Advertisement

Heat Shock Proteins and Post-Traumatic Stress Disorder

  • Lei ZhangEmail author
  • He Li
  • Robert J. Ursano
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 5)

Abstract:

Heat shock proteins (HSPs), a highly conserved family of stress response proteins, play a very important role in traumatic stress associated with Post-traumatic Stress disorder (PTSD), a psychiatric disorder observed in a high number of combat veterans and in others exposed to natural disasters, traffic accidents, terrorist attacks, etc. In this chapter, we will briefly review the expression of HSPs in the central nervous system (CNS) and discuss the underlying molecular mechanisms of HSPs in PTSD. We will also present evidence regarding the possible role of HSPs in glucocorticoid receptor (GR) trafficking and in the regulation of p11, a PTSD-associated protein. Advances in the understanding of the functions of HSPs have reached a point where clinical trials are warranted to determine the role of HSPs in the treatment and diagnosis of PTSD

Keywords:

HSP CNS GR translocation p11 mitochondrial function 

Abbreviations

CNS

central nervous system

GR

glucocorticoid receptors

GRE

glucocorticoid response elements

PTSD

Post-traumatic Stress Disorder

Notes

Acknowledgments

We would like to thank Anna Chen for her help in editing the manuscript and images.

REFERENCES

  1. Adamec, R. E., Blundell, J. and Burton, P. (2006) Relationship of the predatory attack experience to neural plasticity, pCREB expression and neuroendocrine response. Neurosci Biobehav Rev 30, 356–75.CrossRefPubMedGoogle Scholar
  2. Chen, S. and Brown, I. R. (2007) Neuronal expression of constitutive heat shock proteins: implications for neurodegenerative diseases. Cell Stress Chaperones 12, 51–58.CrossRefPubMedGoogle Scholar
  3. Chen, Y., Nickola, T. J., DiFronzo, N. L., Colberg-Poley, A. M. and Rose, M. C. (2006) Dexamethasone-mediated repression of MUC5AC gene expression in human lung epithelial cells. Am J Respir Cell Mol Biol 34, 338–47.CrossRefPubMedGoogle Scholar
  4. de Quervain, D. J., Roozendaal, B. and McGaugh, J. L. (1998) Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature 394, 787–90.CrossRefPubMedGoogle Scholar
  5. Diller, K. R. (2006) Stress protein expression kinetics. Annu Rev Biomed Eng 8, 403–24.CrossRefPubMedGoogle Scholar
  6. D‘Souza, S. M. and Brown, I. R. (1998) Constitutive expression of heat shock proteins Hsp90, Hsc70, Hsp70 and Hsp60 in neural and non-neural tissues of the rat during postnatal development. Cell Stress Chaperones 3, 188–99.CrossRefPubMedGoogle Scholar
  7. Falkenstein, E., Christ, M., Feuring, M. and Wehling, M. (2000) Specific nongenomic actions of aldosterone. Kidney Int 57, 1390–94.CrossRefPubMedGoogle Scholar
  8. Filipovic, D., Gavrilovic, L., Dronjak, S., Demajo, M. and Radojcic, M. B. (2008) Liver glucocorticoid receptor and heat shock protein 70 levels in rats exposed to different stress models. Physiol Res 57, 205–13.PubMedGoogle Scholar
  9. Filipovic, D., Gavrilovic, L., Dronjak, S. and Radojcic, M. B. (2005) Brain glucocorticoid receptor and heat shock protein 70 levels in rats exposed to acute, chronic or combined stress. Neuropsychobiology 51, 107–14.CrossRefPubMedGoogle Scholar
  10. Gass, P., Schroder, H., Prior, P. and Kiessling, M. (1994) Constitutive expression of heat shock protein 90 (HSP90) in neurons of the rat brain. Neurosci Lett 182, 188–92.CrossRefPubMedGoogle Scholar
  11. Gladwin, M. T., Yao, X. L., Cowan, M., Huang, X. L., Schneider, R., Grant, L. R., Logun, C. and Shelhamer, J. H. (2000) Retinoic acid reduces p11 protein levels in bronchial epithelial cells by a posttranslational mechanism. Am J Physiol Lung Cell Mol Physiol 279, L1103–L09.PubMedGoogle Scholar
  12. Guzhova, I., Kislyakova, K., Moskaliova, O., Fridlanskaya, I., Tytell, M., Cheetham, M. and Margulis, B. (2001) In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Res 914, 66–73.CrossRefPubMedGoogle Scholar
  13. Hayase, T., Yamamoto, Y., Yamamoto, K., Muso, E., Shiota, K. and Hayashi, T. (2003) Similar effects of cocaine and immobilization stress on the levels of heat-shock proteins and stress-activated protein kinases in the rat hippocampus, and on swimming behaviors: the contribution of dopamine and benzodiazepine receptors. Behav Pharmacol 14, 551–62.CrossRefPubMedGoogle Scholar
  14. Hermann, D. M., Kilic, E., Hata, R., Hossmann, K. A. and Mies, G. (2001) Relationship between metabolic dysfunctions, gene responses and delayed cell death after mild focal cerebral ischemia in mice. Neuroscience 104, 947–55.CrossRefPubMedGoogle Scholar
  15. Huang, J., Hu, N., Goldstein, A. M., Emmert-Buck, M. R., Tang, Z. Z., Roth, M. J., Wang, Q. H., Dawsey, S. M., Han, X. Y., Ding, T., Li, G., Giffen, C. and Taylor, P. R. (2000) High frequency allelic loss on chromosome 17p13.3-p11.1 in esophageal squamous cell carcinomas from a high incidence area in northern China. Carcinogenesis 21, 2019–26.CrossRefPubMedGoogle Scholar
  16. Huang, X., Pawliczak, R., Yao, X. L., Madara, P., Alsaaty, S., Shelhamer, J. H. and Cowan, M. J. (2003) Characterization of the human p11 promoter sequence. Gene 310, 133–42.CrossRefPubMedGoogle Scholar
  17. Hwang, I., Kim, D. W., Yoo, K. Y., Kang, T. C., Kim, Y., Kwon, D., Moon, W. K. and Won, M. (2007) Parvalbumin immunoreactivity and protein content alter in the hippocampus after adrenalectomy in seizure sensitive gerbils. Neurol Res 29, 441–48.CrossRefPubMedGoogle Scholar
  18. Izumoto, S. and Herbert, J. (1993) Widespread constitutive expression of HSP90 messenger RNA in rat brain. J Neurosci Res 35, 20–28.CrossRefPubMedGoogle Scholar
  19. Jiang, X. and Wang, X. (2000) Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J Biol Chem 275, 31199–203.CrossRefPubMedGoogle Scholar
  20. Kakimura, J., Kitamura, Y., Takata, K., Umeki, M., Suzuki, S., Shibagaki, K., Taniguchi, T., Nomura, Y., Gebicke-Haerter, P. J., Smith, M. A., Perry, G. and Shimohama, S. (2002) Microglial activation and amyloid-beta clearance induced by exogenous heat-shock proteins. Faseb J 16, 601–03.PubMedGoogle Scholar
  21. Kiang, J. G., Warke, V. G. and Tsokos, G. C. (2003) NaCN-induced chemical hypoxia is associated with altered gene expression. Mol Cell Biochem 254, 211–16.CrossRefPubMedGoogle Scholar
  22. Kimberg, D. V., Loud, A. V. and Wiener, J. (1968) Cortisone-induced alterations in mitochondrial function and structure. J Cell Biol 37, 63–79.CrossRefPubMedGoogle Scholar
  23. Korsmeyer, S. J., Wei, M. C., Saito, M., Weiler, S., Oh, K. J. and Schlesinger, P. H. (2000) Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7, 1166–73.CrossRefPubMedGoogle Scholar
  24. Lacoste, A., De Cian, M. C., Cueff, A. and Poulet, S. A. (2001) Noradrenaline and alpha-adrenergic signaling induce the hsp70 gene promoter in mollusc immune cells. J Cell Sci 114, 3557–64.PubMedGoogle Scholar
  25. Lewthwaite, J., Owen, N., Coates, A., Henderson, B. and Steptoe, A. (2002) Circulating human heat shock protein 60 in the plasma of British civil servants: relationship to physiological and psychosocial stress. Circulation 106, 196–201.CrossRefPubMedGoogle Scholar
  26. Liberzon, I. and Young, E. A. (1997) Effects of stress and glucocorticoids on CNS oxytocin receptor binding. Psychoneuroendocrinology 22, 411–22.CrossRefPubMedGoogle Scholar
  27. Lindauer, R. J., Olff, M., van Meijel, E. P., Carlier, I. V. and Gersons, B. P. (2006) Cortisol, learning, memory, and attention in relation to smaller hippocampal volume in police officers with post-traumatic stress disorder. Biol Psychiatry 59, 171–77.CrossRefPubMedGoogle Scholar
  28. Lindsten, T., Zong, W. X. and Thompson, C. B. (2005) Defining the role of the Bcl-2 family of proteins in the nervous system. Neuroscientist 11, 10–15.CrossRefPubMedGoogle Scholar
  29. Meaney, M. J., Diorio, J., Francis, D., Weaver, S., Yau, J., Chapman, K. and Seckl, J. R. (2000) Postnatal handling increases the expression of cAMP-inducible transcription factors in the rat hippocampus: the effects of thyroid hormones and serotonin. J Neurosci 20, 3926–35.PubMedGoogle Scholar
  30. Pfeffer, C. R., Altemus, M., Heo, M. and Jiang, H. (2007) Salivary cortisol and psychopathology in children bereaved by the September 11, 2001 terror attacks. Biol Psychiatry 61, 957–65.CrossRefPubMedGoogle Scholar
  31. Roseboom, P. H., Nanda, S. A., Bakshi, V. P., Trentani, A., Newman, S. M. and Kalin, N. H. (2007) Predator threat induces behavioral inhibition, pituitary-adrenal activation and changes in amygdala CRF-binding protein gene expression. Psychoneuroendocrinology 32, 44–55.CrossRefPubMedGoogle Scholar
  32. Stacchiotti, A., Schiaffonati, L., Tiberio, L., Rodella, L. and Bianchi, R. (1997) Constitutive expression of heat shock proteins 70 and 90 in rat cerebellum. Eur J Histochem 41, 127–32.PubMedGoogle Scholar
  33. Svenningsson, P., Chergui, K., Rachleff, I., Flajolet, M., Zhang, X., El Yacoubi, M., Vaugeois, J. M., Nomikos, G. G. and Greengard, P. (2006) Alterations in 5-HT1B receptor function by p11 in depression-like states. Science 311, 77–80.CrossRefPubMedGoogle Scholar
  34. Tan, K. O., Fu, N. Y., Sukumaran, S. K., Chan, S. L., Kang, J. H., Poon, K. L., Chen, B. S. and Yu, V. C. (2005) MAP-1 is a mitochondrial effector of Bax. Proc Natl Acad Sci U S A 102, 14623–28.CrossRefPubMedGoogle Scholar
  35. Tanaka, S., Kitagawa, K., Ohtsuki, T., Yagita, Y., Takasawa, K., Hori, M. and Matsumoto, M. (2002) Synergistic induction of HSP40 and HSC70 in the mouse hippocampal neurons after cerebral ischemia and ischemic tolerance in gerbil hippocampus. J Neurosci Res 67, 37–47.CrossRefPubMedGoogle Scholar
  36. Ursano, R. J., Li, H., Zhang, L., Hough, C. J., Fullerton, C. S., Benedek, D. M., Grieger, T. A. and Holloway, H. C. (2008) Models of PTSD and traumatic stress: the importance of research "from bedside to bench to bedside". Prog Brain Res 167, 203–15.CrossRefPubMedGoogle Scholar
  37. van Noort, J. M. (2008) Stress proteins in CNS inflammation. J Pathol 214, 267–75.CrossRefPubMedGoogle Scholar
  38. Vogel, W. H. and Jensh, R. (1988) Chronic stress and plasma catecholamine and corticosterone levels in male rats. Neurosci Lett 87, 183–88.CrossRefPubMedGoogle Scholar
  39. Voisin, P. J., Pardue, S., Macouillard, F., Yehia, G., Labouesse, J. and Morrison-Bogorad, M. (1996) Differential expression of heat shock 70 proteins in primary cultures from rat cerebellum. Brain Res 739, 215–34.CrossRefPubMedGoogle Scholar
  40. Webster, J. C. and Cidlowski, J. A. (1999) Mechanisms of glucocorticoid-receptor-mediated repression of gene expression. Trends Endocrinol Metab 10, 396–402.Google Scholar
  41. Yau, J. L., Noble, J. and Seckl, J. R. (2001) Acute restraint stress increases 5-HT7 receptor mRNA expression in the rat hippocampus. Neurosci Lett 309, 141–44.CrossRefPubMedGoogle Scholar
  42. Yehuda, R., Kahana, B., Binder-Brynes, K., Southwick, S. M., Mason, J. W. and Giller, E. L. (1995) Low urinary cortisol excretion in Holocaust survivors with post-traumatic stress disorder. Am J Psychiatry 152, 982–86.PubMedGoogle Scholar
  43. Zhang, L., Li, H., Su, T. P., Barker, J. L., Maric, D., Fullerton, C. S., Webster, M. J., Hough, C. J., Li, X. X. and Ursano, R. (2008) p11 is up-regulated in the forebrain of stressed rats by glucocorticoid acting via two specific glucocorticoid response elements in the p11 promoter. Neuroscience 153, 1126–34.CrossRefPubMedGoogle Scholar
  44. Zou, H., Henzel, W. J., Liu, X., Lutschg, A. and Wang, X. (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–13.CrossRefPubMedGoogle Scholar
  45. Zou, H., Li, Y., Liu, X. and Wang, X. (1999) An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274, 11549–56.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of PsychiatryCenter for the Study of Traumatic Stress, Uniformed Services, University of the Health SciencesBethesdaUSA

Personalised recommendations