Circulating HSP70 as an Endogenous Cytoprotector?

  • Alan Graham PockleyEmail author
  • Gabriele Multhoff
Part of the Heat Shock Proteins book series (HESP, volume 5)


Although classically regarded as being an intracellular molecular chaperone, many studies have reported that the 70 kDa stress protein can be released from a number of different cell types in the absence of cell death. Furthermore, we and others have reported the presence of Hsp70 in the circulation of normal individuals, and levels of this protein in the peripheral circulation can be increased by a number of physical and psychological stressors. The question is: what is the physiological role of circulating Hsp70? Extracellular Hsp70 has been reported to have a number of neuroprotective and cytoprotective properties, and we have shown that high serum levels of Hsp70 protect individuals with hypertension from the development and progression of cardiovascular disease. It might therefore be that extracellular members of the 70 kDa stress protein family have multiple roles in the maintenance of physiological homeostasis which extend beyond their more commonly accepted properties as immunoregulatory molecules. Perhaps this ubiquitous family of stress proteins could also be considered as exogenous cytoprotectors.


Cardiovascular disease cytoprotection Hsp70 peripheral circulation release mechanisms 



seventy kilo-dalton heat shock protein


human umbilical vein endothelial cells




toll like receptor


tumour necrosis factor-α


  1. Ahn, J. H., Ko, Y. G., Park, W. Y., Kang, Y. S., Chung, H. Y. and Seo, J. S. (1999) Suppression of ceramide-mediated apoptosis by HSP70. Mol Cells 9, 200–206.PubMedGoogle Scholar
  2. Bassan, M., Zamostiano, R., Giladi, E. et al. (1998) The identification of secreted heat shock 60-like protein from rat glial cells and a human neuroblastoma cell line. Neurosci Lett 250, 37–40.CrossRefPubMedGoogle Scholar
  3. Bausero, M. A., Gastpar, R., Multhoff, G. and Asea, A. (2005) Alternative mechanism by which IFN-gamma enhances tumor recognition: active release of heat shock protein 72. J Immunol 175, 2900–2912.PubMedGoogle Scholar
  4. Berberian, P., Johnson, A. and Bond, M. (1990) Exogenous 70 kD heat shock protein increases survival of normal and atheromatous arterial cells. FASEB J 4, A1031.Google Scholar
  5. Bernstein, S. L., Liu, A. M., Hansen, B. C. and Somiari, R. I. (2000) Heat shock cognate-70 gene expression declines during normal aging of the primate retina. Invest Ophthalmol Vis Sci 10, 2857–2862.Google Scholar
  6. Broquet, A. H., Thomas, G., Masliah, J., Trugnan, G. and Bachelet, M. (2003) Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J Biol Chem 278, 21601–21606.CrossRefPubMedGoogle Scholar
  7. Chimini, C. and Rubartelli, A.. Novel pathways of protein secretion. In: Molecular Chaperones and Cell Signalling, B. Henderson, and A. G. Pockley, eds. Cambridge University Press, New York, 2005, pp. 45–60.CrossRefGoogle Scholar
  8. Effros, R. B., Zhu, X. and Walford, R. L. (1994) Stress response of senescent T lymphocytes: reduced hsp70 is independent of the proliferative block. J Gerontol 49, B65–B70.PubMedGoogle Scholar
  9. Evdonin, A. L., Guzhova, I. V., Margulis, B. A. and Medvedeva, N. D. (2004) Phospholipase C inhibitor, U73122, stimulates release of hsp-70 stress protein from A431 human carcinoma cells. Cancer Cell Int 4, 2.CrossRefPubMedGoogle Scholar
  10. Evdonin, A. L., Martynova, M. G., Bystrova, O. A., Guzhova, I. V., Margulis, B. A. and Medvedeva, N. D. (2006) The release of Hsp70 from A431 carcinoma cells is mediated by secretory-like granules. Eur J Cell Biol 85, 443–455.CrossRefPubMedGoogle Scholar
  11. Faassen, A. E., O’Leary, J. J., Rodysill, K. J., Bergh, N. and Hallgren, H. M. (1989) Diminished heat-shock protein synthesis following mitogen stimulation of lymphocytes from aged donors. Exp Cell Res 183, 326–334.CrossRefPubMedGoogle Scholar
  12. Fargnoli, J., Kunisada, T., Fornace, A. J. J., Schneider, E. L. and Holbrook, N. J. (1990) Decreased expression of heat shock protein 70 mRNA and protein after heat treatment in cells of aged rats. Proc Natl Acad Sci U S A 87, 846–850.CrossRefPubMedGoogle Scholar
  13. Febbraio, M. A., Ott, P., Nielsen, H. B. et al. (2002) Exercise induces hepatosplanchnic release of heat shock protein 72 in humans. J Physiol 544, 957–962.CrossRefPubMedGoogle Scholar
  14. Fehrenbach, E., Niess, A. M., Voelker, K., Northoff, H. and Mooren, F. C. (2005) Exercise intensity and duration affect blood soluble HSP72. Int J Sports Med 26, 552–557.CrossRefPubMedGoogle Scholar
  15. Fleshner, M., Campisi, J., Amiri, L. and Diamond, D. M. (2004) Cat exposure induces both intra- and extracellular Hsp72: the role of adrenal hormones. Psychoneuroendocrinology 29, 1142–1152.CrossRefPubMedGoogle Scholar
  16. Gastpar, R., Gehrmann, M., Bausero, M. A. et al. (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65, 5238–5247.CrossRefPubMedGoogle Scholar
  17. Gray, C. C., Amrani, M., Smolenski, R. T., Taylor, G. I. and Yacoub, M. H. (2000) Age dependence of heat stress mediated cardioprotection. Ann Thoracic Surg 2, 621–626.CrossRefGoogle Scholar
  18. Guzhova, I., Kislyakova, K., Moskaliova, O. et al. (2001) In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Res 914, 66–73.CrossRefPubMedGoogle Scholar
  19. Hall, D., Xu, L., Drake, V. J. et al. (2000) Aging reduces adaptive capacity and stress protein expression in the liver after heat stress. J Appl Physiol 2, 749–759.Google Scholar
  20. Hartl, F. U. (1996) Molecular chaperones in cellular protein folding. Nature 381, 571–579.CrossRefPubMedGoogle Scholar
  21. Heydari, A. R., Conrad, C. C. and Richardson, A. (1995) Expression of heat shock genes in hepatocytes is affected by age and food restriction in rats. J Nutr 125, 410–418.PubMedGoogle Scholar
  22. Hightower, L. E. (1991) Heat shock, stress proteins, chaperones and proteotoxicity. Cell 66, 191–197.CrossRefPubMedGoogle Scholar
  23. Hightower, L. E. and Guidon, P. T. (1989) Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol 138, 257–266.CrossRefPubMedGoogle Scholar
  24. Jäättelä, M., Wissing, D., Bauer, P. A. and Li, G. C. (1992) Major heat shock protein hsp70 protects tumor cells from tumor necrosis factor cytotoxicity. EMBO J 11, 3507–3512.PubMedGoogle Scholar
  25. Jin, X., Wang, R., Xiao, C. et al. (2004) Serum and lymphocyte levels of heat shock protein 70 in aging: a study in the normal Chinese population. Cell Stress Chaperones 9, 69–75.PubMedGoogle Scholar
  26. Johnson, A. D., Berberian, P. A. and Bond, M. G. (1990) Effect of heat shock proteins on survival of isolated aortic cells from normal and atherosclerotic cynomolgus macaques. Atherosclerosis 84, 111–119.CrossRefPubMedGoogle Scholar
  27. Johnson, J. D., Campisi, J., Sharkey, C. M., Kennedy, S. L., Nickerson, M. and Fleshner, M. (2005) Adrenergic receptors mediate stress-induced elevations in extracellular Hsp72. J Appl Physiol 99, 1789–1795.CrossRefPubMedGoogle Scholar
  28. Johnson, A. D. and Tytell, M. (1993) Exogenous Hsp70 becomes cell associated, but not internalised by stressed arterial smooth muscle cells. In Vitro Cell Dev Biol 29A, 807–812.CrossRefGoogle Scholar
  29. Lancaster, G. I. and Febbraio, M. A. (2005a) Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem 280, 23349–23355.CrossRefPubMedGoogle Scholar
  30. Lancaster, G. I. and Febbraio, M. A. (2005b) Mechanisms of stress-induced cellular HSP72 release: implications for exercise-induced increases in extracellular HSP72. Exerc Immunol Rev 11, 46–52.PubMedGoogle Scholar
  31. Lasunskaia, E. B., Fridlianskaia, I. I., Guzhova, I. V., Bozhkov, V. M. and Margulis, B. A. (1997) Accumulation of major stress protein 70 kDa protects myeloid and lymphoid cells from death by apoptosis. Apoptosis 2, 156–163.CrossRefPubMedGoogle Scholar
  32. Lewthwaite, J., Owen, N., Coates, A., Henderson, B. and Steptoe, A. (2002) Circulating human heat shock protein 60 in the plasma of British civil servants. Circulation 106, 196–201.CrossRefPubMedGoogle Scholar
  33. Liao, D. -F., Jin, Z. -G., Baas, A. S. et al. (2000) Purification and identification of secreted oxidative stress-induced factors from vascular smooth muscle cells. J Biol Chem 275, 189–196.CrossRefPubMedGoogle Scholar
  34. Liu, A. Y., Lin, Z., Choi, H., Sorhage, F. and Li, B. (1989) Attenuated induction of heat shock gene expression in aging diploid fibroblasts. J Biol Chem 264, 12037–12045.PubMedGoogle Scholar
  35. Luce, M. C. and Cristofalo, V. J. (1992) Reduction in heat shock gene expression correlates with increased thermosensitivity in senescent human fibroblasts. Exp Cell Res 202, 9–16.CrossRefPubMedGoogle Scholar
  36. Mambula, S. S. and Calderwood, S. K. (2006) Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. J Immunol 177, 7849–7857.PubMedGoogle Scholar
  37. Martin-Ventura, J. L., Leclercq, A., Blanco-Colio, L. M. et al. (2007) Low plasma levels of HSP70 in patients with carotid atherosclerosis are associated with increased levels of proteolytic markers of neutrophil activation. Atherosclerosis 194, 334–341.CrossRefPubMedGoogle Scholar
  38. Mosser, D. D., Caron, A. W., Bourget, L., Denis-Larose, C. and Massie, B. (1997) Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol 17, 5317–5327.PubMedGoogle Scholar
  39. Nitta, Y., Abe, K., Aoki, M., Ohno, I. and Isoyama, S. (1994) Diminished heat shock protein 70 mRNA induction in aged rats after ischemia. Am J Physiol 267, H1795–H1803.PubMedGoogle Scholar
  40. Njemini, R., Lambert, M., Demanet, C. and Mets, T. (2003) Elevated serum heat-shock protein 70 levels in patients with acute infection: use of an optimized enzyme-linked immunosorbent assay. Scand J Immunol 58, 664–669.CrossRefPubMedGoogle Scholar
  41. Pahlavani, M. A., Denny, M., Moore, S. A., Weindruch, R. and Richardson, A. (1995) The expression of heat shock protein 70 decreases with age in lymphocytes from rats and rhesus monkeys. Exp Cell Res 218, 310–318.CrossRefPubMedGoogle Scholar
  42. Pockley, A. G., Bulmer, J., Hanks, B. M. and Wright, B. H. (1999) Identification of human heat shock protein 60 (Hsp60) and anti-Hsp60 antibodies in the peripheral circulation of normal individuals. Cell Stress Chaperones 4, 29–35.CrossRefPubMedGoogle Scholar
  43. Pockley A. G, Calderwood S. K., Multhoff G. The atheroprotective properties of Hsp70: A role for Hsp70-endothelial interactions? Cell Stress & Chaperones, in press. DOI: 10.1007/s12192-009-0113-1.Google Scholar
  44. Pockley, A. G., de Faire, U., Kiessling, R., Lemne, C., Thulin, T. and Frostegård, J. (2002) Circulating heat shock protein and heat shock protein antibody levels in established hypertension. J Hypertension 20, 1815–1820.CrossRefGoogle Scholar
  45. Pockley, A. G., Georgiades, A., Thulin, T., de Faire, U. and Frostegård, J. (2003) Serum heat shock protein 70 levels predict the development of atherosclerosis in subjects with established hypertension. Hypertension 42, 235–238.CrossRefPubMedGoogle Scholar
  46. Pockley, A. G., Shepherd, J. and Corton, J. (1998) Detection of heat shock protein 70 (Hsp70) and anti-Hsp70 antibodies in the serum of normal individuals. Immunol Invest 27, 367–377.CrossRefPubMedGoogle Scholar
  47. Pockley, A. G., Wu, R., Lemne, C., Kiessling, R., de Faire, U. and Frostegård, J. (2000) Circulating heat shock protein 60 is associated with early cardiovascular disease. Hypertension 36, 303–307.PubMedGoogle Scholar
  48. Rea, I. M., McNerlan, S. and Pockley, A. G. (2001) Serum heat shock protein and anti-heat shock protein antibody levels in aging. Exp Gerontology 36, 341–352.CrossRefGoogle Scholar
  49. Richardson, A. and Holbrook, N. J.. Aging and the cellular response to stress: reduction in the heat shock response. In: Cellular Aging and Cell Death, N. J. Holbrook, G. R. Martin, and R. A. Lockshin, eds. Wiley-Liss, New York, 1996, pp. 67–79.Google Scholar
  50. Ritossa, F. A. (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18, 571–573.CrossRefGoogle Scholar
  51. Robinson, M. B., Tidwell, J. L., Gould, T. et al. (2005) Extracellular heat shock protein 70: a critical component for motoneuron survival. J Neurosci 25, 9735–9745.CrossRefPubMedGoogle Scholar
  52. Samali, A. and Cotter, T. G. (1996) Heat shock proteins increase resistance to apoptosis. Exp Cell Res 223, 163–170.CrossRefPubMedGoogle Scholar
  53. Santoro, M. G. (2000) Heat shock factors and the control of the stress response. Biochem Pharmacol 59, 55–63.CrossRefPubMedGoogle Scholar
  54. Shelton, D. N., Chang, E., Whittier, P. S., Choi, D. and Funk, W. D. (1999) Microarray analysis of replicative senescence. Cur Biol 9, 939–945.CrossRefGoogle Scholar
  55. Simon, M. M., Reikerstorfer, A., Schwarz, A. et al. (1995) Heat shock protein 70 overexpression affects the response to ultraviolet light in murine fibroblasts. Evidence for increased cell viability and suppression of cytokine release. J Clin Invest 95, 926–933.CrossRefPubMedGoogle Scholar
  56. Terry, D. F., McCormick, M., Andersen, S. et al. (2004) Cardiovascular disease delay in centenarian offspring: role of heat shock proteins. Ann N Y Acad Sci 1019, 502–505.CrossRefPubMedGoogle Scholar
  57. Thériault, J. R., Mambula, S. S., Sawamura, T., Stevenson, M. A. and Calderwood, S. K. (2005) Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/epithelial cells. FEBS Lett 579, 1951–1960.CrossRefPubMedGoogle Scholar
  58. Tidwell, J. L., Houenou, L. J. and Tytell, M. (2004) Administration of Hsp70 in vivo inhibits motor and sensory neuron degeneration. Cell Stress Chaperones 9, 88–98.PubMedGoogle Scholar
  59. Tissières, A., Mitchell, H. K. and Tracy, U. (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol 84, 389–398.CrossRefPubMedGoogle Scholar
  60. Tytell, M. (2005) Release of heat shock proteins (Hsps) and the effects of extracellular Hsps on neural cells and tissues. Int J Hyperthermia 21, 445–455.CrossRefPubMedGoogle Scholar
  61. Tytell, M., Greenberg, S. G. and Lasek, R. J. (1986) Heat shock-like protein is transferred from glia to axon. Brain Res 363, 161–164.CrossRefPubMedGoogle Scholar
  62. Walsh, R. C., Koukoulas, I., Garnham, A., Moseley, P. L., Hargreaves, M. and Febbraio, M. A. (2001) Exercise increases serum Hsp72 in humans. Cell Stress Chaperones 6, 386–393.CrossRefPubMedGoogle Scholar
  63. Xu, Q., Schett, G., Perschinka, H. et al. (2000) Serum soluble heat shock protein 60 is elevated in subjects with atherosclerosis in a general population. Circulation 102, 14–20.PubMedGoogle Scholar
  64. Zal, B., Kaski, J. C., Arno, G. et al. (2004) Heat-shock protein 60-reactive CD4+CD28null T cells in patients with acute coronary syndromes. Circulation 109, 1230–1235.CrossRefPubMedGoogle Scholar
  65. Zhu, J., Quyyumi, A. A., Wu, H. et al. (2003) Increased serum levels of heat shock protein 70 are associated with low risk of coronary artery disease. Arterioscler Thromb Vasc Biol 23, 1055–1059.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Immunobiology Research Group, K Floor, The Medical SchoolUniversity of SheffieldSheffieldUK
  2. 2.Department of Radiotherapy and Radiooncology, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  3. 3.Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH)Clinical Cooperation Group ‘Innate Immunity in Tumor Biology’MunichGermany

Personalised recommendations