HSP, Exercise, and Antioxidants

  • Bente Klarlund PedersenEmail author
  • Christian Philip Fischer
Part of the Heat Shock Proteins book series (HESP, volume 5)


The heat shock proteins (HSP) are a family of highly conserved proteins with critical roles in maintaining cellular homeostasis and in protecting the cell from chronically and acutely stressful conditions. An increased expression of Hsp72 in skeletal muscle appears to be a part of the normal exercise response as well as training adaptation. Regular exercise offers protection against a number of chronic diseases, including type 2 diabetes and the basal expression of Hsp72 mRNA is suppressed in skeletal muscle of patients with type 2 diabetes. Moreover, mechanistic studies show that muscular Hsp72 protects against obesity-induced peripheral insulin resistance. Physical activity provokes an increased production of reactive oxygen species (ROS) and ROS is an inducer of Hsp72. The mechanisms whereby exercise and ROS regulate muscular Hsp72 expression are discussed. Anti-oxidant treatment with the vitamin E isoform γ-tochoferol is a potent inhibitor of exercise-induced expression of muscular Hsp72. This fact may contribute to explain the findings from large clinical studies that antioxidant supplementation may have detrimental effects on morbidity and mortality


Physical activity muscle cytokines physiology vitamin oxidative stress 



heat shock proteins


seventy two kilo-Dalton Hsp




nitro-L-arginine methyl ester


recombinant human IL-6


reactive nitrogen species


reactive oxygen species



The Centre of Inflammation and Metabolism is supported by a grant from the Danish National Research Foundation (DG 02-512-555). In addition, support was obtained from the Danish Medical Research Council, and the Commission of the European Communities (contract no. LSHM-CT-2004-005272 EXGENESIS).


  1. Adrie, C., Richter, C., Bachelet, M., Banzet, N., Francois, D., Dinh-Xuan, A.T., Dhainaut, J.F., Polla, B.S., and Richard, M.J. (2000). Contrasting effects of NO and peroxynitrites on HSP70 expression and apoptosis in human monocytes. Am. J. Physiol. Cell Physiol. 279, C452–C460.PubMedGoogle Scholar
  2. Alessio, H.M., Goldfarb, A.H., and Cutler, R.G. (1988). MDA content increases in fast- and slow-twitch skeletal muscle with intensity of exercise in a rat. Am. J. Physiol. 255, C874–C877.PubMedGoogle Scholar
  3. Asea, A., Kraeft, S.K., Kurt-Jones, E.A., Stevenson, M.A., Chen, L.B., Finberg, R.W., Koo, G.C., and Calderwood, S.K. (2000). HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med. 6, 435–442.CrossRefPubMedGoogle Scholar
  4. Balon, T.W. and Nadler, J.L. (1994). Nitric oxide release is present from incubated skeletal muscle preparations. J. Appl. Physiol. 77, 2519–2521.PubMedGoogle Scholar
  5. Bergstedt, K., Hu, B.R., and Wieloch, T. (1993). Initiation of protein synthesis and heat-shock protein-72 expression in the rat brain following severe insulin-induced hypoglycemia. Acta Neuropathol. (Berl) 86, 145–153.CrossRefGoogle Scholar
  6. Blair, S.N., Cheng, Y., and Holder, J.S. (2001). Is physical activity or physical fitness more important in defining health benefits? Med. Sci. Sports Exerc. 33, S379–S399.CrossRefPubMedGoogle Scholar
  7. Bruce, C.R., Carey, A.L., Hawley, J.A., and Febbraio, M.A. (2003). Intramuscular heat shock protein 72 and heme oxygenase-1 mRNA are reduced in patients with type 2 diabetes: evidence that insulin resistance is associated with a disturbed antioxidant defense mechanism. Diabetes 52, 2338–2345.CrossRefPubMedGoogle Scholar
  8. Buettner, G.R. (1993). The pecking order of free-radicals and antioxidants – lipid-peroxidation, alpha-tocopherol, and ascorbate. Arch. Biochem. Biophys. 300, 535–543.CrossRefPubMedGoogle Scholar
  9. Christen, S., Woodall, A.A., Shigenaga, M.K., Southwell-Keely, P.T., Duncan, M.W., and Ames, B.N. (1997). Gamma-tocopherol traps mutagenic electrophiles such as NOx and complements alpha-tocopherol: physiological implications. Proc. Natl. Acad. Sci. USA 94, 3217–3222.CrossRefPubMedGoogle Scholar
  10. Chung, J., Nguyen, A.K., Henstridge, D.C., Holmes, A.G., Chan, M.H.S., Mesa, J.L., Lancaster, G.I., Southgate, R.J., Bruce, C.R., Duffy, S.J., Horvath, I., Mestril, R., Watt, M.J., Hooper, P.L., Kingwell, B.A., Vigh, L., Hevener, A., and Febbraio, M.A. (2008). HSP72 protects against obesity-induced insulin resistance. Proc. Natl. Acad. Sci. USA 105, 1739–1744.CrossRefPubMedGoogle Scholar
  11. Cooney, R.V., Franke, A.A., Harwood, P.J., Hatch-Pigott, V., Custer, L.J., and Mordan, L.J. (1993). Gamma-tocopherol detoxification of nitrogen dioxide: superiority to alpha-tocopherol. Proc. Natl. Acad. Sci. USA 90, 1771–1775.CrossRefPubMedGoogle Scholar
  12. Davies, K.J., Quintanilha, A.T., Brooks, G.A., and Packer, L. (1982). Free radicals and tissue damage produced by exercise. Biochem. Biophys. Res. Commun. 107, 1198–1205.CrossRefPubMedGoogle Scholar
  13. Febbraio, M.A. and Koukoulas, I. (2000). HSP72 gene expression progressively increases in human skeletal muscle during prolonged, exhaustive exercise. J. Appl. Physiol. 89, 1055–1060.PubMedGoogle Scholar
  14. Febbraio, M.A., Ott, P., Nielsen, H.B., Steensberg, A., Keller, C., Krustrup, P., Secher, N.H., and Pedersen, B.K. (2002a). Exercise induces hepatosplanchnic release of heat shock protein 72 in humans. J. Physiol. 544, 957–962.CrossRefPubMedGoogle Scholar
  15. Febbraio, M.A. and Pedersen, B.K. (2002). Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J. 16, 1335–1347.CrossRefPubMedGoogle Scholar
  16. Febbraio, M.A., Steensberg, A., Fischer, C.P., Keller, C., Hiscock, N., and Klarlund Pedersen, B. (2002c). IL-6 activates HSP72 gene expression in human skeletal muscle. Biochem. Biophys. Res. Commun. 296, 1264–1266.CrossRefPubMedGoogle Scholar
  17. Febbraio, M.A., Steensberg, A., Walsh, R., Koukoulas, I., van Hall, G., Saltin, B., and Pedersen, B.K. (2002b). Reduced glycogen availability is associated with an elevation in HSP72 in contracting human skeletal muscle. J. Physiol. 538, 911–917.CrossRefPubMedGoogle Scholar
  18. Feder, M.E. and Hofmann, G.E. (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243–282.CrossRefPubMedGoogle Scholar
  19. Fischer, C.P., Hiscock, N., Basu, S., Vessby, B., Kallner, A., Sjöberg, L.B., Febbraio, M.A., and Pedersen, B.K. (2004). Supplementation with vitamins C and E inhibits the release of interleukin-6 from contracting human skeletal muscle. J. Physiol. 558, 633–645.CrossRefPubMedGoogle Scholar
  20. Fischer, C.P., Hiscock, N.J., Basu, S., Vessby, B., Kallner, A., Sjoberg, L.B., Febbraio, M.A., and Pedersen, B.K. (2006). Vitamin E isoform-specific inhibition of the exercise-induced heat shock protein 72 expression in humans. J. Appl. Physiol. 100, 1679–1687.CrossRefPubMedGoogle Scholar
  21. Gastpar, R., Gehrmann, M., Bausero, M.A., Asea, A., Gross, C., Schroeder, J.A., and Multhoff, G. (2005). Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res. 65, 5238–5247.CrossRefPubMedGoogle Scholar
  22. Hammerer-Lercher, A., Mair, J., Bonatti, J., Watzka, S.B.C., Puschendorf, B., and Dirnhofer, S. (2001). Hypoxia induces heat shock protein expression in human coronary artery bypass grafts. Cardiovasc. Res. 50, 115–124.CrossRefPubMedGoogle Scholar
  23. Heart Protection Study Collaborative Group (2002). MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360, 23–33.CrossRefGoogle Scholar
  24. Huang, H.Y., Appel, L.J., Croft, K.D., Miller, E.R., III, Mori, T.A., and Puddey, I.B. (2002). Effects of vitamin C and vitamin E on in vivo lipid peroxidation: results of a randomized controlled trial. Am. J. Clin. Nutr. 76, 549–555.PubMedGoogle Scholar
  25. Jackson, M. (2005). Reactive oxygen species and redox-regulation of skeletal muscle adaptations to exercise. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 2285–2291.CrossRefPubMedGoogle Scholar
  26. Jackson, M.J., Edwards, R.H., and Symons, M.C. (1985). Electron spin resonance studies of intact mammalian skeletal muscle. Biochim. Biophys. Acta 847, 185–190.CrossRefPubMedGoogle Scholar
  27. Jiang, Q., Elson-Schwab, I., Courtemanche, C., and Ames, B.N. (2000). Gamma-tocopherol and its major metabolite, in contrast to alpha-tocopherol, inhibit cyclooxygenase activity in macrophages and epithelial cells. Proc. Natl. Acad. Sci. USA 97, 11494–11499.CrossRefPubMedGoogle Scholar
  28. Kanter, M.M., Nolte, L.A., and Holloszy, J.O. (1993). Effects of an antioxidant vitamin mixture on lipid peroxidation at rest and postexercise. J. Appl. Physiol. 74, 965–969.PubMedGoogle Scholar
  29. Khassaf, M., McArdle, A., Esanu, C., Vasilaki, A., McArdle, F., Griffiths, R.D., Brodie, D.A., and Jackson, M.J. (2003). Effect of vitamin C supplements on antioxidant defence and stress proteins in human lymphocytes and skeletal muscle. J. Physiol. 549, 645–652.CrossRefPubMedGoogle Scholar
  30. Kregel, K.C. (2002). molecular biology of thermoregulation: invited review: Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 92, 2177–2186.PubMedGoogle Scholar
  31. Kurucz, I., Morva, A., Vaag, A., Eriksson, K.F., Huang, X., Groop, L., and Koranyi, L. (2002). Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance. Diabetes 51, 1102–1109.CrossRefPubMedGoogle Scholar
  32. Lancaster, G.I. and Febbraio, M.A. (2005). Mechanisms of stress-induced cellular HSP72 release: implications for exercise-induced increases in extracellular HSP72. Exerc. Immunol. Rev. 11, 46–52.PubMedGoogle Scholar
  33. Liu, M., Wallin, R., Wallmon, A., and Saldeen, T. (2002). Mixed tocopherols have a stronger inhibitory effect on lipid peroxidation than alpha-tocopherol alone. J. Cardiovasc. Pharmacol. 39, 714–721.CrossRefPubMedGoogle Scholar
  34. Liu, Y., Mayr, S., Opitz-Gress, A., Zeller, C., Lormes, W., Baur, S., Lehmann, M., and Steinacker, J.M. (1999). Human skeletal muscle HSP70 response to training in highly trained rowers. J. Appl. Physiol. 86, 101–104.PubMedGoogle Scholar
  35. Locke, M., Noble, E.G., and Atkinson, B.G. (1990). Exercising mammals synthesize stress proteins. Am. J. Physiol. Cell Physiol. 258, C723–C729.Google Scholar
  36. Madden, L.A., Sandstrom, M.E., Lovell, R.J., and McNaughton, L. (2008). Inducible heat shock protein 70 and its role in preconditioning and exercise. Amino Acids 34, 511–516.CrossRefPubMedGoogle Scholar
  37. Marber, M.S., Mestril, R., Chi, S.H., Sayen, M.R., Yellon, D.M., and Dillmann, W.H. (1995). Overexpression of the rat inducible 70-Kd heat-stress protein in A transgenic mouse increases the resistance of the heart to ischemic-injury. J. Clin. Invest. 95, 1446–1456.CrossRefPubMedGoogle Scholar
  38. Marini, M., Frabetti, F., Musiani, D., and Franceschi, C. (1996). Oxygen radicals induce stress proteins and tolerance to oxidative stress in human lymphocytes. Int. J Radiat. Biol. 70, 337–350.CrossRefPubMedGoogle Scholar
  39. McArdle, A., van der Meulen, J., Close, G.L., Pattwell, D., Van Remmen, H., Huang, T.T., Richardson, A.G., Epstein, C.J., Faulkner, J.A., and Jackson, M.J. (2004). Role of mitochondrial superoxide dismutase in contraction-induced generation of reactive oxygen species in skeletal muscle extracellular space. Am. J. Physiol. Cell Physiol. 286, C1152–C1158.CrossRefPubMedGoogle Scholar
  40. Mizzen, L.A. and Welch, W.J. (1988). Characterization of the thermotolerant cell. I. Effects on protein synthesis activity and the regulation of heat-shock protein 70 expression. J. Cell Biol. 106, 1105–1116.CrossRefPubMedGoogle Scholar
  41. Morimoto, R.I. (1993). Cells in stress: transcriptional activation of heat shock genes. Science 259, 1409–1410.CrossRefPubMedGoogle Scholar
  42. Nieman, D.C., Davis, J.M., Henson, D.A., Gross, S.J., Dumke, C.L., Utter, A.C., Vinci, D.M., Carson, J.A., Brown, A., McAnulty, S.R., McAnulty, L.S., and Triplett, N.T. (2005). Muscle cytokine mRNA changes after 2.5 h of cycling: influence of carbohydrate. Med. Sci. Sports Exerc. 37, 1283–1290.CrossRefPubMedGoogle Scholar
  43. Niess, A.M., Fehrenbach, E., Schlotz, E., Sommer, M., Angres, C., Tschositsch, K., Battenfeld, N., Golly, I.C., Biesalski, H.K., Northoff, H., and Dickhuth, H.H. (2002). Effects of RRR-alpha-tocopherol on leukocyte expression of HSP72 in response to exhaustive treadmill exercise. Int. J. Sports Med. 23, 445–452.CrossRefPubMedGoogle Scholar
  44. Paroo, Z. and Noble, E.G. (1999). Isoproterenol potentiates exercise-induction of Hsp70 in cardiac and skeletal muscle. Cell Stress Chaperones 4, 199–204.PubMedGoogle Scholar
  45. Patti, M.E., Butte, A., Cusi, K., Kohane, I., Landaker, E.J., DeFronzo, R., Mandarino, L.J., and Kahn, C.R. (2001). Analysis of differential gene expression in skeletal muscle from subjects with insulin resistance and type 2 diabetes (Abstract). Diabetes 50 (Suppl. 2), A247.Google Scholar
  46. Pedersen, B.K. and Febbraio, M.A. (2008). Muscle as an endocrine organ – focus on muscle-derived IL-6. Physiol. Rev. 88, 1379–1406.CrossRefPubMedGoogle Scholar
  47. Pedersen, B.K. and Saltin, B. (2006). Evidence for prescribing exercise as therapy in chronic disease. Scand. J. Med. Sci. Sports 16 (Suppl. 1), 3–63.CrossRefPubMedGoogle Scholar
  48. Poulsen, H.E., Loft, S., and Vistisen, K. (1996). Extreme exercise and oxidative DNA-modification. J. Sports Sci. 14, 343–346.CrossRefPubMedGoogle Scholar
  49. Puntschart, A., Vogt, M., Widmer, H.R., Hoppeler, H., and Billeter, R. (1996). Hsp70 expression in human skeletal muscle after exercise. Acta Physiol. Scand. 157, 411–417.CrossRefPubMedGoogle Scholar
  50. Skibsted, L.H., Dragsted, L.O., Dyerberg, J., Hansen, H.S., Kiens, B., Ovesen, L.F., and Tjonneland, A.M. (2006). [Antioxidants and health]. Ugeskr. Laeg. 168, 2787–2789.PubMedGoogle Scholar
  51. Smolka, M.B., Zoppi, C.C., Alves, A.A., Silveira, L.R., Marangoni, S., Pereira-Da-Silva, L., Novello, J.C., and Macedo, D.V. (2000). HSP72 as a complementary protection against oxidative stress induced by exercise in the soleus muscle of rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R1539–R1545.PubMedGoogle Scholar
  52. Steensberg, A., Keller, C., Hillig, T., Frosig, C., Wojtaszewski, J.F.P., Pedersen, B.K., Pilegaard, H., and Sander, M. (2007). Nitric oxide production is a proximal signaling event controlling exercise-induced mRNA expression in human skeletal muscle. FASEB J. 21, 2683–2694.CrossRefPubMedGoogle Scholar
  53. Vivekananthan, D.P., Penn, M.S., Sapp, S.K., Hsu, A., and Topol, E.J. (2003). Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet 361, 2017–2023.CrossRefPubMedGoogle Scholar
  54. Wallen, E.S., Buettner, G.R., and Moseley, P.L. (1997). Oxidants differentially regulate the heat shock response. Int. J. Hyperthermia 13, 517–524.CrossRefPubMedGoogle Scholar
  55. Walsh, R.C., Koukoulas, I., Garnham, A., Moseley, P.L., Hargreaves, M., and Febbraio, M.A. (2001). Exercise increases serum Hsp72 in humans. Cell Stress Chaperones 6, 386–393.CrossRefPubMedGoogle Scholar
  56. Welch, W.J., Garrels, J.I., Thomas, G.P., Lin, J.J., and Feramisco, J.R. (1983). Biochemical characterization of the mammalian stress proteins and identification of two stress proteins as glucose- and Ca2+-ionophore-regulated proteins. J Biol. Chem. 258, 7102–7111.PubMedGoogle Scholar
  57. Wolf, G. (1997). gamma-tocopherol: an efficient protector of lipids against nitric oxide-initiated peroxidative damage. Nutr. Rev. 55, 376–378.CrossRefPubMedGoogle Scholar
  58. Yamada, P., Amorim, F., Moseley, P., and Schneider, S. (2008). Heat shock protein 72 response to exercise in humans. Sports Med. 38, 715–733.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Bente Klarlund Pedersen
    • 1
    Email author
  • Christian Philip Fischer
    • 2
  1. 1.Department of Infectious Diseases and CMRCFaculty of Health Sciences, The Centre of Inflammation and Metabolism, University of CopenhagenCopenhagenDenmark
  2. 2.Department of Infectious Diseases and CMRCFaculty of Health Sciences, The Centre of Inflammation and Metabolism, University of CopenhagenCopenhagenDenmark

Personalised recommendations