Skip to main content

Using Nitrogen Isotope Ratios to Assess Terrestrial Ecosystems at Regional and Global Scales

  • Chapter
  • First Online:
Isoscapes

Abstract

Advances in technology have made extensive surveys of 15N natural abundances in terrestrial ecosystems feasible at the regional and even global scale within the last decade. To date, such surveys have included measurements of plant (typically foliage) or soil δ15N. Correlations between plant δ15N and measures of N saturation have been reported in regional surveys of both Europe and North America, with plant tissue δ15N values increasing under N saturating conditions. Global analyses have shown positive relationships between both soil and foliar δ15N values and mean annual temperature and negative relationships between δ15N values and precipitation. Several factors can drive variations in plant and soil 15N natural abundances, thereby presenting challenges to the use of 15N for inferring nitrogen cycling patterns across large scales. These include: (1) prior land-use, which may leave long-lasting (decades to centuries) imprints on soil and hence plant δ15N; (2) variability in δ15N among species within a given site, which can mask patterns across sites; (3) mycorrhizal associations, which may fractionate strongly under certain conditions; (4) effects of climate, especially precipitation regime, which may influence the value of and temporal variability in plant δ15N. Despite these complicating factors, δ15N surveys at large scales may provide insight into N cycling patterns and processes controlling these patterns in terrestrial ecosystems; maps of δ15N in precipitation may also provide a useful tool for interpreting some patterns in terrestrial ecosystem N dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amundson R, Austin AT, Schuur AG et al (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem Cycles 17:1031

    Article  Google Scholar 

  • Aranibar JN, Otter L, Macko SA et al (2004) Nitrogen cycling in the plant-soil system along a precipitation gradient in the Kalahari sands. Global Change Biol 10:359–373

    Article  Google Scholar 

  • Austin AT, Sala OE (1999) Foliar δ15N is negatively correlated with rainfall along the IGBP transect in Australia. Aust J Plant Physiol 26:293–295

    Article  Google Scholar 

  • Austin AT, Vitousek PM (1998) Nutrient dynamics on a precipitation gradient in Hawai’i. Oecologia 113:519–529

    Article  Google Scholar 

  • Barford CC, Montoya JP, Altabet MA et al (1999) Steady-state nitrogen isotope effects of N2 and N2O production in Paracoccus denitrificans. Appl Environ Microbiol 65:989–994

    CAS  Google Scholar 

  • Bauer GA, Gebauer G, Harrison AF et al (2000) Biotic and abiotic controls over ecosystem cycling of stable natural nitrogen, carbon and sulphur isotopes. In: Schulze E-D (ed) Carbon and nitrogen cycling in European Forest ecosystems. Springer, Berlin, pp 189–214

    Google Scholar 

  • Bell G, Lechowicz MJ (1994) Spatial heterogeneity at small scales and how plants respond to it. In: Caldwell MM and Pearcy RW (eds) Exploitation of environmental heterogeneity by plants: ecophysiological processes above- and belowground. Academic, San Diego, CA, pp 391–414

    Google Scholar 

  • Böttcher J, Strebel O, Voerkelius S et al (1990) Using isotope fractionation of nitrate nitrogen and nitrate oxygen for evaluation of microbial denitrification in a sandy aquifer. J Hydrol 114:413–424

    Article  Google Scholar 

  • Boeckx P, Paulino L, Oyarzún C et al (2005) Soil δ15N patterns in old-growth forests of southern Chile as integrator for N-cycling. Isotopes Environ Health Stud 41(3):249–259

    Article  CAS  Google Scholar 

  • Burns DA, Kendall C (2002) Analysis of sources of 15N and 18O to differentiate NO 3 sources in runoff at two watersheds in the Catskill Mountains of New York. Water Resour Res 38:1051–1062

    Article  Google Scholar 

  • Buso DC, Martin CW, Hornbeck JW (1984) Potential for acidification of six remote ponds in the White Mountains of New Hampshire. Water Resources Research Center, Durham, New Hampshire, Research Report No 62

    Google Scholar 

  • Chapin FS III, Moilanen L, Kielland K (1993) Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361:150–153

    Article  CAS  Google Scholar 

  • Commisso RG, Nelson DE (2006) Modern plant δ15N values reflect ancient human activity. J Archeol Sci 33:1167–1176

    Article  Google Scholar 

  • Compton JE, Hooker TD, Perakis SS (2007) Ecosystem N distribution and δ15N during a century of forest regrowth after agricultural abandonment. Ecosystems 10:1197–1208

    Article  CAS  Google Scholar 

  • Costanzo SD, O’Donohue MJ, Dennison WC et al (2001) A new approach for detecting and mapping sewage impacts. Mar Pollut Bull 42:149–156

    Article  CAS  Google Scholar 

  • Craine JM, Elmore AJ, Aidar MPM (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist 183: 980–992. doi 10.1111/j.1469-8137.2009.02917.x

    Google Scholar 

  • Dambrine E, Dupouey JL, Laut L (2007) Present forest biodiversity patterns in France related to former Roman agriculture. Ecology 88:1430–1439

    Article  CAS  Google Scholar 

  • Delwiche CC, Steyn PL (1970) Nitrogen isotope fractionation in soils and microbial reactions. Environ Sci Technol 4:929–935

    Article  CAS  Google Scholar 

  • Dentener FJ, Crutzen PJ (1993) Reaction of N2O5 on tropospheric aerosols: impact on the global distributions of NOx, O3, and OH. J Geophys Res 98(D4):7149–7163

    Google Scholar 

  • Dupouey JL, Dambrine E, Laffite JD et al (2002) Irreversible impact of past land use on forest soils and biodiversity. Ecology 83:2978–2984

    Article  Google Scholar 

  • Durka W, Schulze ED, Gebauer G et al (1994) Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature 372:765–767

    Article  CAS  Google Scholar 

  • Elliott EM, Kendall C, Wankel SD (2007) Nitrogen isotopes as indicators of NOx source contributions to atmospheric nitrate deposition across the midwestern and northeastern United States. Environ Sci Tech 41:7661–7667

    Article  CAS  Google Scholar 

  • Emmett BA, Boxman D, Bredemeier M et al (1998a) Predicting the effects of atmospheric nitrogen deposition in conifer stands: evidence from the NITREX ecosystem scale experiments. Ecosystems 1:352–360

    Article  CAS  Google Scholar 

  • Emmett BA, Kjønaas OJ, Gundersen P et al (1998b) Natural abundance of 15N in forests across a nitrogen deposition gradient. For Ecol Manag 101:9–18

    Article  Google Scholar 

  • Evans D (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci 6:121–127

    Article  CAS  Google Scholar 

  • Evans RD (2007) Soil nitrogen isotope composition. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental science, 2nd edn. Blackwell, Oxford, pp 83–98

    Google Scholar 

  • Falkengren-Grerup U, Michelsen A, Olsson MO et al (2004) Plant nitrate use in deciduous woodland: the relationship between leaf N, 15N natural abundance of forbs and soil N mineralization Soil Biol Biochem 36:1885–1891

    Google Scholar 

  • Farquhar GD, Hubick KT, Condon AG, et al. (1989) Carbon isotope discrimination and water-use efficiency. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Springer, Berlin/Heidelberg/New York, pp 21–46

    Google Scholar 

  • Fenn ME, Haueber R, Tonnensen GS et al (2003) Nitrogen emission, deposition, and monitoring in the western United States. Bioscience 53:391–403

    Article  Google Scholar 

  • Garten CT Jr (1993) Variation in foliar 15N abundance and the availability of soil nitrogen on the Walker Branch Watershed. Ecology 74:2098–2113

    Article  Google Scholar 

  • Garten CT Jr, Van Miegroet H (1994) Relationships between soil nitrogen dynamics and natural 15N abundance in plant foliage from the Great Smoky Mountains National Park. Can J For Res 74:1636–1645

    Article  Google Scholar 

  • Goodale CL, Aber JD (2001) The long-term effects of land-use history on nitrogen cycling in northern hardwood forests. Ecol Appl 11:253–267

    Article  Google Scholar 

  • Hales HC, Ross DS, Lini A (2007) Isotopic signature of nitrate in two contrasting watersheds of Brush Brook, Vermont, USA. Biogeochemistry 84:51–66

    Article  CAS  Google Scholar 

  • Handley LL, Raven JA (1992) The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell Environ 15:965–85

    Article  CAS  Google Scholar 

  • Handley LL, Austin AT, Robinson D et al (1999) The 15N natural abundance (δ15N) of ecosystem samples reflects measures of water availability. Aust J Plant Physiol 26:185–199

    Article  Google Scholar 

  • Heaton THE (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem Geol 59:87–102

    Article  CAS  Google Scholar 

  • Heaton THE, Spiro B, Madeline S, Robertson C (1997) Potential canopy influences on the isotopic composition of nitrogen and sulphur in atmospheric deposition. Oecologia 109:600–607

    Article  Google Scholar 

  • Henn MR, Chapela IH (2001) Ecophysiology of 13C and 15N isotopic fractionation in forest fungi and the roots of the saprotrophic-mycorrhizal divide. Oecologia 128:480–487

    Article  Google Scholar 

  • Hobbie EA, Macko SA, Shugart HH (1998) Patterns in N dynamics and N isotopes during primary succession in Glacier Bay, Alaska. Chem Geol 152:3–11

    Article  CAS  Google Scholar 

  • Hobbie EA, Macko SA, Shugart HH (1999) Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. Oecologia 118:353–360

    Article  Google Scholar 

  • Hobbie JE, Hobbie EA (2006) 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in arctic tundra. Ecology 87:816–822

    Article  Google Scholar 

  • Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytol 137:179–203

    Article  Google Scholar 

  • Högberg P, Johannisson C (1993) 15N abundance of forests is correlated with losses of nitrogen. Plant Soil 157:147–150

    Google Scholar 

  • Högberg P, Högbom L, Schinkel H et al (1996) 15N abundance of surface soils, roots and mycorrhizas in profiles of European forest soils. Oecologia 108:207–214

    Google Scholar 

  • Hornbeck JW, Lawrence GB (1996) Eastern forest fires can have long-term impacts on nitrogen cycling. In: Proceedings of the (1996) Society of American Foresters Convention, Albuquerque, NM

    Google Scholar 

  • Houlton BZ, Sigman DM, Hedin LO (2006) Isotopic evidence for large gaseous nitrogen losses from tropical rainforests. Proc Natl Acad Sci U S A 103:8745–9750

    Article  CAS  Google Scholar 

  • Houlton BZ, Sigman DM, Schuur EAG et al (2007) A climate-driven switch in plant nitrogen acquisition within tropical forest communities. Proc Natl Acad Sci U S A 104:8902–8906

    Article  CAS  Google Scholar 

  • Hübner H (1986) Isotope effects of nitrogen in soil and the biosphere. In: Fritz P, Fontes JC (eds) Handbook of environmental and isotope chemistry Vol 2b, The Terrestrial Environment. Elsevier, Amsterdam, pp 361–425

    Google Scholar 

  • Johanisson C, Högberg P (1994) 15N abundance of soils and plants along an experimentally induced forest nitrogen supply gradient. Oecologia 97:322–325

    Google Scholar 

  • Johnston JC, Cliff SS, Thiemens MH (1995) Measurement of multioxygen isotopic (delta18O and delta17O) fractionation factors in the stratospheric sink reactions of nitrous oxide. J Geophys Res 100(D8):16,801–16,804

    Google Scholar 

  • Kahmen A, Wanek W, Buchmann N (2008) Foliar delta N-15 values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient. Oecologia 156:861–870

    Article  Google Scholar 

  • Kendall C, Silva SR, Change CCY et al. (1996) Use of the delta 18-O and delta 15-N of nitrate to determine sources of nitrate in early spring runoff in forested catchments. In: Isotopes in Resource Management International Atomic Energy Agency Symposium 1, pp 167–176

    Google Scholar 

  • Kolb KJ, Evans RD (2003) Influence of nitrogen source and concentration on nitrogen isotopic discrimination in two barley genotypes (Hordeum vulgare L.). Plant Cell Environ 26:1431–1440

    Article  CAS  Google Scholar 

  • Koba K, Tokuchi N, Yoshioka T et al (1998) Natural abundance of nitrogen-15 in a forest soil. Soil Sci Soc Am J 62:778–781

    Article  CAS  Google Scholar 

  • Koerner W, Dambrine E, Dupouey JL et al (1999) δ15N of forest soil and understorey vegetation reflect the former agricultural land use. Oecologia 121:421–425

    Article  Google Scholar 

  • Kohl DH, Shearer GB, Commoner B (1971) Fertilizer nitrogen: contribution to nitrate in surface water in a corn belt watershed. Science 174:1331–1334

    Article  CAS  Google Scholar 

  • Koopmans CJ, Tietema A, Verstraten JM (1998) Effects of reduced N deposition on litter decomposition and N cycling in two N saturated forests in the Netherlands. Soil Bio Biochem 30:141–151

    Article  CAS  Google Scholar 

  • Krankowsky D, Bartecki F, Klees GG et al (1995) Measurement of heavy isotope enrichment in tropospheric ozone. Geophy Res Lett 22:1713–1716

    Article  CAS  Google Scholar 

  • Kreitler CW (1975) Determining the source of nitrate in ground water by nitrogen isotope studies. Report of investigations No. 83, Bureau of Economic Geology, University of Texas at Austin

    Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  Google Scholar 

  • Ledgard SF, Freney JR, Simpson JR (1984) Variations in natural enrichment of 15N in the profiles of some Australian pasture soils. Aust J Soil Res 22:155–164

    Article  CAS  Google Scholar 

  • Létolle R (1980) Nitrogen-15 in the natural environment. In: Fritz P, Fontes JC (eds) Handbook of environmental and isotope chemistry. Elsevier, Amsterdam, pp 407–433

    Google Scholar 

  • Liu X-Y, Xiao H-Y, Liu C-Q et al (2008) Stable carbon and nitrogen isotopes of the moss Haplocladium microphyllum in an urban and a background area (SW China): the role of environmental conditions and atmospheric nitrogen deposition. Atmos Environ 42:5413–5423

    Article  CAS  Google Scholar 

  • Mariotti A, Germon JC, Hubert P et al (1981) Experimental determination of nitrogen kinetic isotope fractionations: some principles; illustration for denitrification and nitrification processes. Plant Soil 62:413–430

    Article  CAS  Google Scholar 

  • Mariotti A, Pierre D, Vedy JC et al (1980) The abundance of natural nitrogen-15 in the organic matter of soils along an altitudinal gradient. Catena 7:293–300

    CAS  Google Scholar 

  • Martinelli LA, Piccolo MC, Townsend AR et al (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46(1–3):45–65

    CAS  Google Scholar 

  • Mayor JR, Schuur EAG, Henkel TW (2009) Elucidating the nutritional dynamics of fungi using stable isotopes. Ecol Lett 12:171–183. doi:10.1111/j.1461-0248.2008.01265.x

    Article  Google Scholar 

  • McKane RB, Johnson LC, Shaver GR et al (2002) Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415(6867):68–71

    Article  CAS  Google Scholar 

  • Michalski G, Meixner T, Fenn M et al (2004) Tracing atmospheric nitrate deposition in a complex semiarid ecosystem using ∆17O. Environ Sci Tech 38:2175–2181

    Article  CAS  Google Scholar 

  • Michelsen A, Quarmby C, Sleep D et al (1998) Vascular plant 15N natural abundance in health and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia 115:406–418

    Article  Google Scholar 

  • Miller AE, Bowman WD (2002) Variation in nitrogen-15 natural abundance and nitrogen uptake traits among co-occurring alpine species: do species partition nitrogen form? Oecologia 130:609–616

    Article  Google Scholar 

  • Mizutani H, Kabaya Y, Wada E (1985) Ammonia volatilization and high 15N/14N ratio in a penguin rookery in Antarctica. Geochem J 19:323–327

    Article  CAS  Google Scholar 

  • Nadelhoffer KJ, Fry B (1988) Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Sci Soc Am J 52:1633–1640

    Article  Google Scholar 

  • Nadelhoffer KJ, Fry B (1994) Nitrogen isotope studies in forest ecosystems. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental science. Blackwell, Cambridge, pp 22–44

    Google Scholar 

  • Nadelhoffer KJ, Downs MR, Fry B et al (1995) The fate of 15N-labelled nitrate additions to a northern hardwood forest in eastern Maine, USA. Oecologia 103:292–301

    Article  Google Scholar 

  • Nadelhoffer KJ, Shaver G, Fry B et al (1996) 15N natural abundances and N use by tundra plants. Oecologia 107:386–394

    Article  Google Scholar 

  • Nadelhoffer KJ, Downs MR, Fry B (1999) Sinks for 15N-enriched additions to an oak forest and a red pine plantation. Ecol Appl 9:72–86

    Article  Google Scholar 

  • Näsholm T, Eklblad A, Nordin A et al (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916

    Article  Google Scholar 

  • Olleros (1983) Kinetische Isotopeneffekte der Arginase-und Nitratereduktasse-Reaktion; ein Beitrag zur Aufklärung der entsprechenden Reaktionsmechanismen. Diss Tech Univ München Weihenstephan, 158 p

    Google Scholar 

  • Pardo LH, Hemond HF, Montoya JP et al (2002) Response of the natural abundance of 15N in forest soils and foliage to high nitrate loss following clear-cutting. Can J For Res 32:1126–1136

    Article  CAS  Google Scholar 

  • Pardo LH, Kendall C, Pett-Ridge J et al (2004) Evaluating the source of streamwater nitrate using δ15N and δ18O in nitrate in two watersheds in New Hampshire, USA. Hydrol Process 18:2699–2712

    Article  Google Scholar 

  • Pardo LH, Templer PH, Fahey TJ (2006a) Species differences in root and foliar δ15N: causes and implications. In: Proceedings ecological society of America annual meeting abstracts, 91st annual meeting of the ecological society of America, Memphis, TN, 9–11 August 2006

    Google Scholar 

  • Pardo LH, Templer PH, Goodale CL et al (2006b) Regional assessment of N saturation using foliar and root δ15N. Biogeochemistry 80:143–171

    Article  Google Scholar 

  • Pardo LH, Hemond HF, Montoya JP et al (2007) Natural abundance 15N in soil and litter across a nitrate-output gradient in New Hampshire. For Ecol Manag 251:217–230

    Article  Google Scholar 

  • Pearson J, Wells DM, Seller KJ, Bennett A, Soares A, Woodall J, Ingrouille MJ (2000) Traffic exposure increases natural 15N and heavy metal concentrations in mosses. New Phytol 147:317–326

    Article  CAS  Google Scholar 

  • Perez T, Garcia-Montiel D, Trumbore S et al (2006) Nitrous oxide nitrification and denitrification 15N enrichment factors from Amazon forest soils. Ecol Appl 16:2153–2167

    Article  Google Scholar 

  • Piccolo M, Neill C, Mellilo JM et al (1996) 15N natural abundance in forest and pasture soils of the Brazilian Amazon Basin. Plant Soil 182:249–258

    CAS  Google Scholar 

  • Piccolo MC, Neill C, Cerri C (1994) Natural abundance of 15N in soils along forest-to-pasture chronosequences in the western Brazilian Amazon Basin. Oecologia 99:112–117

    Article  Google Scholar 

  • Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–162

    Article  Google Scholar 

  • Sah SP, Ilvesniemi H (2007) Interspecific variation and impact of clear-cutting on natural 15N abundance and N concentration in the needle-to-soil continuum of a boreal conifer forest. Plant Soil Environ 53:329–339

    CAS  Google Scholar 

  • Schmidt S, Stewart GR (2003) δ15N values of tropical savanna and monsoon forest species reflect root specializations and soil nitrogen status. Oecologia 134:569–577

    CAS  Google Scholar 

  • Schulze E-D, Farquhar GD, Miller JM et al (1999) Interpretation of increased foliar δ15N in woody species along a rainfall gradient in northern Australia. Aust J Plant Physiol 26:296–298

    Article  Google Scholar 

  • Schulze ED, Williams RJ, Farquhar GD et al (1998) Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia. Aust J Plant Physiol 25:413–425

    Article  Google Scholar 

  • Schuur EAG, Matson PA (2001) Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. Oecologia 128:431–442

    Article  Google Scholar 

  • Shearer G, Kohl D (1986) N2 fixation in field settings, estimations based on natural 15N abundance. Aust J Plant Physiol 13:699–757

    CAS  Google Scholar 

  • Shearer G, Kohl D (1989) Estimates of N2 fixation in ecosystems: the need for and basis of the 15N method. In: Rundel PW, Ehleringer JR , Nagy KA (eds) Stable isotopes in ecological research, Springer, New York, pp 342–374

    Google Scholar 

  • Smithwick EAH, Turner MG, Mack MC et al (2005) Postfire soil N cycling in northern conifer forests affected by severe, stand-replacing wildfires. Ecosystems 8:163–181

    Article  CAS  Google Scholar 

  • Stephan K, Kavanaugh K (2005) Fire effects on nitrogen dynamics in headwater systems. In: Proceedings of the 90th annual meeting of the ecological society of America. Montreal, Canada

    Google Scholar 

  • Sutka RL, Adams GC, Ostrom NE et al (2008) Isotopologue fractionation during N2O production by fungal denitrification. Rapid Comm Mass Spectrom 22:3989–3996

    Article  CAS  Google Scholar 

  • Ueda S, Go S-C, Suwa Y et al. (1999) Stable isotope fingerprint of N2O produced by ammonium oxidation under laboratory and field conditions. In: International workshop on the atmospheric N2O budget: an analysis of the state of our understanding of sources and sinks of atmospheric N2O. National Institute of Agro-Environmental Sciences, Tsukuba, Japan

    Google Scholar 

  • Virginia RA, Jarrell WM, Rundel PW et al. (1989) The use of variation in the natural abundance of 15N to assess symbiotic nitrogen fixation by woody plants. In: Rundel PW, Ehleringer JR , Nagy KA (eds) Stable isotopes in ecological research, Springer, New York, pp 345–394

    Google Scholar 

  • Vitousek PM, Shearer G, Kohl DH (1989) Foliar 15N natural abundance in Hawaiian rainforest: patterns and possible mechanisms. Oecologia 78:383–388

    Article  Google Scholar 

  • Wada E, Ueda S (1996) Carbon, nitrogen, and oxygen isotope ratios of CH4 and N2O on soil ecosystems. In: Boutton TW, Yamasaki S-I (eds) Mass spectrometry of soils. Marcel Dekker, New York, pp 177–204

    Google Scholar 

  • Wang L, Shaner P-JL, Macko S (2007) Foliar δ15N patterns along successional gradients at plant community and species levels. Geophys Res Lett 34:L16404

    Article  Google Scholar 

  • Webster R (2000) Is soil variation random? Geoderma 97:149–163

    Article  Google Scholar 

  • Yoneyama T, Matsumaru T, Usui K et al (2001) Discrimination of nitrogen isotopes during absorption of ammonium and nitrate at different nitrogen concentrations by rice (Oryza sativa L.) plants. Plant Cell Environ 24:133–139

    Article  CAS  Google Scholar 

  • Yoshida N (1988) 15N-depleted N2O as a product of nitrification. Nature 335:528–529

    Article  CAS  Google Scholar 

  • Yoshida N, Hattori A, Saino T et al (1984) 15N/14N ratio of dissolved N2O in the eastern tropical Pacific Ocean. Nature 307:442–444

    Article  CAS  Google Scholar 

  • Zechmeister HG, Richter A, Smidt S et al (2008) Total nitrogen content and δ15N signatures in moss tissue: indicative values for nitrogen deposition patterns and source allocation on a nationwide scale. Environ Sci Technol 42:8661–8667

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda H. Pardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pardo, L.H., Nadelhoffer, K.J. (2010). Using Nitrogen Isotope Ratios to Assess Terrestrial Ecosystems at Regional and Global Scales. In: West, J., Bowen, G., Dawson, T., Tu, K. (eds) Isoscapes. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3354-3_11

Download citation

Publish with us

Policies and ethics