Skip to main content

Summary and Prospects

  • Chapter
  • First Online:
Brillouin-Wigner Methods for Many-Body Systems

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 21))

  • 968 Accesses

Abstract

A summary of the present status of Brillouin–Wigner many-body methodology is given. Future prospects are assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The use of ‘Møller–Plesset’ or ‘Hartree–Fock model’ to label particular choices of zero-order Hamiltonian in many-body perturbation theory dates from the work of Pople et al. [2] and of Wilson and Silver [3]. In their original publication of 1934, Møller and Plesset [4] did not recognize the “many-body” character of the theory in the modern (post-Brueckner) sense.

  2. 2.

    See, for example, the monograph Electron correlation in molecules [5, 6] published by one of us in 1984 for an account of the then current thinking on the problems associated with quasi-degenerate diagrammatic perturbation theory.

  3. 3.

    In the monograph Electron correlation in molecules [5, 6] published by one of us in 1984, three solutions to the intruder state problem were offered:

  4. 4.

    See, for example, C.J. Cramer in his book Essentials of Computational Chemistry [33] writes

    “... ccsd(t)... has come to be the effective gold standard for single-reference calculations.” p. 226.

  5. 5.

    Even for molecules containing light atoms, properties depending on the wave function close to the nuclear region can require the use of a relativistic formalism.

  6. 6.

    There are many quantum chemistry packages available to the contemporary researcher. For a review of some of theses see reference [45].

  7. 7.

    Pople’s Nobel citation reads “for his development of computational methods in quantum chemistry”.

  8. 8.

    For a brief overview of the many applications of mp2 in contemporary molecular electronic structure studies see the recent report by one of us [45] which continues earlier reports on the subject [4649].

  9. 9.

    When the electron group functions are associated with electron pairs this approach becomes the well known generalized valence bond method (gvb) [54].

  10. 10.

    Some algorithms exploit the relation between the modern valence bond wavefunction and the complete active space self-consistent field (cas-scf) functions. This leads to the so-called cas-vb approach [5860].

References

  1. K.A. Brueckner, Phys. Rev. 100, 36, 1955

    Article  CAS  Google Scholar 

  2. J.A. Pople, J.S. Binkley and R. Seeger, Intern. J. Quantum Chem. Symp. 10, 1, 1976

    Article  CAS  Google Scholar 

  3. S. Wilson and D.M. Silver, Phys. Rev. A 14, 1949, 1976

    Article  CAS  Google Scholar 

  4. Ch. Møller and M.S. Plesset, Phys. Rev. 46, 618, 1934

    Article  Google Scholar 

  5. S. Wilson, Electron correlation in molecules, Clarendon Press, Oxford, 1984

    Google Scholar 

  6. S. Wilson, Electron correlation in molecules, (reprint, with corrections, of the 1984 edition), Dover Publications, New York, 2007

    Google Scholar 

  7. E.P. Wigner, Math. naturw. Anz. ungar. Akad. Wiss. 53, 475, 1935

    Google Scholar 

  8. I. Hubač and P. Neogrády, Phys. Rev. A50, 4558, 1994

    Google Scholar 

  9. P. Papp; P. Mach; J. Pittner; I. Hubač and S. Wilson Molec. Phys. 104 2367, 2006

    Google Scholar 

  10. P. Papp, P. Mach, I. Hubač and S. Wilson, Intern. J. Quantum Chem. 107, 2622, 2007

    Article  CAS  Google Scholar 

  11. P. Papp, P. Neogrády, P. Mach, J. Pittner, I. Hubač and S. Wilson, Molec. Phys. 106, 57, 2008

    CAS  Google Scholar 

  12. S.A. Kucharski and R.J. Bartlett, Int. J. Quantum Chem. Symp. 22, 383, 1988

    Article  CAS  Google Scholar 

  13. K. Hirao (ed.), Recent Advances in Multi-reference Methods World Scientific Publishing, Singapore, 1999

    Google Scholar 

  14. Y.-K. Choe, J.P. Finley, H. Nakano, and K. Hirao, J. Chem. Phys. 113, 7773, 2000

    Article  CAS  Google Scholar 

  15. H. Nakano, J. Nakatani, and K. Hirao, J. Chem. Phys. 114, 1133, 2001

    Article  CAS  Google Scholar 

  16. H.A. Witek, H. Nakano, and K. Hirao, J. Chem. Phys. 118, 8197, 2003 chap5-Hirao2000, chap5-Hirao2001, chap5-Hirao2003

    Google Scholar 

  17. W. Wenzel, Intern. J. Quant. Chem. 70, 613, 1998

    Article  CAS  Google Scholar 

  18. I. Hubač and S. Wilson, J. Phys. B: At. Mol. Opt. Phys. 33, 365, 2000

    Article  Google Scholar 

  19. I. Hubač, J. Pittner, and P. Čársky J. Chem. Phys. 112 8779, 2000

    Article  Google Scholar 

  20. J. Pittner, J. Chem. Phys. 118, 10876, 2003

    Article  CAS  Google Scholar 

  21. J. Pittner, personal communication

    Google Scholar 

  22. U.S. Mahapatra, B. Datta, B. Bandyopadhyay, and D. Mukherjee, Adv. Quantum Chem. 30, 163, 1998

    Article  CAS  Google Scholar 

  23. U.S. Mahapatra, B. Datta, and D. Mukherjee, J. Phys. Chem. A 103, 1822, 1999

    CAS  Google Scholar 

  24. U.S. Mahapatra, B. Datta, and D. Mukherjee, J. Chem. Phys. 110, 6171, 1999

    Article  CAS  Google Scholar 

  25. U.S. Mahapatra, B. Datta, and D. Mukherjee, Chem. Phys. Lett. 299, 42, 1999

    CAS  Google Scholar 

  26. S. Chattopadhyay, U.S. Mahapatra, and D. Mukherjee, J. Chem. Phys. 112, 7939, 2000

    Article  CAS  Google Scholar 

  27. S. Chattopadhyay, D. Pahari, D. Mukherjee, and U.S. Mahapatra, J. Chem. Phys. 120, 5968, 2004

    Article  CAS  Google Scholar 

  28. S. Chattopadhyay, P. Ghosh, and U.S. Mahapatra, J. Phys. B: At. Mol. Opt. Phys. 37, 495, 2004

    Article  CAS  Google Scholar 

  29. F.A. Evangelista, W.D. Allen and H.F. Schaefer III, J. Chem. Phys. 125, 154113, 2006

    Article  Google Scholar 

  30. F.A. Evangelista, W.D. Allen and H.F. Schaefer III, J. Chem. Phys. 127, 024102, 2007

    Article  Google Scholar 

  31. F.A. Evangelista, A.C. Simmonett, W.D. Allen, H.F. Schaefer III, and J. Gauss, J. Chem. Phys. 128, 124104, 2008

    Article  Google Scholar 

  32. K. Raghavachari, G.W. Trucks, J.A. Pople and M. Head-Gordon, Chem. Phys. Lett. 157, 479, 1989

    CAS  Google Scholar 

  33. C.J. Cramer, Essentials of Computational Chemistry, John Wiley & Sons, 2004

    Google Scholar 

  34. O. Demel and J. Pittner, J. Chem. Phys. 128, 104108, 2008

    Article  Google Scholar 

  35. J. Gerratt and I.M. Mills, J. Chem. Phys. 49, 1730, 1968

    Article  CAS  Google Scholar 

  36. J. Gerratt and I.M. Mills, J. Chem. Phys. 49, 1719, 1968

    Article  Google Scholar 

  37. P. Pulay Molec. Phys. 17, 197, 1969

    Google Scholar 

  38. P. Pulay, Molec. Phys. 18, 473, 1970

    CAS  Google Scholar 

  39. P. Pulay, G. Fogarasi, F. Pang, and J. E. Boggs, J. Am. Chem. Soc. 101, 2550, 1979

    CAS  Google Scholar 

  40. J. Pittner and J. Šmydke, J. Chem. Phys. 127, 114103, 2007

    Article  Google Scholar 

  41. N.D.K. Petraco, Ľ. Horný, H.F. Schaefer and I. Hubač, J. Chem. Phys. 117, 9580, 2002

    Article  CAS  Google Scholar 

  42. H.F. Schaefer, III, Ľ. Horný, I. Hubač and S. Pal, Chem. Phys. 315, 240, 2005

    Google Scholar 

  43. H.M. Quiney, I. Hubač and S. Wilson, J. Phys. B: At. Mol. & Opt. Phys.34, 4323, 2001

    Article  CAS  Google Scholar 

  44. U. Kaldor and S. Wilson, (eds), Theoretical Chemistry and Physics of Heavy and Superheavy Elements Progress in Theoretical Chemistry and Physics, Kluwer Academic Press (2003)

    Google Scholar 

  45. S. Wilson, in Specialist Periodical Reports, Chemical Modelling: Applications and Theory, 5 ed. A. Hinchliffe, Royal Society of Chemistry, London, 2008

    Google Scholar 

  46. S. Wilson, in Specialist Periodical Reports, Chemical Modelling: Applications and Theory, 1 ed. A. Hinchliffe, Royal Society of Chemistry, London, 2000

    Google Scholar 

  47. S. Wilson, in Specialist Periodical Reports, Chemical Modelling: Applications and Theory, 2 ed. A. Hinchliffe, Royal Society of Chemistry, London, 2002

    Google Scholar 

  48. S. Wilson, in Specialist Periodical Reports, Chemical Modelling: Applications and Theory, 3 ed. A. Hinchliffe, Royal Society of Chemistry, London, 2004

    Google Scholar 

  49. S. Wilson, in Specialist Periodical Reports, Chemical Modelling: Applications and Theory, 4 ed. A. Hinchliffe, Royal Society of Chemistry, London, 2006

    Google Scholar 

  50. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople, Gaussian 03, Gaussian, Inc., Wallingford CT, 2004.

    Google Scholar 

  51. S. Wilson and J. Gerratt, Molec. Phys. 30, 777, 1975

    CAS  Google Scholar 

  52. S. Wilson, J. Chem. Phys. 64, 1692, 1976

    Article  CAS  Google Scholar 

  53. S. Wilson and J. Gerratt, Molec. Phys. 30, 765, 1975; ibid. 30, 789, 1975

    Google Scholar 

  54. W.A. Goddard, T.H. Dunning, Jr., W.J. Hunt and P.J. Hay, Acc Chem. Res. 6, 368, 1973

    CAS  Google Scholar 

  55. J. Gerratt, Adv. At. Molec. Phys. 7, 141, 1971

    Article  Google Scholar 

  56. N.C. Pyper and J. Gerratt, Proc. Roy. Soc. (London) A 355, 407, 1977

    Google Scholar 

  57. J. Gerratt, D.L. Cooper, P.B. Karadakov and M. Raimondi, in Handbook of Molecular Physics and Quantum Chemistry 2: Molecular Electronic Structure, edited by S. Wilson, P.F. Bernath and R. McWeeny, p. 146, John Wiley & Sons, Chichester, 2003

    Google Scholar 

  58. K. Hirao, H. Nakano, K. Nakayama, and M. Dupuis, J. Chem. Phys. 105, 9227, 1996

    Article  CAS  Google Scholar 

  59. K. Hirao, H. Nakano, and K. Nakayama, J. Chem. Phys. 107, 9966, 1997

    Article  CAS  Google Scholar 

  60. T. Thorsteinsson and D.L. Cooper, in Quantum Systems in Chemistry and Physics 1, Prog. Theoret. Chem. & Phys., edited by A. Hernandez-Laguna, J. Maruani, R. McWeeny and S. Wilson, p. 303, Kluwer Academic Press, Dordrecht, 2000

    Google Scholar 

  61. J. Pittner, X. Li and J. Paldus, Molec. Phys. 103, 2239, 2005

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Hubač .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hubač, I., Wilson, S. (2010). Summary and Prospects. In: Brillouin-Wigner Methods for Many-Body Systems. Progress in Theoretical Chemistry and Physics, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3373-4_5

Download citation

Publish with us

Policies and ethics