HSP and Diabetes

  • Martin WhithamEmail author
  • Mark A. Febbraio
Part of the Heat Shock Proteins book series (HESP, volume 5)


As the prevalence of diabetes continues to rise, strategies that aim to prevent and treat the condition continue to gain importance. Obesity is thought to induce a state of low-grade inflammation, which ultimately disrupts insulin signalling and predisposes individuals to type II diabetes. In particular, TNFα, endoplasmic reticulum (ER) and oxidative stress all appear to be associated with obesity and stimulate inflammatory kinases such as c jun amino terminal kinase (JNK), inhibitor of NF-κβ kinase (IKK) and protein kinase C (PKC). These kinases in turn inhibit insulin signalling, predominantly through inhibitory phosphorylation of the insulin receptor substrate (IRS). The current chapter reviews the literature that describes this process and the potential that heat shock proteins have in preventing inflammatory disruption of insulin signalling. In particular, data are presented that demonstrate the role of Hsp72 in the prevention of insulin resistance in diet and genetic models of murine obesity. The role of HSP in the autoimmunity of type I diabetes is also discussed


Obesity inflammation insulin resistance hydroxylamine derivatives autoimmunity 





adipose tissue macrophages




citrate synthase




endoplasmic reticulum


extracellular signal-regulated kinases


free fatty acid


glycogen synthase kinase 3β


high fat diet




homeostatic model assessment of insulin resistance


heat therapy


heat shock element


heat shock factor


heat shock proteins


inhibitor of NF-κβ kinase


intramuscular triglyceride


intraperotineal glucose tolerance tests


insulin receptor


insulin receptor substrate


c-jun amino terminal kinase


mouse embryonic fibroblasts


National Health and Nutrition Examination survey


non-obese diabetic mice


non-steroidal anti-inflammatory drugs


Otsuka Long-Evans Tokushima Fatty rats


4-phenyl butyric acid


PKR-like kinase




phosphatidilinositol 3, 4, 5 triphosphate


protein kinase A


protein kinase C


reactive oxygen species


tumor necrosis factor α


  1. Abulafia-Lapid, R., Elias, D., Raz, I., Keren-Zur, Y., Atlan, H., and Cohen, I. R. (1999) T cell proliferative responses of type 1 diabetes patients and healthy individuals to human hsp60 and its peptides. J. Autoimmun. 12, 121–129.CrossRefPubMedGoogle Scholar
  2. Abulafia-Lapid, R., Gillis, D., Yosef, O., Atlan, H., and Cohen, I. R. (2003) T cells and autoantibodies to human HSP70 in type 1 diabetes in children. J. Autoimmun. 20, 313–321.CrossRefPubMedGoogle Scholar
  3. Aguirre, V., Werner, E. D., Giraud, J., Lee, Y. H., Shoelson, S. E., and White, M. F. (2002) Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J. Biol. Chem. 277, 1531–1537.CrossRefPubMedGoogle Scholar
  4. Amin, J., Ananthan, J., and Voellmy, R. (1988) Key features of heat shock regulatory elements. Mol. Cell. Biol. 8, 3761–3769.PubMedGoogle Scholar
  5. Atalay, M., Oksala, N. K., Laaksonen, D. E., Khanna, S., Nakao, C., Lappalainen, J., Roy, S., Hanninen, O., and Sen, C. K. (2004) Exercise training modulates heat shock protein response in diabetic rats. J. Appl. Physiol. 97, 605–611.CrossRefPubMedGoogle Scholar
  6. Bach, J. F. (1994) Insulin-dependent diabetes mellitus as an autoimmune disease. Endocr. Rev. 15, 516–542.PubMedGoogle Scholar
  7. Bellmann, K., Hui, L., Radons, J., Burkart, V., and Kolb, H. (1997) Low stress response enhances vulnerability of islet cells in diabetes-prone BB rats. Diabetes 46, 232–236.CrossRefPubMedGoogle Scholar
  8. Berghoefer, A., Pischon, T., Reinhold, T., Apovian, C. M., Sharma, A. M., and Willich, S. N. (2008) Obesity prevalence from a European perspective: a systematic review. BMC Publ. Health 8, 200.Google Scholar
  9. Bienemann, A. S., Lee, Y. B., Howarth, J., and Uney, J. B. (2008) Hsp70 suppresses apoptosis in sympathetic neurones by preventing the activation of c-Jun. J. Neurochem. 104, 271–278.PubMedGoogle Scholar
  10. Birk, O. S., Elias, D., Weiss, A. S., Rosen, A., van der, Z. R., Walker, M. D., and Cohen, I. R. (1996) NOD mouse diabetes: the ubiquitous mouse hsp60 is a beta-cell target antigen of autoimmune T cells. J. Autoimmun. 9, 159–166.CrossRefPubMedGoogle Scholar
  11. Bruce, C. R., Carey, A. L., Hawley, J. A., and Febbraio, M. A. (2003) Intramuscular heat shock protein 72 and heme oxygenase-1 mRNA are reduced in patients with type 2 diabetes: evidence that insulin resistance is associated with a disturbed antioxidant defense mechanism. Diabetes 52, 2338–2345.CrossRefPubMedGoogle Scholar
  12. Cai, D., Yuan, M., Frantz, D. F., Melendez, P. A., Hansen, L., Lee, J., and Shoelson, S. E. (2005) Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat. Med. 11, 183–190.CrossRefPubMedGoogle Scholar
  13. Cancello, R., Henegar, C., Viguerie, N., Taleb, S., Poitou, C., Rouault, C., Coupaye, M., Pelloux, V., Hugol, D., Bouillot, J. L., Bouloumie, A., Barbatelli, G., Cinti, S., Svensson, P. A., Barsh, G. S., Zucker, J. D., Basdevant, A., Langin, D., and Clement, K. (2005) Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 54, 2277–2286.CrossRefPubMedGoogle Scholar
  14. Chang, L., Chiang, S. H., and Saltiel, A. R. (2004) Insulin signalling and the regulation of glucose transport. Mol. Med. 10, 65–71.PubMedGoogle Scholar
  15. Chen, H. W., Chen, S. C., Tsai, J. L., and Yang, R. C. (1999) Previous hyperthermic treatment increases mitochondria oxidative enzyme activity and exercise capacity in rats. Kaohsiung J. Med. Sci. 15, 572–580.PubMedGoogle Scholar
  16. Chen, H. S., Shan, Y. X., Yang, T. L., Lin, H. D., Chen, J. W., Lin, S. J., and Wang, P. H. (2005) Insulin deficiency downregulated heat shock protein 60 and IGF-1 receptor signalling in diabetic myocardium. Diabetes 54, 175–181.CrossRefPubMedGoogle Scholar
  17. Chu, B., Soncin, F., Price, B. D., Stevenson, M. A., and Calderwood, S. K. (1996) Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J. Biol. Chem. 271, 30847–30857.CrossRefPubMedGoogle Scholar
  18. Chung, J., Nguyen, A. K., Henstridge, D. C., Holmes, A. G., Chan, M. H., Mesa, J. L., Lancaster, G. I., Southgate, R. J., Bruce, C. R., Duffy, S. J., Horvath, I., Mestril, R., Watt, M. J., Hooper, P. L., Kingwell, B. A., Vigh, L., Hevener, A., and Febbraio, M. A. (2008) HSP72 protects against obesity-induced insulin resistance. Proc. Natl. Acad. Sci. USA 105, 1739–1744.CrossRefPubMedGoogle Scholar
  19. Elias, D., Markovits, D., Reshef, T., van der, Z. R., and Cohen, I. R. (1990) Induction and therapy of autoimmune diabetes in the non-obese diabetic (NOD/Lt) mouse by a 65-kDa heat shock protein. Proc. Natl. Acad. Sci. USA 87, 1576–1580.CrossRefPubMedGoogle Scholar
  20. Elias, D., Prigozin, H., Polak, N., Rapoport, M., Lohse, A. W., and Cohen, I. R. (1994) Autoimmune diabetes induced by the beta-cell toxin STZ. Immunity to the 60-kDa heat shock protein and to insulin. Diabetes 43, 992–998.CrossRefPubMedGoogle Scholar
  21. Elias, D., Reshef, T., Birk, O. S., van der, Z. R., Walker, M. D., and Cohen, I. R. (1991) Vaccination against autoimmune mouse diabetes with a T-cell epitope of the human 65-kDa heat shock protein. Proc. Natl. Acad. Sci. USA 88, 3088–3091.CrossRefPubMedGoogle Scholar
  22. Flegal, K. M., Carroll, M. D., Ogden, C. L., and Johnson, C. L. (2002) Prevalence and trends in obesity among US adults, 1999–2000. J. Am. Med. Assoc. 288, 1723–1727.CrossRefGoogle Scholar
  23. Gabai, V. L., Meriin, A. B., Mosser, D. D., Caron, A. W., Rits, S., Shifrin, V. I., and Sherman, M. Y. (1997) Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance. J. Biol. Chem. 272, 18033–18037.CrossRefPubMedGoogle Scholar
  24. Hargitai, J., Lewis, H., Boros, I., Racz, T., Fiser, A., Kurucz, I., Benjamin, I., Vigh, L., Penzes, Z., Csermely, P., and Latchman, D. S. (2003) Bimoclomol, a heat shock protein co-inducer, acts by the prolonged activation of heat shock factor-1. Biochem. Biophys. Res. Commun. 307, 689–695.CrossRefPubMedGoogle Scholar
  25. Hawley, J. A. (2004) Exercise as a therapeutic intervention for the prevention and treatment of insulin resistance. Diabetes Metab. Res. Rev. 20, 383–393.CrossRefPubMedGoogle Scholar
  26. He, B., Meng, Y. H., and Mivechi, N. F. (1998) Glycogen synthase kinase 3beta and extracellular signal-regulated kinase inactivate heat shock transcription factor 1 by facilitating the disappearance of transcriptionally active granules after heat shock. Mol. Cell. Biol. 18, 6624–6633.PubMedGoogle Scholar
  27. Hirosumi, J., Tuncman, G., Chang, L., Gorgun, C. Z., Uysal, K. T., Maeda, K., Karin, M., and Hotamisligil, G. S. (2002) A central role for JNK in obesity and insulin resistance. Nature 420, 333–336.CrossRefPubMedGoogle Scholar
  28. Hooper, P. L. (1999) Hot-tub therapy for type 2 diabetes mellitus. N. Engl. J. Med. 341, 924–925.CrossRefPubMedGoogle Scholar
  29. Hotamisligil, G. S. (2006) Inflammation and metabolic disorders. Nature 444, 860–867.CrossRefPubMedGoogle Scholar
  30. Hotamisligil, G. S., Peraldi, P., Budavari, A., Ellis, R., White, M. F., and Spiegelman, B. M. (1996) IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271, 665–668.CrossRefPubMedGoogle Scholar
  31. Hotamisligil, G. S., Shargill, N. S., and Spiegelman, B. M. (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91.CrossRefPubMedGoogle Scholar
  32. Houstis, N., Rosen, E. D., and Lander, E. S. (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440, 944–948.CrossRefPubMedGoogle Scholar
  33. Jurivich, D. A., Sistonen, L., Kroes, R. A., and Morimoto, R. I. (1992) Effect of sodium salicylate on the human heat shock response. Science 255, 1243–1245.CrossRefPubMedGoogle Scholar
  34. Kamata, H., Honda, S., Maeda, S., Chang, L., Hirata, H., and Karin, M. (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120, 649–661.CrossRefPubMedGoogle Scholar
  35. Kampinga, H. H., Hageman, J., Vos, M. J., Kubota, H., Tanguay, R. M., Bruford, E. A., Cheetham, M. E., Chen, B., and Hightower, L. E. (2008) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones. DOI 10.1007/s12192-008-0068–7.Google Scholar
  36. Kim, S. A., Yoon, J. H., Lee, S. H., and Ahn, S. G. (2005) Polo-like kinase 1 phosphorylates heat shock transcription factor 1 and mediates its nuclear translocation during heat stress. J. Biol. Chem. 280, 12653–12657.CrossRefPubMedGoogle Scholar
  37. Kurucz, I., Morva, A., Vaag, A., Eriksson, K. F., Huang, X., Groop, L., and Koranyi, L. (2002) Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance. Diabetes 51, 1102–1109.CrossRefPubMedGoogle Scholar
  38. Landry, J., Bernier, D., Chretien, P., Nicole, L. M., Tanguay, R. M., and Marceau, N. (1982) Synthesis and degradation of heat shock proteins during development and decay of thermotolerance. Cancer. Res. 42, 2457–2461.PubMedGoogle Scholar
  39. Lee, M. S., Chang, I., and Kim, S. (2004) Death effectors of beta-cell apoptosis in type 1 diabetes. Mol. Genet. Metab. 83, 82–92.CrossRefPubMedGoogle Scholar
  40. Meldrum, K. K., Burnett, A. L., Meng, X., Misseri, R., Shaw, M. B., Gearhart, J. P., and Meldrum, D. R. (2003) Liposomal delivery of heat shock protein 72 into renal tubular cells blocks nuclear factor-kappaB activation, tumor necrosis factor-alpha production, and subsequent ischemia-induced apoptosis. Circ. Res. 92, 293–299.CrossRefPubMedGoogle Scholar
  41. Melling, C. W., Krause, M. P., and Noble, E. G. (2006) PKA-mediated ERK1/2 inactivation and hsp70 gene expression following exercise. J. Mol. Cell Cardiol. 41, 816–822.CrossRefPubMedGoogle Scholar
  42. Mosser, D. D., Caron, A. W., Bourget, L., Denis-Larose, C., and Massie, B. (1997) Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol. Cell. Biol. 17, 5317–5327.PubMedGoogle Scholar
  43. Nguyen, M. T., Satoh, H., Favelyukis, S., Babendure, J. L., Imamura, T., Sbodio, J. I., Zalevsky, J., Dahiyat, B. I., Chi, N. W., and Olefsky, J. M. (2005) JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J. Biol. Chem. 280, 35361–35371.CrossRefPubMedGoogle Scholar
  44. Oksala, N. K., Laaksonen, D. E., Lappalainen, J., Khanna, S., Nakao, C., Hanninen, O., Sen, C. K., and Atalay, M. (2006) Heat shock protein 60 response to exercise in diabetes: effects of alpha-lipoic acid supplementation. J. Diabetes Complicat. 20, 257–261.CrossRefPubMedGoogle Scholar
  45. Ostergard, T., Jessen, N., Schmitz, O., and Mandarino, L. J. (2007) The effect of exercise, training, and inactivity on insulin sensitivity in diabetics and their relatives: what is new? Appl. Physiol. Nutr. Metab. 32, 541–548.CrossRefPubMedGoogle Scholar
  46. Ozcan, U., Cao, Q., Yilmaz, E., Lee, A. H., Iwakoshi, N. N., Ozdelen, E., Tuncman, G., Gorgun, C., Glimcher, L. H., and Hotamisligil, G. S. (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461.CrossRefPubMedGoogle Scholar
  47. Ozcan, U., Yilmaz, E., Ozcan, L., Furuhashi, M., Vaillancourt, E., Smith, R. O., Gorgun, C. Z., and Hotamisligil, G. S. (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313, 1137–1140.CrossRefPubMedGoogle Scholar
  48. Park, H. S., Lee, J. S., Huh, S. H., Seo, J. S., and Choi, E. J. (2001) Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase. EMBO J. 20, 446–456.CrossRefPubMedGoogle Scholar
  49. Patti, M. E., Butte, A., Cusi, K., Kohane, I., Landaker, E. J., Defronzo, R., Mandarino, L. J., and Kahn, C. R. (2001) Analysis of differential gene expression in skeletal muscle from subjects with insulin resistance and type 2 diabetes. Diabetes 50 (suppl. 2), A247.Google Scholar
  50. Prada, P. O., Zecchin, H. G., Gasparetti, A. L., Torsoni, M. A., Ueno, M., Hirata, A. E., Corezola do Amaral, M. E., Hoer, N. F., Boschero, A. C., and Saad, M. J. (2005) Western diet modulates insulin signalling, c-Jun N-terminal kinase activity, and insulin receptor substrate-1ser307 phosphorylation in a tissue-specific fashion. Endocrinology 146, 1576–1587.CrossRefPubMedGoogle Scholar
  51. Raz, I., Avron, A., Tamir, M., Metzger, M., Symer, L., Eldor, R., Cohen, I. R., and Elias, D. (2007) Treatment of new-onset type 1 diabetes with peptide DiaPep277 is safe and associated with preserved beta-cell function: extension of a randomized, double-blind, phase II trial. Diabetes Metab. Res. Rev. 23, 292–298.CrossRefPubMedGoogle Scholar
  52. Raz, I., Elias, D., Avron, A., Tamir, M., Metzger, M., and Cohen, I. R. (2001) Beta-cell function in new-onset type 1 diabetes and immunomodulation with a heat-shock protein peptide (DiaPep277): a randomised, double-blind, phase II trial. Lancet 358, 1749–1753.CrossRefPubMedGoogle Scholar
  53. Ritossa, F. (1996) Discovery of the heat shock response. Cell Stress Chaperones 1, 97–98.CrossRefPubMedGoogle Scholar
  54. Salminen, A., Paimela, T., Suuronen, T., and Kaarniranta, K. (2008) Innate immunity meets with cellular stress at the IKK complex: Regulation of the IKK complex by HSP70 and HSP90. Immunol. Lett. 117, 9–15.CrossRefPubMedGoogle Scholar
  55. Sarge, K. D., Murphy, S. P., and Morimoto, R. I. (1993) Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell. Biol. 13, 1392–1407.PubMedGoogle Scholar
  56. Shan, Y. X., Yang, T. L., Mestril, R., and Wang, P. H. (2003) Hsp10 and Hsp60 suppress ubiquitination of insulin-like growth factor-1 receptor and augment insulin-like growth factor-1 receptor signalling in cardiac muscle: implications on decreased myocardial protection in diabetic cardiomyopathy. J. Biol. Chem. 278, 45492–45498.CrossRefPubMedGoogle Scholar
  57. Snoeckx, L. H., Cornelussen, R. N., Van Nieuwenhoven, F. A., Reneman, R. S., and Van Der Vusse, G. J. (2001) Heat shock proteins and cardiovascular pathophysiology. Physiol. Rev. 81, 1461–1497.PubMedGoogle Scholar
  58. Suzuki, K., Murtuza, B., Sammut, I. A., Latif, N., Jayakumar, J., Smolenski, R. T., Kaneda, Y., Sawa, Y., Matsuda, H., and Yacoub, M. H. (2002) Heat shock protein 72 enhances manganese superoxide dismutase activity during myocardial ischemia-reperfusion injury, associated with mitochondrial protection and apoptosis reduction. Circulation 106, I270–I276.PubMedGoogle Scholar
  59. Szebeni, A., Prohaszka, Z., Buzas, E., Falus, A., and Kecskemeti, V. (2008) Effects of vaccination with heat shock proteins on streptozotocin induced diabetes in histidine decarboxylase knockout mice. Inflamm. Res. 57, 178–182.CrossRefPubMedGoogle Scholar
  60. Taniguchi, C. M., Emanuelli, B., and Kahn, C. R. (2006) Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7, 85–96.CrossRefPubMedGoogle Scholar
  61. Uysal, K. T., Wiesbrock, S. M., Marino, M. W., and Hotamisligil, G. S. (1997) Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389, 610–614.CrossRefPubMedGoogle Scholar
  62. Verheij, M., Bose, R., Lin, X. H., Yao, B., Jarvis, W. D., Grant, S., Birrer, M. J., Szabo, E., Zon, L. I., Kyriakis, J. M., Haimovitz-Friedman, A., Fuks, Z., and Kolesnick, R. N. (1996) Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 380, 75–79.CrossRefPubMedGoogle Scholar
  63. Vigh, L., Horvath, I., Maresca, B., and Harwood, J. L. (2007) Can the stress protein response be controlled by ‘membrane-lipid therapy’? Trends Biochem. Sci. 32, 357–363.CrossRefPubMedGoogle Scholar
  64. Wang, X., Khaleque, M. A., Zhao, M. J., Zhong, R., Gaestel, M., and Calderwood, S. K. (2006) Phosphorylation of HSF1 by MAPK-activated protein kinase 2 on serine 121, inhibits transcriptional activity and promotes HSP90 binding. J. Biol. Chem. 281, 782–791.CrossRefPubMedGoogle Scholar
  65. Weisberg, S. P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R. L., and Ferrante, A. W., Jr. (2003) Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808.PubMedGoogle Scholar
  66. Weiss, Y. G., Bromberg, Z., Raj, N., Raphael, J., Goloubinoff, P., Ben Neriah, Y., and Deutschman, C. S. (2007) Enhanced heat shock protein 70 expression alters proteasomal degradation of IkappaB kinase in experimental acute respiratory distress syndrome. Crit. Care Med. 35, 2128–2138.CrossRefPubMedGoogle Scholar
  67. Wellen, K. E. and Hotamisligil, G. S. (2005) Inflammation, stress, and diabetes. J. Clin. Invest. 115, 1111–1119.PubMedGoogle Scholar
  68. Westerheide, S. D. and Morimoto, R. I. (2005) Heat shock response modulators as therapeutic tools for diseases of protein conformation. J. Biol. Chem. 280, 33097–33100.CrossRefPubMedGoogle Scholar
  69. White, M. F. (2002) IRS proteins and the common path to diabetes. Am. J. Physiol. Endocrinol. Metab. 283, E413–E422.PubMedGoogle Scholar
  70. Wild, S., Roglic, G., Green, A., Sicree, R., and King, H. (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27, 1047–1053.CrossRefPubMedGoogle Scholar
  71. Xu, H., Barnes, G. T., Yang, Q., Tan, G., Yang, D., Chou, C. J., Sole, J., Nichols, A., Ross, J. S., Tartaglia, L. A., and Chen, H. (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830.PubMedGoogle Scholar
  72. Yu, C., Chen, Y., Cline, G. W., Zhang, D., Zong, H., Wang, Y., Bergeron, R., Kim, J. K., Cushman, S. W., Cooney, G. J., Atcheson, B., White, M. F., Kraegen, E. W., and Shulman, G. I. (2002) Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J. Biol. Chem. 277, 50230–50236.CrossRefPubMedGoogle Scholar
  73. Yuan, M., Konstantopoulos, N., Lee, J., Hansen, L., Li, Z. W., Karin, M., and Shoelson, S. E. (2001) Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 293, 1673–1677.CrossRefPubMedGoogle Scholar
  74. Yuasa, T., Ohno, S., Kehrl, J. H., and Kyriakis, J. M. (1998) Tumor necrosis factor signalling to stress-activated protein kinase (SAPK)/Jun NH2-terminal kinase (JNK) and p38. Germinal center kinase couples TRAF2 to mitogen-activated protein kinase/ERK kinase kinase 1 and SAPK while receptor interacting protein associates with a mitogen-activated protein kinase kinase kinase upstream of MKK6 and p38. J. Biol. Chem. 273, 22681–22692.CrossRefPubMedGoogle Scholar
  75. Zhao, J., Zhang, N., He, M., Yang, Z., Tong, W., Wang, Q., and Hu, R. (2008) Increased beta-cell apoptosis and impaired insulin signalling pathway contributes to the onset of diabetes in OLETF rats. Cell. Physiol. Biochem. 21, 445–454.CrossRefPubMedGoogle Scholar
  76. Zuo, J., Rungger, D., and Voellmy, R. (1995) Multiple layers of regulation of human heat shock transcription factor 1. Mol. Cell. Biol. 15, 4319–4330.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.School of Sport, Health and Exercise Sciences, Bangor UniversityGwyneddUK
  2. 2.Division of Metabolism and Obesity, Cellular & Molecular Metabolism LaboratoryBaker IDI Heart & Diabetes InstituteMelbourneAustralia
  3. 3.Cellular & Molecular Metabolism LaboratoryBaker IDI Heart & Diabetes InstituteMelbourneAustralia

Personalised recommendations