Advertisement

Heat Shock Proteins, Exercise, and Aging

  • Kimberly A. HueyEmail author
  • Victoria Vieira
  • Jeffrey A. Woods
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 5)

Abstract

Age-associated losses in muscle mass and strength and greater susceptibility to muscle injury may be attenuated or reversed by exercise training. Increased heat shock protein (HSP) expression is one adaptation in skeletal muscle to exercise which may subsequently protect muscles against stressors. Eccentric loading, treadmill running, resistance training, and functional overload have been shown to increase Hsp72 and Hsp25 content in muscle. Evidence suggests that the muscles of older individuals can respond to exercise with increased HSP expression; however, the responses may be attenuated compared to younger muscles. A sufficient exercise stimulus may be necessary to induce up-regulation of protective HSP in muscle such that even modest reductions in muscle activity and loading that occur with aging may contribute to reduced basal or stress-induced HSP responses in aged muscle. This could contribute to some of the deleterious changes in muscle function since HSP potentially protect muscles against contractile damage, accelerate recovery from injury and reduce activation of inflammatory pathways such as NF-κB and the caspase cascade. The prospect that exercise may increase expression of HSP in aged muscle could have important implications for increasing muscle strength and function and improving quality of life

Keywords

Age-related sarcopenia exercise HSP aging NF-κβ 

Abbreviations

HSF1

heat shock factor 1

HSP

heat shock protein

MHC

myosin heavy chain

NF-κB

nuclear factor kappa-light-chain-enhancer of activated B cells

References

  1. Akbar, M. T., Lundberg, A. M., Liu, K., Vidyadaran, S., Wells, K. E., Dolatshad, H., Wynn, S., Wells, D. J., Latchman, D. S. and de Belleroche, J. (2003) The neuroprotective effects of heat shock protein 27 overexpression in transgenic animals against kainate-induced seizures and hippocampal cell death. J Biol Chem 278, 19956–65.CrossRefPubMedGoogle Scholar
  2. Bar-Shai, M., Carmeli, E. and Reznick, A. Z. (2005) The role of NF-kappaB in protein breakdown in immobilization, aging, and exercise: from basic processes to promotion of health. Ann N Y Acad Sci 1057, 431–47.CrossRefPubMedGoogle Scholar
  3. Bernhard, D. and Laufer, G. (2008) The aging cardiomyocyte: a mini-review. Gerontology 54, 24–31.CrossRefPubMedGoogle Scholar
  4. Bhat, S. P. and Nagineni, C. N. (1989) alpha B subunit of lens-specific protein alpha-crystallin is present in other ocular and non-ocular tissues. Biochem Biophys Res Commun 158, 319–25.CrossRefPubMedGoogle Scholar
  5. Broome, C. S., Kayani, A. C., Palomero, J., Dillmann, W. H., Mestril, R., Jackson, M. J. and McArdle, A. (2006) Effect of lifelong overexpression of HSP70 in skeletal muscle on age-related oxidative stress and adaptation after nondamaging contractile activity. Faseb J 20, 1549–51.CrossRefPubMedGoogle Scholar
  6. Cai, D., Frantz, J. D., Tawa, N. E., Jr., Melendez, P. A., Oh, B. C., Lidov, H. G., Hasselgren, P. O., Frontera, W. R., Lee, J., Glass, D. J. and Shoelson, S. E. (2004) IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 119, 285–98.CrossRefPubMedGoogle Scholar
  7. Carlson, R. M., Vavricka, S. R., Eloranta, J. J., Musch, M. W., Arvans, D. L., Kles, K. A., Walsh-Reitz, M. M., Kullak-Ublick, G. A. and Chang, E. B. (2007) fMLP induces Hsp27 expression, attenuates NF-kappaB activation, and confers intestinal epithelial cell protection. Am J Physiol Gastrointest Liver Physiol 292, G1070–8.PubMedGoogle Scholar
  8. Chen, Y., Arrigo, A. P. and Currie, R. W. (2004a) Heat shock treatment suppresses angiotensin II-induced activation of NF-kappaB pathway and heart inflammation: a role for IKK depletion by heat shock? Am J Physiol Heart Circ Physiol 287, H1104–14.PubMedGoogle Scholar
  9. Chen, H. W., Kuo, H. T., Wang, S. J., Lu, T. S. and Yang, R. C. (2005) In vivo heat shock protein assembles with septic liver NF-kappaB/I-kappaB complex regulating NF-kappaB activity. Shock 24, 232–8.CrossRefPubMedGoogle Scholar
  10. Chen, Y., Ross, B. M. and Currie, R. W. (2004b) Heat shock treatment protects against angiotensin II-induced hypertension and inflammation in aorta. Cell Stress Chaperones 9, 99–107.PubMedGoogle Scholar
  11. Choi, D. H., Ha, J. S., Lee, W. H., Song, J. K., Kim, G. Y., Park, J. H., Cha, H. J., Lee, B. J. and Park, J. W. (2007) Heat shock protein 27 is associated with irinotecan resistance in human colorectal cancer cells. FEBS Lett 581, 1649–56.CrossRefPubMedGoogle Scholar
  12. Chung, J., Nguyen, A. K., Henstridge, D. C., Holmes, A. G., Chan, M. H., Mesa, J. L., Lancaster, G. I., Southgate, R. J., Bruce, C. R., Duffy, S. J., Horvath, I., Mestril, R., Watt, M. J., Hooper, P. L., Kingwell, B. A., Vigh, L., Hevener, A. and Febbraio, M. A. (2008) HSP72 protects against obesity-induced insulin resistance. Proc Natl Acad Sci U S A 105, 1739–44.CrossRefPubMedGoogle Scholar
  13. Cutlip, R. G., Baker, B. A., Geronilla, K. B., Mercer, R. R., Kashon, M. L., Miller, G. R., Murlasits, Z. and Alway, S. E. (2006) Chronic exposure to stretch-shortening contractions results in skeletal muscle adaptation in young rats and maladaptation in old rats. Appl Physiol Nutr Metab 31, 573–87.CrossRefPubMedGoogle Scholar
  14. Degens, H. (2007) Age-related skeletal muscle dysfunction: causes and mechanisms. J Musculoskelet Neuronal Interact 7, 246–52.PubMedGoogle Scholar
  15. Demirel, H. A., Hamilton, K. L., Shanely, R. A., Tumer, N., Koroly, M. J. and Powers, S. K. (2003) Age and attenuation of exercise-induced myocardial HSP72 accumulation. Am J Physiol Heart Circ Physiol 285, H1609–15.PubMedGoogle Scholar
  16. Du, J., Wang, X., Miereles, C., Bailey, J. L., Debigare, R., Zheng, B., Price, S. R. and Mitch, W. E. (2004) Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 113, 115–23.PubMedGoogle Scholar
  17. Ecochard, L., Roussel, D., Sempore, B. and Favier, R. (2004) Stimulation of HSP72 expression following ATP depletion and short-term exercise training in fast-twitch muscle. Acta Physiol Scand 180, 71–8.CrossRefPubMedGoogle Scholar
  18. Feasson, L., Stockholm, D., Freyssenet, D., Richard, I., Duguez, S., Beckmann, J. S. and Denis, C. (2002) Molecular adaptations of neuromuscular disease-associated proteins in response to eccentric exercise in human skeletal muscle. J Physiol 543, 297–306.CrossRefPubMedGoogle Scholar
  19. Gabai, V. L., Mabuchi, K., Mosser, D. D. and Sherman, M. Y. (2002) Hsp72 and stress kinase c-jun N-terminal kinase regulate the bid-dependent pathway in tumor necrosis factor-induced apoptosis. Mol Cell Biol 22, 3415–24.CrossRefPubMedGoogle Scholar
  20. Georgopoulos, C. and Welch, W. J. (1993) Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9, 601–34.CrossRefPubMedGoogle Scholar
  21. Gjovaag, T. F. and Dahl, H. A. (2006) Effect of training and detraining on the expression of heat shock proteins in m. triceps brachii of untrained males and females. Eur J Appl Physiol 98, 310–22.CrossRefPubMedGoogle Scholar
  22. Golenhofen, N., Perng, M. D., Quinlan, R. A. and Drenckhahn, D. (2004) Comparison of the small heat shock proteins alphaB-crystallin, MKBP, HSP25, HSP20, and cvHSP in heart and skeletal muscle. Histochem Cell Biol 122, 415–25.CrossRefPubMedGoogle Scholar
  23. Ho, R. C., Hirshman, M. F., Li, Y., Cai, D., Farmer, J. R., Aschenbach, W. G., Witczak, C. A., Shoelson, S. E. and Goodyear, L. J. (2005) Regulation of IkappaB kinase and NF-kappaB in contracting adult rat skeletal muscle. Am J Physiol Cell Physiol 289, C794–801.CrossRefPubMedGoogle Scholar
  24. Huey, K. A. (2006) Regulation of Hsp25 expression and phosphorylation in functionally overloaded rat plantaris and soleus muscles. J Appl Physiol 100, 451–456.CrossRefPubMedGoogle Scholar
  25. Huey, K. A., Hyatt, J. P., Zhong, H. and Roy, R. R. (2005) Effects of innervation state on Hsp25 content and phosphorylation in inactive rat plantaris muscles. Acta Physiol Scand 185, 219–27.CrossRefPubMedGoogle Scholar
  26. Huey, K. A., McCall, G. E., Zhong, H. and Roy, R. R. (2007) Modulation of HSP25 and TNF-{alpha} during the early stages of functional overload of a rat slow and fast muscle. J Appl Physiol 102, 2307–14.CrossRefPubMedGoogle Scholar
  27. Huey, K. A., Roy, R. R., Edgerton, V. R., Komalavilas, P. and Brophy, C. (2002) Chronic inactivity attenuates HSP20 and HSP25 expression in rat hindlimb muscles. Faseb J 16, A779.Google Scholar
  28. Huey, K. A., Roy, R. R., Zhong, H. and Lullo, C. (2008) Time-dependent changes in caspase-3 activity and Hsp25 after spinal cord transection in adult rats. Exp Physiol 93, 415–25.Google Scholar
  29. Huey, K. A., Thresher, J. S., Brophy, C. M. and Roy, R. R. (2004) Inactivity-induced modulation of Hsp20 and Hsp25 content in rat hindlimb muscles. Muscle Nerve 30, 95–101.CrossRefPubMedGoogle Scholar
  30. Inaguma, Y., Goto, S., Shinohara, H., Hasegawa, K., Ohshima, K. and Kato, K. (1993) Physiological and pathological changes in levels of the two small stress proteins, HSP27 and alpha B crystallin, in rat hindlimb muscles. J Biochem (Tokyo) 114, 378–384.Google Scholar
  31. Ji, L. L., Gomez-Cabrera, M. C., Steinhafel, N. and Vina, J. (2004) Acute exercise activates nuclear factor (NF)-kappaB signaling pathway in rat skeletal muscle. Faseb J 18, 1499–506.CrossRefPubMedGoogle Scholar
  32. Kammanadiminti, S. J. and Chadee, K. (2006) Suppression of NF-kappaB activation by Entamoeba histolytica in intestinal epithelial cells is mediated by heat shock protein 27. J Biol Chem 281, 26112–20.CrossRefPubMedGoogle Scholar
  33. Kamradt, M. C., Chen, F. and Cryns, V. L. (2001) The small heat shock protein alpha B-crystallin negatively regulates cytochrome c- and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation. J Biol Chem 276, 16059–63.CrossRefPubMedGoogle Scholar
  34. Karakelides, H. and Sreekumaran Nair, K. (2005) Sarcopenia of aging and its metabolic impact. Curr Top Dev Biol 68, 123–48.CrossRefPubMedGoogle Scholar
  35. Karin, M. (1998) The NF-kappa B activation pathway: its regulation and role in inflammation and cell survival. Cancer J Sci Am 4 Suppl 1, S92–9.PubMedGoogle Scholar
  36. Kayani, A. C., Close, G. L., Jackson, M. J. and McArdle, A. (2008) Prolonged treadmill training increases HSP70 in skeletal muscle but does not affect age-related functional deficits. Am J Physiol Regul Integr Comp Physiol 294, R568–76.PubMedGoogle Scholar
  37. Koh, T. J. (2002) Do small heat shock proteins protect skeletal muscle from injury? Exer Sport Sci Rev, 30, 117–21.CrossRefGoogle Scholar
  38. Koh, T. J. and Escobedo, J. (2004) Cytoskeletal Disruption and Small Heat Shock Protein Translocation Immediately after Lengthening Contractions. Am J Physiol Cell Physiol 286, C713–C722.CrossRefPubMedGoogle Scholar
  39. Kregel, K. C., Moseley, P. L., Skidmore, R., Gutierrez, J. A. and Guerriero, V., Jr. (1995) HSP70 accumulation in tissues of heat-stressed rats is blunted with advancing age. J Appl Physiol 79, 1673–8.PubMedGoogle Scholar
  40. Ladner, K. J., Caligiuri, M. A. and Guttridge, D. C. (2003) Tumor necrosis factor-regulated biphasic activation of NF-kappa B is required for cytokine-induced loss of skeletal muscle gene products. J Biol Chem 278, 2294–303.CrossRefPubMedGoogle Scholar
  41. Latchman, D. S. (2001) Heat shock proteins and cardiac protection. Cardiovasc Res 51, 637–46.CrossRefPubMedGoogle Scholar
  42. Lee, H. J., Lee, Y. J., Kwon, H. C., Bae, S., Kim, S. H., Min, J. J., Cho, C. K. and Lee, Y. S. (2006) Radioprotective effect of heat shock protein 25 on submandibular glands of rats. Am J Pathol 169, 1601–11.CrossRefPubMedGoogle Scholar
  43. Li, Y. P. and Reid, M. B. (2000) NF-kappaB mediates the protein loss induced by TNF-alpha in differentiated skeletal muscle myotubes. Am J Physiol Regul Integr Comp Physiol 279, R1165–70.PubMedGoogle Scholar
  44. Liu, Y., Gampert, L., Nething, K. and Steinacker, J. M. (2006) Response and function of skeletal muscle heat shock protein 70. Front Biosci 11, 2802–27.CrossRefPubMedGoogle Scholar
  45. Liu, Y., Lormes, W., Baur, C., Opitz-Gress, A., Altenburg, D., Lehmann, M. and Steinacker, J. M. (2000) Human skeletal muscle HSP70 response to physical training depends on exercise intensity. Int J Sports Med 21, 351–5.CrossRefPubMedGoogle Scholar
  46. Liu, Y., Lormes, W., Wang, L., Reissnecker, S. and Steinacker, J. M. (2004) Different skeletal muscle HSP70 responses to high-intensity strength training and low-intensity endurance training. Eur J Appl Physiol 91, 330–5.CrossRefPubMedGoogle Scholar
  47. Liu, Y., Mayr, S., Opitz-Gress, A., Zeller, C., Lormes, W., Baur, S., Lehmann, M. and Steinacker, J. M. (1999) Human skeletal muscle HSP70 response to training in highly trained rowers. J Appl Physiol 86, 101–4.PubMedGoogle Scholar
  48. Liu, Y. and Steinacker, J. M. (2001) Changes in skeletal muscle heat shock proteins: pathological significance. Front Biosci 6, D12–25.CrossRefPubMedGoogle Scholar
  49. Locke, M. and Noble, E. G. (1995) Stress proteins: the exercise response. Can J Appl Physiol 20, 155–67.PubMedGoogle Scholar
  50. Locke, M., Noble, E. G. and Atkinson, B. G. (1990) Exercising mammals synthesize stress proteins. Am J Physiol 258, C723–9.PubMedGoogle Scholar
  51. Locke, M. and Tanguay, R. M. (1996) Diminished heat shock response in the aged myocardium. Cell Stress Chaperones 1, 251–60.CrossRefPubMedGoogle Scholar
  52. Macario, A. J. and Conway de Macario, E. (2005) Sick chaperones, cellular stress, and disease. N Engl J Med 353, 1489–501.CrossRefPubMedGoogle Scholar
  53. Marzetti, E. and Leeuwenburgh, C. (2006) Skeletal muscle apoptosis, sarcopenia and frailty at old age. Exp Gerontol 41, 1234–8.CrossRefPubMedGoogle Scholar
  54. McArdle, A., Dillmann, W. H., Mestril, R., Faulkner, J. A. and Jackson, M. J. (2004) Overexpression of HSP70 in mouse skeletal muscle protects against muscle damage and age-related muscle dysfunction. Faseb J 18, 355–7.PubMedGoogle Scholar
  55. McArdle, A. and Jackson, M. J. (2000) Exercise, oxidative stress and ageing. J Anat 197 Pt 4, 539–41.CrossRefPubMedGoogle Scholar
  56. McClung, J. M., Kavazis, A. N., DeRuisseau, K. C., Falk, D. J., Deering, M. A., Lee, Y., Sugiura, T. and Powers, S. K. (2007) Caspase-3 regulation of diaphragm myonuclear domain during mechanical ventilation-induced atrophy. Am J Respir Crit Care Med 175, 150–9.CrossRefPubMedGoogle Scholar
  57. Meador, B. M., Krzyszton, C. P., Johnson, R. W. and Huey, K. A. (2008) Effects of IL-10 and age on IL-6, IL-1β, and TNFα responses in mouse skeletal and cardiac muscle to an acute inflammatory insult J. Appl. Physiol. 104, 991–7.CrossRefPubMedGoogle Scholar
  58. Meldrum, K. K., Burnett, A. L., Meng, X., Misseri, R., Shaw, M. B., Gearhart, J. P. and Meldrum, D. R. (2003) Liposomal delivery of heat shock protein 72 into renal tubular cells blocks nuclear factor-kappaB activation, tumor necrosis factor-alpha production, and subsequent ischemia-induced apoptosis. Circ Res 92, 293–9.CrossRefPubMedGoogle Scholar
  59. Merck, K. B., Groenen, P. J., Voorter, C. E., de Haard-Hoekman, W. A., Horwitz, J., Bloemendal, H. and de Jong, W. W. (1993) Structural and functional similarities of bovine alpha-crystallin and mouse small heat-shock protein. A family of chaperones. J Biol Chem 268, 1046–52.PubMedGoogle Scholar
  60. Morimoto, R. I. (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12, 3788–96.CrossRefPubMedGoogle Scholar
  61. Morrison, L. E., Hoover, H. E., Thuerauf, D. J. and Glembotski, C. C. (2003) Mimicking phosphorylation of alphaB-crystallin on serine-59 is necessary and sufficient to provide maximal protection of cardiac myocytes from apoptosis. Circ Res 92, 203–11.CrossRefPubMedGoogle Scholar
  62. Morton, J. P., MacLaren, D. P., Cable, N. T., Bongers, T., Griffiths, R. D., Campbell, I. T., Evans, L., Kayani, A., McArdle, A. and Drust, B. (2006) Time course and differential responses of the major heat shock protein families in human skeletal muscle following acute nondamaging treadmill exercise. J Appl Physiol 101, 176–82.CrossRefPubMedGoogle Scholar
  63. Moseley, P. L. (1998) Heat shock proteins and the inflammatory response. Ann N Y Acad Sci 856, 206–13.CrossRefPubMedGoogle Scholar
  64. Muller-Werdan, U. (2007) Inflammation and ageing. Z Gerontol Geriatr 40, 362–5.CrossRefPubMedGoogle Scholar
  65. Murlasits, Z., Cutlip, R. G., Geronilla, K. B., Rao, K. M., Wonderlin, W. F. and Alway, S. E. (2006) Resistance training increases heat shock protein levels in skeletal muscle of young and old rats. Exp Gerontol 41, 398–406.CrossRefPubMedGoogle Scholar
  66. Naito, H., Powers, S. K., Demirel, H. A. and Aoki, J. (2001) Exercise training increases heat shock protein in skeletal muscles of old rats. Med Sci Sports Exerc 33, 729–34.PubMedGoogle Scholar
  67. Naito, H., Powers, S. K., Demirel, H. A., Sugiura, T., Dodd, S. L. and Aoki, J. (2000) Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted rats. J Appl Physiol 88, 359–363.PubMedGoogle Scholar
  68. Nishimura, R. N. and Sharp, F. R. (2005) Heat shock proteins and neuromuscular disease. Muscle Nerve 32, 693–709.CrossRefPubMedGoogle Scholar
  69. Ogata, T., Oishi, Y., Roy, R. R. and Ohmori, H. (2005) Effects of T3 treatment on HSP72 and calcineurin content of functionally overloaded rat plantaris muscle. Biochem Biophys Res Commun 331, 1317–23.CrossRefPubMedGoogle Scholar
  70. Oishi, Y., Ishihara, A., Talmadge, R. J., Ohira, Y., Taniguchi, K., Matsumoto, H., Roy, R. R. and Edgerton, V. R. (2001) Expression of heat shock protein 72 in atrophied rat skeletal muscles. Acta Physiol Scand 172, 123–30.CrossRefPubMedGoogle Scholar
  71. Oishi, Y., Ogata, T., Ohira, Y., Taniguchi, K. and Roy, R. R. (2005) Calcineurin and heat shock protein 72 in functionally overloaded rat plantaris muscle. Biochem Biophys Res Commun 330, 706–13.CrossRefPubMedGoogle Scholar
  72. O‘Neill, D. E., Aubrey, F. K., Zeldin, D. A., Michel, R. N. and Noble, E. G. (2006) Slower skeletal muscle phenotypes are critical for constitutive expression of Hsp70 in overloaded rat plantaris muscle. J Appl Physiol 100, 981–7.CrossRefPubMedGoogle Scholar
  73. Palomero, J., Broome, C. S., Rasmussen, P., Mohr, M., Nielsen, B., Nybo, L., McArdle, A. and Drust, B. (2008) Heat shock factor activation in human muscles following a demanding intermittent exercise protocol is attenuated with hyperthermia. Acta Physiol (Oxf) 193, 79–88.CrossRefGoogle Scholar
  74. Pandey, P., Farber, R., Nakazawa, A., Kumar, S., Bharti, A., Nalin, C., Weichselbaum, R., Kufe, D. and Kharbanda, S. (2000) Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene 19, 1975–81.CrossRefPubMedGoogle Scholar
  75. Park, K. J., Gaynor, R. B. and Kwak, Y. T. (2003) Heat shock protein 27 association with the I kappa B kinase complex regulates tumor necrosis factor alpha-induced NF-kappa B activation. J Biol Chem 278, 35272–8.CrossRefPubMedGoogle Scholar
  76. Paulsen, G., Vissing, K., Kalhovde, J. M., Ugelstad, I., Bayer, M. L., Kadi, F., Schjerling, P., Hallen, J. and Raastad, T. (2007) Maximal eccentric exercise induces a rapid accumulation of small heat shock proteins on myofibrils and a delayed HSP70 response in humans. Am J Physiol Regul Integr Comp Physiol 293, R844–53.PubMedGoogle Scholar
  77. Puntschart, A., Vogt, M., Widmer, H. R., Hoppeler, H. and Billeter, R. (1996) Hsp70 expression in human skeletal muscle after exercise. Acta Physiol Scand 157, 411–7.CrossRefPubMedGoogle Scholar
  78. Rachek, L. I., Musiyenko, S. I., LeDoux, S. P. and Wilson, G. L. (2007) Palmitate induced mitochondrial deoxyribonucleic acid damage and apoptosis in l6 rat skeletal muscle cells. Endocrinology 148, 293–9.CrossRefPubMedGoogle Scholar
  79. Rinaldi, B., Corbi, G., Boccuti, S., Filippelli, W., Rengo, G., Leosco, D., Rossi, F., Filippelli, A. and Ferrara, N. (2006) Exercise training affects age-induced changes in SOD and heat shock protein expression in rat heart. Exp Gerontol 41, 764–70.CrossRefPubMedGoogle Scholar
  80. Salo, D. C., Donovan, C. M. and Davies, K. J. (1991) HSP70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart, and liver during exercise. Free Radic Biol Med 11, 239–46.CrossRefPubMedGoogle Scholar
  81. Selsby, J. T. and Dodd, S. L. (2005) Heat treatment reduces oxidative stress and protects muscle mass during immobilization. Am J Physiol Regul Integr Comp Physiol 289, R134–9.PubMedGoogle Scholar
  82. Simar, D., Malatesta, D., Badiou, S., Dupuy, A. M. and Caillaud, C. (2007) Physical activity modulates heat shock protein-72 expression and limits oxidative damage accumulation in a healthy elderly population aged 60 90 years. J Gerontol A Biol Sci Med Sci 62, 1413–9.PubMedGoogle Scholar
  83. Siu, P. M. and Alway, S. E. (2005) Age-related apoptotic responses to stretch-induced hypertrophy in quail slow-tonic skeletal muscle. Am J Physiol Cell Physiol 289, C1105–13.CrossRefPubMedGoogle Scholar
  84. Siu, P. M., Pistilli, E. E., Butler, D. C. and Alway, S. E. (2005) Aging influences cellular and molecular responses of apoptosis to skeletal muscle unloading. Am J Physiol Cell Physiol 288, C338–49.PubMedGoogle Scholar
  85. Skidmore, R., Gutierrez, J. A., Guerriero, V., Jr. and Kregel, K. C. (1995) HSP70 induction during exercise and heat stress in rats: role of internal temperature. Am J Physiol 268, R92–7.PubMedGoogle Scholar
  86. Starnes, J. W., Choilawala, A. M., Taylor, R. P., Nelson, M. J. and Delp, M. D. (2005) Myocardial heat shock protein 70 expression in young and old rats after identical exercise programs. J Gerontol A Biol Sci Med Sci 60, 963–9.PubMedGoogle Scholar
  87. Thompson, H. S., Scordilis, S. P., Clarkson, P. M. and Lohrer, W. A. (2001) A single bout of eccentric exercise increases HSP27 and HSC/HSP70 in human skeletal muscle. Acta Physiol Scand 171, 187–193.CrossRefPubMedGoogle Scholar
  88. Vasilaki, A., Jackson, M. J. and McArdle, A. (2002) Attenuated HSP70 response in skeletal muscle of aged rats following contractile activity. Muscle Nerve 25, 902–5.CrossRefPubMedGoogle Scholar
  89. Vasilaki, A., McArdle, F., Iwanejko, L. M. and McArdle, A. (2006) Adaptive responses of mouse skeletal muscle to contractile activity: The effect of age. Mech Ageing Dev 127, 830–9.CrossRefPubMedGoogle Scholar
  90. Viatour, P., Merville, M. P., Bours, V. and Chariot, A. (2005) Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci 30, 43–52.CrossRefPubMedGoogle Scholar
  91. Welch, W. J. (1992) Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol Rev 72, 1063–1081.PubMedGoogle Scholar
  92. Yenari, M. A., Liu, J., Zheng, Z., Vexler, Z. S., Lee, J. E. and Giffard, R. G. (2005) Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Ann N Y Acad Sci 1053, 74–83.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Kimberly A. Huey
    • 1
    Email author
  • Victoria Vieira
    • 2
  • Jeffrey A. Woods
    • 1
  1. 1.Drake University, College of Pharmacy and Health ScienceDes MoinesUSA
  2. 2.Department of Kinesiology and Community HealthUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations