholar
  10. Burian, K., Kis, Z., Virok, D., Endresz, V., Prohaszka, Z., Duba, J., Berencsi, K., Boda, K., Horvath, L., Romics, L., Fust, G. and Gonczol, E. (2001) Independent and joint effects of antibodies to human heat-shock protein 60 and Chlamydia pneumoniae infection in the development of coronary atherosclerosis. Circulation 103, 1503–1508.PubMedGoogle Scholar
  11. Calabrese, V., Butterfield, D. A., Scapagnini, G., Stella, A. M. and Maines, M. D. (2006b) Redox regulation of heat shock protein expression by signaling involving nitric oxide and carbon monoxide: relevance to brain aging, neurodegenerative disorders, and longevity. Antioxid. Redox Signal. 8(3–4), 444–477.PubMedGoogle Scholar
  12. Calabrese, V., Scapagnini, G., Ravagna, A., Colombrita, C., Spadaro, F., Butterfield, D.A. and Giuffrida Stella, A. M. (2004) Increased expression of heat shock proteins in rat brain during aging: relationship with mitochondrial function and glutathione redox state. Mech. Ageing Dev. 125(4), 325–335.PubMedGoogle Scholar
  13. Calabrese, V., Sultana, R., Scapagnini, G., Guagliano, E., Sapienza, M., Bella, R., Kanski, J., Pennisi, G., Mancuso, C., Stella, A. M. and Butterfield, D. A. (2006a) Nitrosative stress, cellular stress response, and thiol homeostasis in patients with Alzheimer’s disease. Antioxid Redox Signal 8, 1975–1986.PubMedGoogle Scholar
  14. Cappello, F., Conway de Macario, E., Marasa, L., Zummo, G. and Macario, A. J. L. (2008) Hsp60 expression, new locations, functions, and perspectives for cancer diagnosis and therapy. Cancer Biol. Ther. 7, 801–809.PubMedGoogle Scholar
  15. Cappello, F., Czarnecka, A.M., La Rocca, G., Di Stefano, A., Zummo, G. and Macario, A.J. L. (2007) Hsp60 and Hsp10 as antitumor molecular agents. Cancer Biol. Ther. 6, 487–489.PubMedGoogle Scholar
  16. Cappello, F., Di Stefano, A., David, S., Rappa, F., Anzalone, R., La Rocca, G., D’Anna, S. E., Magno, F., Donner, C. F., Balbi, B. and Zummo, G. (2006) Hsp60 and Hsp10 downregulation predicts bronchial epithelial carcinogenesis in smokers with chronic obstructive pulmonary disease. Cancer 107, 2417–2424..PubMedGoogle Scholar
  17. Cechetto, J. D., Soltys, B. J. and Gupta, R. S. (2000) Localization of mitochondrial 60-kD heat shock chaperonin protein (Hsp60) in pituitary growth hormone secretory granules and pancreatic zymogen granules. J. Histochem. Cytochem. 48, 45–56.PubMedGoogle Scholar
  18. Chan, J. Y., Cheng, H. L., Chou, J. L., Li, F. C., Dai, K. Y., Chan, S. H. and Chang, A. Y. (2007) Heat shock protein 60 or 70 activates nitric-oxide synthase (NOS) I- and inhibits NOS II-associated signaling and depresses the mitochondrial apoptotic cascade during brain stem death. J. Biol. Chem. 282, 4585–4600.PubMedGoogle Scholar
  19. Chang, A. Y., Chan, J. Y., Chou, J. L., Li, F. C., Dai, K. Y. and Chan, S. H. (2006) Heat shock protein 60 in rostral ventrolateral medulla reduces cardiovascular fatality during endotoxaemia in the rat. J. Physiol. 574, 547–564.PubMedGoogle Scholar
  20. Choi, J. I., Chung, S. W., Kang, H. S., Rhim, B. Y., Kim, S. J. and Kim, S. J. (2002) Establishment of Porphyromonas gingivalis heat-shock-protein-specific T-cell lines from atherosclerosis patients. J. Dent. Res. 81, 344–348.PubMedGoogle Scholar
  21. Choi, J. I., Chung, S. W., Kang, H. S., Rhim, B. Y., Park, Y. M., Kim, U. S. and Kim, S. J. (2004) Epitope mapping of Porphyromonas gingivalis heat-shock protein and human heat-shock protein in human atherosclerosis. J. Dent. Res. 83, 936–940.PubMedGoogle Scholar
  22. Chung S. W., Kang, H. S., Park, H. R., Kim, S.J., Kim, S.J., and Choi, J.I. (2003) Immune responses to heat shock protein in Porphyromonas gingivalis-infected periodontitis and atherosclerosis patients. J. Periodontal. Res. 38, 388–393.PubMedGoogle Scholar
  23. Ciervo, A., Visca, P., Petrucca, A., Biasucci, L. M., Maseri, A. and Cassone, A. (2002) Antibodies to 60-kilodalton heat shock protein and outer membrane protein 2 of Chlamydia pneumoniae in patients with coronary heart disease. Clin. Diagn. Lab. Immunol. 9, 66–74.PubMedGoogle Scholar
  24. Cloos, P. A. and Christgau, S. (2004) Post-translational modifications of proteins: implications for aging, antigen recognition, and autoimmunity. Biogerontology 5, 139–158.PubMedGoogle Scholar
  25. Csermely, P. (2001) Chaperone overload is a possible contributor to 'civilization diseases'. Trends Genet. 17, 701–704.PubMedGoogle Scholar
  26. Curry, A. J., Portig, I., Goodall, J. C., Kirkpatrick, P. J. and Gaston, J.S. (2000) T lymphocyte lines isolated from atheromatous plaque contain cells capable of responding to Chlamydia antigens. Clin. Exp. Immunol. 121, 261–269.PubMedGoogle Scholar
  27. Czarnecka, A. M., Marino Gammazza, A., Di Felice, V., Zummo, G. and Cappello, F. (2007) Cancer as a “Mitochondriopathy”. J. Cancer Mol. 3, 71–79.Google Scholar
  28. Deocaris, C. C., Kaul, S. C. and Wadhwa, R. (2006) On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress Chaperones 11, 116–128.PubMedGoogle Scholar
  29. Di Felice, V., Ardizzone, N., Marcianò, V., Bartolotta, T., Cappello, F., Farina, F. and Zummo, G. (2005a) Senescence-associated HSP60 expression in normal human skin fibroblasts. Anat. Rec. 284A, 446–453.Google Scholar
  30. Di Felice, V., David, S., Cappello, F., Farina, F. and Zummo, G. (2005b) Is chlamydial heat shock protein 60 a risk factor for oncogenesis? Cell. Mol. Life Sci. 62, 4–9.PubMedGoogle Scholar
  31. Dubaquie, Y., Looser, R., Funfschilling, U., Jeno, P. and Rospert, S. (1998) Identification of in vivo substrates of the yeast mitochondrial chaperonins reveals overlapping but non-identical requirement for hsp60 and hsp10. EMBO J. 17, 5868–5876.PubMedGoogle Scholar
  32. Forsythe, H. L., Jarvis, J.L., Turner, J. W., Elmore, L. W. and Holt, S. E. (2001) Stable associationof hsp90 and p23, but Not hsp70, with active human telomerase. J. Biol. Chem. 276(19), 15571–15574.PubMedGoogle Scholar
  33. Garigan, D., Hsu, A. L., Fraser, A. G., Kamath, R. S., Ahringer, J. and Kenyon, C. (2002) Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161, 1101–1112.PubMedGoogle Scholar
  34. Giannessi, D., Colotti, C., Maltinti, M., Del Ry, S., Prontera, C., Turchi, S., Labbate, A. and Neglia, D. (2007) Circulating heat shock proteins and inflammatory markers in patients with idiopathic left ventricular dysfunction: their relationships with myocardial and microvascular impairment. Cell Stress Chaperones 12, 265–274.PubMedGoogle Scholar
  35. Gromov, P., Skovgaard, G. L, Palsdottir, H., Gromova, I., Østergaard, M. and Celis, J. E. (2003) Protein profiling of the human epidermis from the elderly reveals up-regulation of a signature of interferon-gamma-induced polypeptides that includes manganese-superoxide dismutase and the p85beta subunit of phosphatidylinositol 3-kinase. Mol. Cell. Proteomics 2, 70–84.PubMedGoogle Scholar
  36. Gupta, S., Knowlton, A. A. (2007) HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am. J. Physiol. Heart Circ. Physiol. 292, H3052–H3056.PubMedGoogle Scholar
  37. Haak, J., Kregel, K.C. (2008) 1962–2007: a cell stress odyssey. Novartis Found. Symp. 291, 3–15.PubMedGoogle Scholar
  38. Hammerer-Lercher, A., Mair, J., Bonatti, J., Watzka, S. B., Puschendorf, B. and Dirnhofer, S. (2001) Hypoxia induces heat shock protein expression in human coronary artery bypass grafts. Cardiovasc. Res. 50, 115–124.PubMedGoogle Scholar
  39. Hansen, J. J., Bross, P., Westergaard, M., Nielsen, M. N., Eiberg, H., Borglum, A. D., Mogensen, J., Kristiansen, K., Bolund, L. and Gregersen, N. (2003) Genomic structure of the human mitochondrial chaperonin genes: HSP60 and HSP10 are localised head to head on chromosome 2 separated by a bidirectional promoter. Hum. Genet. 112, 71–77.PubMedGoogle Scholar
  40. Hansen, J. J, Durr, A., Cournu-Rebeix, I., Georgopoulos, C., Ang, D., Davoine, C. S., Brice, A., Fontaine, B., Gregersen, N., Bross, P. (2002) Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am. J. Hum. Genet. 70, 1328–1332.PubMedGoogle Scholar
  41. Hansen, J., Svenstrup, K., Ang, D., Nielsen, M. N., Christensen, J. H., Gregersen, N., Nielsen, J. E., Georgopoulos, C. and Bross, P. (2007) A novel mutation in the HSPD1 gene in a patient with hereditary spastic paraplegia. J. Neurol. 254, 897–900.PubMedGoogle Scholar
  42. Hasler, P. and Zouali, M. (2005) Immune receptor signaling, aging, and autoimmunity. Cell Immunol. 233, 102–108.PubMedGoogle Scholar
  43. Hawkins, C. L. and Davies, M. J. (2001) Generation and propagation of radical reactions on proteins. Biochim. Biophys. Acta 1504, 196–219.PubMedGoogle Scholar
  44. Hoshida, S., Nishino, M., Tanouchi, J., Kishimoto, T. and Yamada, Y. (2005) Acute Chlamydia pneumoniae infection with heat-shock-protein-60-related response in patients with acute coronary syndrome. Atherosclerosis 183, 109–112.PubMedGoogle Scholar
  45. Hoymans, V. Y., Bosmans, J. M., Van Herck, P. L., Ieven, M. M. and Vrints, C. J. (2008) Implications of antibodies to heat-shock proteins in ischemic heart disease. Int. J. Cardiol. 123, 277–282.PubMedGoogle Scholar
  46. Hsu, A. L., Murphy, C. T. and Kenyon, C. (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300, 1142–1145.PubMedGoogle Scholar
  47. Hunt, J. F., Weaver, A. J., Landry, S. J., Gierasch, L. and Deisenhofer, J. (1996) The crystal structure of the GroES co-chaperonin at 2.8 A resolution. Nature 379, 37–45.PubMedGoogle Scholar
  48. Jastrzebski, M., Czarnecka, D., Rajzer, M. and Kawecka-Jaszcz, K. (2006) Increased levels of inflammatory markers in hypertensives with target organ damage. Kardiol. Pol. 64, 802–809.PubMedGoogle Scholar
  49. Jindal, S., Dudani, A. K., Singh, B., Harley, C. B. and Gupta, R.S. (1989) Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kilodalton mycobacterial antigen. Mol. Cell. Biol. 9, 2279–2283.PubMedGoogle Scholar
  50. Johnson, B. J., Le, T. T., Dobbin, C. A., Banovic, T., Howard, C. B., Leon Flores, F. de M., Vanags, D., Naylor, D. J., Hill, G.R. and Suhrbier A. (2005) Heat shock protein 10 inhibits lipopolysaccharide-induced inflammatory mediator production. J. Biol. Chem. 280, 4037–4047.PubMedGoogle Scholar
  51. Kaul, Z., Yaguchi, T., Kaul, S. C. and Wadhwa, R. (2006) Quantum dot-based protein imaging and functional significance of two mitochondrial chaperones in cellular senescence and carcinogenesis. Ann. N. Y. Acad. Sci. 1067, 469–473.PubMedGoogle Scholar
  52. Keppler, B. R., Grady, A. T. and Jarstfer, M. B. (2006) The biochemical role of the heat shock protein 90 chaperone complex in establishing human telomerase activity. J. Biol. Chem. 281(29), 19840–19848.PubMedGoogle Scholar
  53. Knoflach, M., Kiechl, S., Mayrl, B., Kind, M., Gaston, J. S., van der Zee, R., Faggionato, A., Mayr, A., Willeit, J. and Wick, G. (2007) T-cell reactivity against HSP60 relates to early but not advanced atherosclerosis. Atherosclerosis 195, 333–338.PubMedGoogle Scholar
  54. Knoflach, M., Mayrl, B., Mayerl, C., Sedivy, R. and Wick, G. (2003) Atherosclerosis as a paradigmatic disease of the elderly: role of the immune system. Immunol. Allergy Clin. North Am. 23, 117–132.PubMedGoogle Scholar
  55. Krenn, V., Vollmers, H. P., von Landenberg, P., Schmausser, B., Rupp, M., Roggenkamp, A., and Müller-Hermelink, H.K. (1996) Immortalized B-lymphocytes from rheumatoid synovial tissue show specificity for bacterial HSP 60. Virchows Arch. 427, 511–518.PubMedGoogle Scholar
  56. Ksiazek, K., Piatek, K. and Witowski, J. (2008) Impaired response to oxidative stress in senescent cells may lead to accumulation of DNA damage in mesothelial cells from aged donors. Biochem. Biophys. Res. Commun. 373, 335–339.PubMedGoogle Scholar
  57. Kumar, P. A., Kumar, M. S. and Reddy, G. B. (2007) Effect of glycation on alpha-crystallin structure and chaperone-like function. Biochem. J. 408, 251–258.PubMedGoogle Scholar
  58. Large, A. T. and Lund, P. A. (2009) Archaeal chaperonins. Front. Biosci. 14, 1304–1324.Google Scholar
  59. Latif, N., Taylor, P. M., Khan, M. A., Yacoub, M. H., Dunn, M. J. (1999) The expression of heat shock protein 60 in patients with dilated cardiomyopathy. Basic Res. Cardiol. 94, 112–119.PubMedGoogle Scholar
  60. Lee, Y. H., Lee, J. C., Moon, H. J., Jung, J. E., Sharma, M., Park, B. H., Yi, H. K. and Jhee, E. C. (2008) Differential effect of oxidative stress on the apoptosis of early and late passage human diploid fibroblasts: implication of heat shock protein 60. Cell. Biochem. Funct. 26, 502–508.PubMedGoogle Scholar
  61. Lee, H. C. and Wei, Y. H. (2007) Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp. Biol. Med. (Maywood) 232(5), 592–606.Google Scholar
  62. Lenzi, C., Palazzuoli, A., Giordano, N., Alegente, G., Gonnella, C., Campagna, M. S., Santucci, A., Sozzi, M., Papakostas, P., Rollo, F., Nuti, R. and Figura, N. (2006) H. pylori infection and systemic antibodies to CagA and heat shock protein 60 in patients with coronary heart disease. World J. Gastroenterol. 12, 7815–7820.PubMedGoogle Scholar
  63. Levy-Rimler, G., Bell, R. E., Ben-Tal, N. and Azem, A. (2002) Type I chaperonins: not all are created equal. FEBS Lett. 529, 1–5.PubMedGoogle Scholar
  64. Liang, K. P. and Gabriel, S. E. (2007) Autoantibodies: innocent bystander or key player in immunosenescence and atherosclerosis? J. Rheumatol. 34, 1203–1207.PubMedGoogle Scholar
  65. Lin, K. M, Hollander, J. M., Kao, V. Y., Lin, B., Macpherson, L. and Dillmann, W. H. (2004) Myocyte protection by 10 kD heat shock protein (Hsp10) involves the mobile loop and attenuation of the Ras GTP-ase pathway. FASEB J. 18, 1004–1006.PubMedGoogle Scholar
  66. Lin, L., Kim, S. C., Wang, Y., Gupta, S., Davis, B., Simon, S. I., Torre-Amione, G. and Knowlton, A. A. (2007) HSP60 in heart failure: abnormal distribution and role in cardiac myocyte apoptosis. Am. J. Physiol. Heart Circ. Physiol. 293, H2238–H2247.PubMedGoogle Scholar
  67. Macario, A. J. L. (1995) Heat-shock proteins and molecular chaperones: implications for pathogenesis, diagnostics, and therapeutics. Intl. J. Clin. Lab. Res. 25, 59–70.Google Scholar
  68. Macario, A. J. L. and Conway de Macario, E. (2000) Stress and molecular chaperones in disease. Intl. J. Clin. Lab. Res. 30, 49–66.Google Scholar
  69. Macario, A. J. L. and Conway de Macario, E. (2001a) Molecular chaperones and age-related degenerative disorders. Adv. Cell Aging Gerontol. 7, 131–162.Google Scholar
  70. Macario, A. J. L. and Conway de Macario, E. (2001b) The molecular chaperone system and other anti-stress mechanisms in archaea. Front. Biosci. 6, d262–d283.PubMedGoogle Scholar
  71. Macario, A. J. L and Conway de Macario, E. (2002) Sick chaperones and ageing: a perspective. Ageing Res. Rev. 1, 295–311.PubMedGoogle Scholar
  72. Macario, A. J. L and Conway de Macario, E. (2004) The pathology of anti-stress mechanisms: A new frontier. Stress 7, 243–249.PubMedGoogle Scholar
  73. Macario, A. J. L and Conway de Macario, E. (2005) Sick chaperones, cellular stress, and disease. N. Engl. J. Med. 353, 1489–1501.PubMedGoogle Scholar
  74. Macario, A. J. L and Conway de Macario, E. (2007a) Chaperonopathies and chaperonotherapy. FEBS Lett. 581, 3681–3688.PubMedGoogle Scholar
  75. Macario, A. J. L and Conway de Macario, E. (2007b) Chaperonopathies by defect, excess, or mistake. Ann. N. Y. Acad. Sci. 1113, 178–191.PubMedGoogle Scholar
  76. Macario A. J. L and Conway de Macario, E. (2007c) Molecular chaperones: multiple functions, pathologies, and potential applications. Front. Biosci. 12, 2588–2600.PubMedGoogle Scholar
  77. Macario, A. J. L., Grippo, T. M and Conway de Macario, E. (2005) Genetic disorders involving molecular-chaperone genes: A perspective. Genet. Med. 7, 3–12.PubMedGoogle Scholar
  78. Macario, A. J. L., Lange, M., Ahring, B. K. and Conway de Macario, E. (1999) Stress genes and proteins in the Archaea. Microbiol. Mol. Biol. Rev. 63, 923–967.PubMedGoogle Scholar
  79. Macario, A. J. L., Malz, M and Conway de Macario, E. (2004) Evolution of assisted protein folding: the distribution of the main chaperoning systems within the phylogenetic domain archaea. Front. Biosci. 9, 1318–1332.PubMedGoogle Scholar
  80. Magen, D., Georgopoulos, C., Bross, P., Ang, D., Segev, Y., Goldsher, D., Nemirovski, A., Shahar, E., Ravid, S., Luder, A., Heno, B., Gershoni-Baruch, R., Skorecki, K. and Mandel, H. (2008) Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am. J. Hum. Genet. 83, 30–42.PubMedGoogle Scholar
  81. Mahdi, O. S., Horne, B. D., Mullen, K., Muhlestein, J. B. and Byrne, G. I. (2002) Serum immunoglobulin G antibodies to chlamydial heat shock protein 60 but not to human and bacterial homologs are associated with coronary artery disease. Circulation 106, 1659–1663.PubMedGoogle Scholar
  82. Martin, J. E., Swash, M., Mather, K. and Leigh, P. N. (1993) Expression of the human groEL stress-protein homologue in the brain and spinal cord. J. Neurol. Sci. 118, 202–206.PubMedGoogle Scholar
  83. Mayr, M., Metzler, B., Kiechl, S., Willeit, J., Schett, G., Xu, Q. and Wick, G. (1999) Endothelial cytotoxicity mediated by serum antibodies to heat shock proteins of Escherichia coli and Chlamydia pneumoniae: immune reactions to heat shock proteins as a possible link between infection and atherosclerosis. Circulation 99, 1560–1566.PubMedGoogle Scholar
  84. Mazzone, A., Epistolato, M. C., De Caterina, R., Storti, S., Vittorini, S., Sbrana, S., Gianetti, J., Bevilacqua, S., Glauber, M., Biagini, A. and Tanganelli, P. (2004) Neoangiogenesis, T-lymphocyte infiltration, and heat shock protein-60 are biological hallmarks of an immunomediated inflammatory process in end-stage calcified aortic valve stenosis. J. Am. Coll. Cardiol. 43, 1670–1676.PubMedGoogle Scholar
  85. Minamino, T., Miyauchi, H., Yoshida, T., Tateno, K., Komuro, I. (2004) The role of vascular cell senescence in atherosclerosis: antisenescence as a novel therapeutic strategy for vascular aging. Curr. Vasc. Pharmacol. 2, 141–148.PubMedGoogle Scholar
  86. Mostafazadeh, A., Herder, C., Haastert, B., Hanifi-Moghaddam, P., Schloot, N., Koenig, W., Illig, T., Thorand, B., Holle, R., Eslami, M. B., Kolb, H. and KORA Group. (2005) Association of humoral immunity to human Hsp60 with the IL-6 gene polymorphism C-174G in patients with type 2 diabetes and controls. Horm. Metab. Res. 37, 257–263.PubMedGoogle Scholar
  87. Mukherjee, K., Conway de Macario, E., Macario, A. J. L. and Brocchieri, L. (2009) Comprehensive analysis of the human genome reveals new hsp60 gene classes and evolutionary relations. Submitted.Google Scholar
  88. Nielsen, K. L. and Cowan, N. J. (1998) A single ring is sufficient for productive chaperonin-mediated folding in vivo. Mol. Cell. 2, 93–99.PubMedGoogle Scholar
  89. Nielsen, K. L., McLennan, N., Masters, M. and Cowan, N. J. (1999) A single-ring mitochondrial chaperonin (Hsp60-Hsp10) can substitute for GroEL-GroES in vivo. J. Bacteriol. 181, 5871–5875.PubMedGoogle Scholar
  90. Nilsson, B. O., Skogh, T., Ernerudh, J., Johansson, B., Löfgren, S., Wikby, A. and Dahle, C. (2006) Antinuclear antibodies in the oldest-old women and men. J. Autoimmun. 27, 281–288.PubMedGoogle Scholar
  91. Nylandsted, J., Rohde, M., Brand, K., Bastholm, L., Elling, F. and Jäättelä, M. (2000) Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc. Natl. Acad. Sci. U. S. A. 97, 7871–7876.PubMedGoogle Scholar
  92. Okada, T., Ayada, K., Usui, S., Yokota, K., Cui, J., Kawahara, Y., Inaba, T., Hirohata, S., Mizuno, M., Yamamoto, D., Kusachi, S., Matsuura, E. and Oguma, K. (2007) Antibodies against heat shock protein 60 derived from Helicobacter pylori: diagnostic implications in cardiovascular disease. J. Autoimmun. 29, 106–115.PubMedGoogle Scholar
  93. Prelog, M. (2006) Aging of the immune system: a risk factor for autoimmunity? Autoimmun. Rev. 5, 136–139.PubMedGoogle Scholar
  94. Prohaszka, Z., Duba, J., Horvath, L., Csaszar, A., Karadi, I., Szebeni, A., Singh, M., Fekete, B., Romics, L. and Fust, G. (2001) Comparative study on antibodies to human and bacterial 60 kDa heat shock proteins in a large cohort of patients with coronary heart disease and healthy subjects. Eur. J. Clin. Invest. 31, 285–292.PubMedGoogle Scholar
  95. Prohaszka, Z., Duba, J., Lakos, G., Kiss, E., Varga, L., Janoskuti, L., Csaszar, A., Karadi, I., Nagy, K., Singh, M., Romics, L. and Fust, G. (1999) Antibodies against human heat-shock protein (hsp) 60 and mycobacterial hsp65 differ in their antigen specificity and complement-activating ability. Int. Immunol. 11, 1363–1370.PubMedGoogle Scholar
  96. Raffetto, J. D., Leverkus, M., Park, H. Y. and Menzoian, J. O. (2001) Synopsis on cellular senescence and apoptosis. J. Vasc. Surg. 34, 173–177.PubMedGoogle Scholar
  97. Ramage, J. M. and Gaston, J. S. (1999) Depressed proliferative responses by peripheral blood mononuclear cells from early arthritis patients to mycobacterial heat shock protein 60. Rheumatology 38, 631–635.PubMedGoogle Scholar
  98. Ranson, N. A., Clare, D. K., Farr, G. W., Houldershaw, D., Horwich, A. L. and Saibil, H. R. (2006) Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes. Nat. Struct. Mol. Biol. 13, 147–152.PubMedGoogle Scholar
  99. Ranson, N. A., White, H. E., Saibil, H.R. (1998) Chaperonins. Biochem. J. 333, 233–242.PubMedGoogle Scholar
  100. Rea, I. M., McNerlan, S. and Pockley, A. G. (2001) Serum heat shock protein and anti-heat shock protein antibody levels in aging. Exp. Gerontol. 36, 341–352.PubMedGoogle Scholar
  101. Rudolphi, U., Rzepka, R., Batsford, S., Kaufmann, S. H., von der Mark, K., Peter, H. H., Melchers, I. (1997) The B cell repertoire of patients with rheumatoid arthritis. II. Increased frequencies of IgG+ and IgA+ B cells specific for mycobacterial heat-shock protein 60 or human type II collagen in synovial fluid and tissue. Arthritis Rheum. 40, 1409–1419.PubMedGoogle Scholar
  102. Sadacharan, S. K., Cavanagh, A. C. and Gupta, R. S. (2001) Immunoelectron microscopy provides evidence for the presence of mitochondrial heat shock 10-kDa protein (chaperonin 10) in red blood cells and a variety of secretory granules. Histochem. Cell Biol. 116, 507–517.PubMedGoogle Scholar
  103. Satoh, M., Tang, J., Nanda, A. and Zhang, J. H. (2003) Heat shock proteins expression in brain stem after subarachnoid hemorrhage in rats. Acta Neurochir. Suppl. 86, 477–482.PubMedGoogle Scholar
  104. Schafler, A. E., Kirmanoglou, K., Balbach, J., Pecher, P., Hannekum, A. and Schumacher, B. (2002b) The expression of heat shock protein 60 in myocardium of patients with chronic atrial fibrillation. Basic Res. Cardiol. 97, 258–261.PubMedGoogle Scholar
  105. Schafler, A. E., Kirmanoglou, K., Gallmeier, U., Pecher, P., Hannekum, A. and Schumacher, B. (2003) Heat shock protein 60 expression in patients undergoing cardiac operations. J. Cardiovasc. Surg. 44, 187–190.Google Scholar
  106. Schafler, A. E., Kirmanoglou, K., Pecher, P., Hannekum, A. and Schumacher, B. (2002a) Overexpression of heat shock protein 60/10 in myocardium of patients with chronic atrial fibrillation. Ann. Thorac. Surg. 74, 767–770.PubMedGoogle Scholar
  107. Schett, G., Xu, Q., Amberger, A., Van der Zee, R., Recheis, H., Willeit, J. and Wick, G. (1995) Autoantibodies against heat shock protein 60 mediate endothelial cytotoxicity. J. Clin. Invest. 96, 2569–2577.PubMedGoogle Scholar
  108. Schlieper, A., Anwar, M., Heger, J., Piper, H. M. and Euler, G. (2007) Repression of anti-apoptotic genes via AP-1 as a mechanism of apoptosis induction in ventricular cardiomyocytes. Pflugers Arch. 454, 53–61.PubMedGoogle Scholar
  109. Seluanov, A., Gorbunova, V., Falcovitz, A., Sigal, A., Milyavsky, M., Zurer, I., Shohat, G., Goldfinger, N. and Rotter, V. (2001) Change of the death pathway in senescent human fibroblasts in response to DNA damage is caused by an inability to stabilize p53. Mol. Cell. Biol. 21, 1552–1564.PubMedGoogle Scholar
  110. Seung, N. R., Park, E. J., Kim, C. W., Kim, K. H., Kim, K. J., Cho, H. J. and Park, H. R. (2007) Comparison of expression of heat-shock protein 60, Toll-like receptors 2 and 4, and T-cell receptor gammadelta in plaque and guttate psoriasis. J. Cutan. Pathol. 34, 903–911.PubMedGoogle Scholar
  111. Shamaei-Tousi, A., Steptoe, A., O‘Donnell, K., Palmen, J., Stephens, J. W., Hurel, S. J., Marmot, M., Homer, K., D‘Aiuto, F., Coates, A. R., Humphries, S. E. and Henderson, B. (2007) Plasma heat shock protein 60 and cardiovascular disease risk: the role of psychosocial, genetic, and biological factors. Cell Stress Chaperones 12, 384–392.PubMedGoogle Scholar
  112. Shan, Y. X., Liu, T. J., Su, H. F, Samsamshariat, A., Mestril, R. and Wang, P. H. (2003) Hsp10 and Hsp60 modulate Bcl-2 family and mitochondria apoptosis signaling induced by doxorubicin in cardiac muscle cells. J. Mol. Cell. Cardiol. 35, 1135–1143.PubMedGoogle Scholar
  113. Sherman, M. Y., Gabai, V., O‘Callaghan, C. and Yaglom, J. (2007) Molecular chaperones regulate p53 and suppress senescence programs. FEBS Lett. 581, 3711–3715.PubMedGoogle Scholar
  114. Skowasch, D., Yeghiazaryan, K., Schrempf, S., Golubnitschaja, O., Welsch, U., Presse, C. J., Likungu, J.A., Welz, A., Lüderitz, B. and Bauriedel, G. (2003) Persistence of Chlamydia pneumoniae in degenerative aortic valve stenosis indicated by heat shock protein 60 homologues. J. Heart Valve Dis. 12, 68–75.PubMedGoogle Scholar
  115. Soltys, B. J. and Gupta, R. S. (1996) Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Exp. Cell Res. 222, 16–27.PubMedGoogle Scholar
  116. Soo, E. T., Ng, Y. K., Bay, B. H. and Yip, G. W. (2008) Heat shock proteins and neurodegenerative disorders. ScientificWorld J. 8, 270–274.Google Scholar
  117. Soti, C. and Csermely, P. (2003) Aging and molecular chaperones. Exp. Gerontol. 38, 1037–1040.PubMedGoogle Scholar
  118. Soti, C. and Csermely, P. (2007a) Aging cellular networks: chaperones as major participants. Exp. Gerontol. 42, 113–119.PubMedGoogle Scholar
  119. Soti, C. and Csermely, P. (2007b) Protein stress and stress proteins: Implication in aging and disease. J. Biosci. 32, 511–515.PubMedGoogle Scholar
  120. Spagnoli, L. G., Pucci, S., Bonanno, E., Cassone, A., Sesti, F., Ciervo, A. and Mauriello, A. (2007) Persistent Chlamydia pneumoniae infection of cardiomyocytes is correlated with fatal myocardial infarction. Am. J. Pathol. 170, 33–42.PubMedGoogle Scholar
  121. Squier, T. C. (2001) Oxidative stress and protein aggregation during biological aging. Exp. Gerontol. 36, 1539–1550.PubMedGoogle Scholar
  122. Sreedhar, A. S. and Csermely, P. (2004) Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol. Ther. 101, 227-257.PubMedGoogle Scholar
  123. Stadtman, E. R. (2004) Role of oxidant species in aging. Curr. Med. Chem. 11, 1105–1112.PubMedGoogle Scholar
  124. Steptoe, A., Shamaei-Tousi, A., Gylfe, A., Bailey, L., Bergström, S., Coates, A. R., and Henderson, B. (2007) Protective effect of human heat shock protein 60 suggested by its association with decreased seropositivity to pathogens. Clin. Vaccine Immunol. 204–207.Google Scholar
  125. Terry, D. F., McCormick, M., Andersen, S., Pennington, J., Schoenhofen, E., Palaima, E., Bausero, M., Ogawa, K., Perls, T. T. and Asea, A. (2004) Cardiovascular disease delay in centenarian offspring: role of heat shock proteins. Ann. N. Y. Acad. Sci. 1019, 502–505.PubMedGoogle Scholar
  126. Ungvari, Z., Buffenstein, R., Austad, S. N., Podlutsky, A., Kaley, G. and Csiszar, A. (2008) Oxidative stress in vascular senescence: lessons from successfully aging species. Front. Biosci. 13, 5056–5070.PubMedGoogle Scholar
  127. van Roon, J.A., van Eden, W., van Roy, J. L., Lafeber, F. J. and Bijlsma, J. W. (1997) Stimulation of suppressive T cell responses by human but not bacterial 60-kD heat-shock protein in synovial fluid of patients with rheumatoid arthritis. J. Clin. Invest. 100, 459–463.PubMedGoogle Scholar
  128. van Roon, J. A., van Roy, J. L., Duits, A., Lafeber, F. P. and Bijlsma, J. W. (1995) Proinflammatory cytokine production and cartilage damage due to rheumatoid synovial T helper-1 activation is inhibited by interleukin-4. Ann. Rheum. Dis. 54, 836–840.PubMedGoogle Scholar
  129. Van Eden, W., Wick, G., Albani, S. and Cohen, I. (2007) Stress, heat shock proteins, and autoimmunity: how immune responses to heat shock proteins are to be used for the control of chronic inflammatory diseases. Ann. N. Y. Acad. Sci. 1113, 217–237.PubMedGoogle Scholar
  130. Vanags, D., Williams, B., Johnson, B., Hall, S., Nash, P., Taylor, A., Weiss, J. and Feeney, D. (2006) Therapeutic efficacy and safety of chaperonin 10 in patients with rheumatoid arthritis: a double-blind randomised trial. Lancet 368, 855–863.PubMedGoogle Scholar
  131. Veereshwarayya, V., Kumar, P., Rosen, K. M., Mestril, R. and Querfurth, H. W. (2006) Differential effects of mitochondrial heat shock protein 60 and related molecular chaperones to prevent intracellular beta-amyloid-induced inhibition of complex IV and limit apoptosis. J. Biol. Chem. 281, 29468–29478.PubMedGoogle Scholar
  132. Veres, A., Füst, G., Smiela, M., McQueen, M., Horváth, A., Yi, Q., Bíró, A., Pogue, J., Romics, L., Karádi, I., Singh, M., Gnarpe, J., Prohászka, Z., and Yusuf, S. (2002) Heart Outcomes Prevention Evaluation (HOPE) Study Investigators. Relationship of anti-60 kDa heat shock protein and anti-cholesterol antibodies to cardiovascular events. Circulation 106, 2775–2780.PubMedGoogle Scholar
  133. Wax, M. B., Tezel, G., Kawase, K. and Kitazawa,Y. (2001) Serum autoantibodies to heat shock proteins in glaucoma patients from Japan and the United States. Ophtalmology. 108, 296–302.Google Scholar
  134. Wax, M. B., Tezel, G., Saito, I., Gupta, R.S, Harley, J.B., Li, Z. and Romano, C. (1998) Anti-Ro/SS-A positivity and heat shock protein antibodies in patients with normal-pressure glaucoma. Am. J. Ophthalmol. 125, 145–157.PubMedGoogle Scholar
  135. Weyand, C. M. and Goronzy, J.J. (2004) Stem cell aging and autoimmunity in rheumatoid arthritis. Trends Mol. Med. 10, 426–433.PubMedGoogle Scholar
  136. Wick, G. (2000) Atherosclerosis – an autoimmune disease due to an immune reaction against heat-shock protein 60. Herz 25, 87–90.PubMedGoogle Scholar
  137. Wilbrink, B., Holewijn, M., Bijlsma, J. W., van Roy, J. L., den Otter, W. and van Eden, W. (1993) Suppression of human cartilage proteoglycan synthesis by rheumatoid synovial fluid mononuclear cells activated with mycobacterial 60-kd heat-shock protein. Arthritis Rheum. 36, 514–518.PubMedGoogle Scholar
  138. Wysocki, J., Karawajczyk, B., Gorski, J., Korzeniowski, A., Mackiewicz, Z., Kupryszewski, G. and Glosnicka, R. (2002) Human heat shock protein 60 (409–424) fragment is recognized by serum antibodies of patients with acute coronary syndromes. Cardiovasc. Pathol. 11, 238–243.PubMedGoogle Scholar
  139. Xu, Q., Luef, G., Weimann, S., Gupta, R. S., Wolf, H. and Wick, G. (1993) Staining of endothelial cells and macrophages in atherosclerotic lesions with human heat-shock protein-reactive antisera. Arterioscler. Thromb. 13, 1763–1769.PubMedGoogle Scholar
  140. Xu, Q., Schett, G., Perschinka, H., Mayr, M., Egger, G., Oberhollenzer, F., Willeit, J., Kiechl, S. and Wick, G. (2000) Serum soluble heat shock protein 60 is elevated in subjects with atherosclerosis in a general population. Circulation 102, 14–20.PubMedGoogle Scholar
  141. Yagi, H., Sato, A., Yoshida, A., Hattori, Y., Hara, M., Shimamura, J., Sakane, I., Hongo, K., Mizobata, T. and Kawata Y. (2008) Fibril formation of hsp10 homologue proteins and determination of fibril core regions: differences in fibril core regions dependent on subtle differences in amino acid sequence. J. Mol. Biol. 377, 1593–1606.PubMedGoogle Scholar
  142. Yamazaki, K., Ohsawa, Y., Itoh, H., Ueki, K., Tabeta, K., Oda, T., Nakajima, T., Yoshie, H., Saito, S., Oguma, F., Kodama, M., Aizawa, Y. and Seymour, G. J. (2004) T-cell clonality to Porphyromonas gingivalis and human heat shock protein 60s in patients with atherosclerosis and periodontitis. Oral Microbiol. Immunol. 19, 160–167.PubMedGoogle Scholar
  143. Yang, M., Tan, H., Cheng, L., He, M., Wei, Q., Tanguay, R. M. and Wu, T. (2007) Expression of heat shock proteins in myocardium of patients with atrial fibrillation. Cell Stress Chaperones 12, 142–150.PubMedGoogle Scholar
  144. Zhang, J., Block, E. R. and Patel, J. M. (2002) Down-regulation of mitochondrial cytochrome c oxidase in senescent porcine pulmonary artery endothelial cells. Mech. Ageing Dev. 123, 1363–1374.PubMedGoogle Scholar
  145. Zuin, A., Gabrielli, N., Calvo, I. A., García-Santamarina, S., Hoe K. L., Kim, D. U., Park, H. O., Hayles, J., Ayté, J. and Hidalgo, E. (2008) Mitochondrial dysfunction increases oxidative stress and decreases chronological life span in fission yeast. PLoS ONE. 3(7), e2842.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Francesco Cappello
    • 1
  • Antonino Di Stefano
    • 2
  • Everly Conway De Macario
    • 3
  • Alberto J.L. Macario
    • 4
    Email author
  1. 1.Dipartimento di Medicina SperimentaleUniversità degli Studi di PalermoPalermoItaly
  2. 2.Fondazione “S. Mangeri”, Centro Medico di Veruno (NO)VerunoItaly
  3. 3.Centre of Marine BiotechnologyUniversity of Maryland Biotechnology InstituteBaltimoreUSA
  4. 4.Centre of Marine BiotechnologyUniversity of Maryland Biotechnology Institute, Columbus CenterBaltimoreUSA

Personalised recommendations