Skip to main content

Biofuels for Transport: Prospects and Challenges

  • Chapter
  • First Online:
Emerging Environmental Technologies, Volume II

Abstract

Environmental issues, the growing demand for energy, political concerns and the medium-term depletion of petroleum created the need for the development of sustainable technologies based on renewable raw materials. The so-called biofuels might help to meet the future energy supply demands as well as contributing to a reduction of green house gases emissions. In this work, we aim to provide the latest update of the production and potential of biofuels in the transport sector including type of biofuel, feedstocks and technologies as well as some realistic engine tests for the widespread use of biofuels in our society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IPCC (2007a) in: Solomon, S, Qin, D, Manning, M, Chen, Z, Marquis, M, Averyt, KB, Tignor, M & Miller, HL (Eds), Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK/ New York.

    Google Scholar 

  2. IPCC (2007b) in: Metz, B, Davidson, OR, Bosch, PR, Dave, R & Meyer, LA (Eds), Climate change 2007: Mitigation. Contribution of Working Group 3 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK/New York.

    Google Scholar 

  3. The Royal Society (2008), Sustainable biofuels: Prospects and challenges, ISBN 978 0 85403 662 2.

    Google Scholar 

  4. IEA (2007) World Energy Outlook 2007, International Energy Agency, Paris.

    Google Scholar 

  5. Ford Runge, C., Senauer, B. (2007) How biofuels could starved the poor. Foreign Affairs, 86 (3) http://www.foreignaffairs.org/20070501faessay86305-p10/c-ford-runge-benjamin-senauer/how-biofuels-could-starve-the-poor.html

  6. Hazell, P., Pachauri, R.K. (Eds.) Bioenergy and Agriculture: Promises and challenges, International Food Policy Research Institute 2020 Focus No14, 2006.

    Google Scholar 

  7. Demirbas, A. (2008) The importance of bioethanol and biodiesel from biomass. Energy Sources Part B: Economics, Planning and Policy, 3, 177–185.

    Article  CAS  Google Scholar 

  8. Rothenberg, G. (2008) Catalysis; Concepts and Green Applications, Wiley-VCH, Weinheim.

    Google Scholar 

  9. Demirbas, A. (2005) Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Progress in Energy and Combustion Science, 31, 466–487.

    Article  CAS  Google Scholar 

  10. Kammen, D.M., Kapadia, K., Fripp, M. (2004) “Putting Renewables to Work: How Many Jobs Can the Clean Energy IndustryGenerate?” Report of the Renewable and appropriate Energy Laboratory, University of California Berkeley.

    Google Scholar 

  11. Pimentel, D., Patzek, T.W. (2005) Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Natural Resources Research, 14, 65–76.

    Article  CAS  Google Scholar 

  12. Marchetti, J.M., Miguel, V.U., Errazu, A.F. (2007) Possible methods for biodiesel production. Renewable Sustainable Energy Reviews, 11, 1300–1311.

    Article  CAS  Google Scholar 

  13. Vicente, G., Martinez, M., Aracil, J. (2006) A comparative study of vegetable oils for biodiesel production in Spain. Energy & Fuels, 20, 394–398.

    Article  CAS  Google Scholar 

  14. Pinto, A.C., Guarieiro, L.L.N., Rezende, M.J.C., Ribeiro, N.M., Torres, E.A., Lopes, W.A., Pereira, P.A.P., de Andrade, J.B. (2005) Biodiesel: An overview. Journal of the Brazilian Chemical Society, 16, 1313–1330.

    CAS  Google Scholar 

  15. Mittelbach, M., Remschmidt, C. (Eds.) (2005) Biodiesel, the Comprehensive Handbook, 2nd (Ed.) Martin Mittelbach, Austria.

    Google Scholar 

  16. Al-Zuhair, S. (2007) Production of biodiesel: Possibilities and challenges. Biofuels Bioproducts Biorefining, 1, 57–66.

    Article  CAS  Google Scholar 

  17. Mittelbach, M., Wörgetter, M., Pernkopf, J., Junek, H. (1983) Diesel fuel derived from vegetable oils: Preparation and use of rape oil methyl ester. Energy and Agriculture, 2, 369–384.

    Article  CAS  Google Scholar 

  18. Vicente, G., Martinez, M., Aracil, J. (2004) Integrated biodiesel production: A comparison of different homogeneous catalysts systems. Bioresource Technology, 92, 297–305.

    Article  CAS  Google Scholar 

  19. Noureddini, H., Zhu, D. (1997) Kinetics of transesterification of soybean oil. Journal of the American Oil Chemical Society, 74, 1457–1463.

    Article  CAS  Google Scholar 

  20. Antolin, G., Tinaut, F.V., Briceno, Y., Castano, V., Perez, C., Ramirez, A.I. (2002) Optimisation of biodiesel production by sunflower oil transesterification. Bioresource Technology, 83, 111–114.

    Article  CAS  Google Scholar 

  21. Ruiz-Méndez, M.V., Marmesat, S., Liotta, A., Dobarganes, M.C. (2008) Analysis of used frying fats for biodiesel production. Grasas y Aceites, 59, 45–50.

    Google Scholar 

  22. Freedman, B., Butterfield, R.O., Pryde, E.H. (1986) Transesterification kinetics of soybean oil. Journal of the American Oil Chemical Society, 63, 1375–1380.

    Article  CAS  Google Scholar 

  23. Zheng, S., Kates, M., Dubé, M.A., McLean, D.D. (2006) Acid-catalyzed production of biodiesel from waste frying oil. Biomass and Bioenergy, 30, 267–272.

    Article  CAS  Google Scholar 

  24. Lotero, E., Liu, Y., Lopez, D.E., Suwannakarn, K., Bruce, D.A., Goodwin, J.G., Jr. (2005) Synthesis of biodiesel via acid catalysis. Industrial & Engineering Chemical Research, 44(23), 5353–5363.

    Article  CAS  Google Scholar 

  25. Schuchardt, U., Sercheli, R., Vargas, R.M. (1998) Transesterification of vegetable oils: A review. Journal of the Brazilian Chemical Society, 9(3), 199–210.

    Article  CAS  Google Scholar 

  26. Cerce, T., Peter, S., Weidner, E. (2005) Biodiesel-transesterification of biological oils with liquid catalysts: Thermodynamic properties of oil-methanol-amine mixtures. Industrial & Engineering Chemical Research, 44(25), 9535–9541.

    Article  CAS  Google Scholar 

  27. Ono, T., Yoshibaru, K. US Pat. 1979, 4,164,506.

    Google Scholar 

  28. Di Serio, M., Tesser, R., Pengmei, L., Santacesaria, E. (2008) Heterogeneous catalysts for biodiesel production. Energy & Fuels, 22, 207–217.

    Article  CAS  Google Scholar 

  29. Verziu, M., Cojocaru, B., Hu, J., Richards, R., Ciuculescu, C., Filip, P., Parvulescu, V.I. (2008) Sunflower and rapeseed oil transesterification to biodiesel over different nanocrystalline MgO catalysts. Green Chemistry, 10, 373–381.

    Article  CAS  Google Scholar 

  30. Chen, H., Wang, J.F. (2006) Biodiesel from transesterification of cottonseed oil by heterogeneous catalysis. Studies in Surface Science and Catalysis, 159, 153–156.

    Article  CAS  Google Scholar 

  31. Suppes, G.J., Bochwinkel, K., Lucas, S., Botts, J.B., Mason, M.H., Heppert, J.A. (2001) Calcium carbonate catalyzed alcoholysis of fats and oils. Journal of the American Oil Chemists Society, 78, 139–145.

    Article  CAS  Google Scholar 

  32. Vicente, G., Coteron, A., Martinez, M., Aracil, J. (1998) Application of the factorial design of experiments and response surface methodology to optimize biodiesel production. Industrial Crops and Production, 8(1), 29–35.

    Article  CAS  Google Scholar 

  33. Kim, H.J., Kang, B.S., Kim, M.J., Park, Y.M., Kim, D.K., Lee, J.S., Lee, K.Y. (2004) Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catalysis Today, 93–95, 315–320.

    Article  CAS  Google Scholar 

  34. Ma, H., Li, S., Wang, B., Wang, R., Tian, S. (2008) Transesterification of rapeseed oil for synthesizing biodiesel by K/KOH/ γ-Al2O3 as heterogeneous base catalyst. Journal of the American Oil Chemists Society, 85, 263–270.

    Article  CAS  Google Scholar 

  35. Leclercq, E., Finiels, A., Moreau, C. (2001) Transesterification of rapeseed oil in the presence of basic zeolites and related solid catalysts. Journal of the American Oil Chemists Society, 78, 1161–1165.

    Article  CAS  Google Scholar 

  36. Toda, M., Takagaki, A., Okamura, M., Kondo, J.N., Hayashi, S., Domen, K., Hara, M. (2005) Green chemistry: Biodiesel made with sugar catalyst. Nature, 438, 178.

    Article  CAS  Google Scholar 

  37. MacLeod, C.S., Harvey, A.P., Lee, A., Wilson, K. (2008) Evaluation of the activity and stability of alkali-doped metal oxide catalysts for application to an intensified method of biodiesel production. Chemical Engineering Journal, 135(1–2), 63–70.

    Article  CAS  Google Scholar 

  38. Hsu, A.F., Jones, K., Foglia, T.A., Marmer, W.N. (2002) Immobilized lipase-catalysed production of alkyl esters of restaurant grease as biodiesel. Biotechnology and Applied Biochemistry, 36, 181–186.

    Article  CAS  Google Scholar 

  39. Tan, T., Yin, C (2005) The mechanism and kinetic model for glycerolysis by 1,3 position specific lipase from Rhizopus arrhizus. Biochemical Engineering Journal, 25(1), 39–45.

    Article  CAS  Google Scholar 

  40. Macario, A., Giordano, G., Setti, L., Parise, A., Campelo, J.M., Marinas, J.M., Luna, D. (2007) Study of lipase immobilization on zeolitic support and transesterification reaction in a solvent free-system. Biocatalysis and Biotransformation, 25, 328–335.

    Article  CAS  Google Scholar 

  41. Sanchez, F., Vasudevan, P.T. (2006) Enzyme catalyzed production of biodiesel from olive oil. Applied Biochemistry and Biotechnology, 135(1), 1–14.

    Article  CAS  Google Scholar 

  42. Yagiz, F., Kazan, D., Akin, N.A. (2007) Biodiesel production from waste oils by using lipase immobilized on hydrotalcite and zeolites. Chemical Engineering Journal, 134, 262–267.

    Article  CAS  Google Scholar 

  43. Caballero, V. Bautista, F.M., Campelo, J.M., Luna, D., Marinas, J.M., Romero, A.A., Hidalgo, J.M., Luque, R., Macario, A., Giordano, G. (2009) Sustainable preparation of a novel glycerol-free biofuel by using pig pancreatic lipase: Partial 1,3-regiospecific alcoholysis of sunflower oil. Process Biochemistry, 44(3), 334–342.

    Article  CAS  Google Scholar 

  44. Watanabe, Y., Pinsirodom, P., Nagaoa, T., Yamauchi, A., Kobayashi, T., Nishida, Y., Takagi, Y., Shimada, Y. (2007) Conversion of acid oil by-produced in vegetable oil refining to biodiesel fuel by immobilized Candida antarctica lipase. Journal of Molecular Catalysis B: Enzymatic, 44(3–4), 99–105.

    Article  CAS  Google Scholar 

  45. Houde, A., Kademi, A., Leblanc, D. (2004) Lipases and their industrial applications. An overview. Applied Biochemistry and Biotechnology, 118, 155–170.

    Article  CAS  Google Scholar 

  46. Sharma, R., Chisti, Y., Banerjee, U.C. (2001) Production, purification, characterization, and applications of lipases. Biotechnology Advances, 19, 627–662.

    Article  CAS  Google Scholar 

  47. Demirbas, A. (2002) Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Conversion and Management, 43, 2349–2356.

    Article  CAS  Google Scholar 

  48. Sawangkeaw, R., Bunyakiat, K., Ngamprasertsith, S. (2007) Effect of co-solvents on production of biodiesel via transesterification in supercritical methanol. Green Chemistry, 9(3), 679–685.

    Article  CAS  Google Scholar 

  49. http://siteresources.worldbank.org/INTWDR2008/Resources/2795087-1192112387976/WDR08_05_Focus_B.pdf.

  50. Draye, X., Lin, Y.R., Qian, X.Y., Bowers, J.E., Burow, G.B., Morrell, P.L., Peterson, D.G., Presting, G.G., Ren, S.X., Wing, R.A., Patterson, A.H. (2001) Toward integration of comparative genetic, physical, diversity, and cytomolecular maps for grasses and grains, using the sorghum genome as a foundation. Plant Physiology, 125(3), 1325–1341.

    Article  CAS  Google Scholar 

  51. Balat, M., Balat, H., Oz, C. (2008) Progress in bioethanol processing. Progress in Energy and Combustion Science, 34, 551–573.

    Article  CAS  Google Scholar 

  52. Gray, K.A., Zhao, L., Emptage, M. (2006) Bioethanol. Current Opinion in Chemical Biology, 10(2), 141–146.

    Article  CAS  Google Scholar 

  53. Dürre, P. (2007) Biobutanol: An attractive biofuel. Biotechnology Journal, 2(12), 1525–1534.

    Article  CAS  Google Scholar 

  54. Dürre, P. (2008) Fermentative butanol production: Bulk chemical and biofuel. Annals of the New York Academy of Sciences, 1125, 353–362.

    Article  CAS  Google Scholar 

  55. Ezeji, T.C., Qureshi, N., Blaschek, H.P. (2007) Bioproduction of butanol from biomass: From genes to bioreactors. Current Opinion in Biotechnology, 18(3), 220–227.

    Article  CAS  Google Scholar 

  56. Cascone, R. (2007) Biofuels: What is beyond ethanol and biodiesel?. Hydrocarbon Processing, 86, 95–109.

    CAS  Google Scholar 

  57. Antoni, D., Zverlov, V.V., Schwarz, W.H. (2007) Biofuels from microbes. Applied Microbiology and Biotechnology, 77, 23–35.

    Article  CAS  Google Scholar 

  58. http://www2.dupont.com/Biofuels/en_US/

  59. http://www.biofuelsmedia.com/news_link.php?new=55.

  60. http://www.butanol.com/index.html.

  61. Plass, L., Reimelt, S. (2007) Second generation biofuels. Hydrocarbon Engineering, 12(6), 71–74.

    CAS  Google Scholar 

  62. Sarin, R., Sharma, M., Sinharay, S., Malhotra, R.K. (2007) Jatropha-Palm biodiesel blends: An optimum mix for Asia. Fuel, 86(10–11), 1365–1371.

    Article  CAS  Google Scholar 

  63. Achten, W.M.J., Mathijs, E., Verchot, L., Singh, V.P., Aerts, R., Muys, B. (2007) Jatropha biodiesel fueling sustainability? Biofuels, Bioproducts and Biorefining, 1, 283–291.

    Article  CAS  Google Scholar 

  64. Dorado, M.P., Ballesteros, E., Lopez, F.J., Mittelbach, M. (2004) Optimization of Alkali-Catalyzed transesterification of brassica carinata oil for biodiesel production. Energy & Fuels, 18, 77–83.

    Article  CAS  Google Scholar 

  65. Bouaid, A., Diaz, Y., Martinez, M., Aracil, J. (2005) Pilot plant studies of biodiesel production using Brassica carinata as raw material. Catalysis Today, 106(1–4), 193–196.

    Article  CAS  Google Scholar 

  66. Dittrick, P. (2007) Oil industry researching nonfood biofeedstocks. Oil & Gas Journal, 105(29), 20–26.

    CAS  Google Scholar 

  67. Simpson-Holley, M., Evans, G. (2007) Fueling the end of the oil age. Outlook Pest Management, 18(3), 109–113.

    Article  CAS  Google Scholar 

  68. Berchmans, H.J., Hirata, S. (2008) Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresource Technology, 99(6), 1716–1721.

    Article  CAS  Google Scholar 

  69. http://www.renewableenergyworld.com/rea/news/story?id=49611.

  70. Wang, Y., Ou, S., Liu, P., Xue, F., Tang, S. (2006) Comparison of two different processes to synthesize biodiesel by waste cooking oil. Journal of Molecular Catalysis A, 252(1–2), 107–112.

    Article  CAS  Google Scholar 

  71. Zong, M., Duan, Z.Q., Lou, W.Y., Smith, T.J., Wu, H. (2007) Preparation of a sugar catalyst and its use for highly efficient production of biodiesel. Green Chemistry, 9, 434–437.

    Article  CAS  Google Scholar 

  72. Kulkarni, M.G., Gopinath, R., Meher, L.C., Dalai, A.K. (2006) Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification. Green Chemistry, 8, 1056–1062.

    Article  CAS  Google Scholar 

  73. Tashtoush, G.M., Al-Wydian, M.I., Al-Jarrah, M.M. (2004) Experimental study on evaluation and optimization of conversion of waste animal fat into biodiesel. Energy Conversion and Management, 45(17), 2697–2711.

    Article  CAS  Google Scholar 

  74. Chisti, Y. (2008) Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 26(3), 126–131.

    Article  CAS  Google Scholar 

  75. Chisti, Y. (2007) Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.

    Article  CAS  Google Scholar 

  76. Carlsson, A.S., Van Bilein, J.B., Möller, R., Clayton, D., Bowles, D. (2002) Micro-and Macroalgae utility for industrial application, Outputs from EPOBIO Project, CPL Press, Berks.

    Google Scholar 

  77. http://www.shell.com/home/content/media-en/news_and_library/press_releases/2007/biofuels_cellana_11122007.html

  78. Zhu, L.Y., Zong, M.H., Wu, H. (2008) Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresource Technology, 99, 7881–7885.

    Article  CAS  Google Scholar 

  79. Angerbauer, C., Siebenhofer, M., Mittelbach, M., Guebitz, G.M. (2008) Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresource Technology, 99, 3051–3056.

    Article  CAS  Google Scholar 

  80. Papanikolaou, S., Galiotou-Panayotou, M., Fakas, S., Komaitis, M., Aggelis, G. (2007) European Journal of Lipid Science and Technology, 109(11), 1060–1070.

    Article  CAS  Google Scholar 

  81. Huber, G.W., Corma, A. (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angewandte Chemie International Edition, 46(38), 7184–7201.

    Article  CAS  Google Scholar 

  82. Chheda, J.N., Huber, G.W., Dumesic, J.A. (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angewandte Chemie International Edition, 46(38), 7164–7183.

    Article  CAS  Google Scholar 

  83. Rajagopal, D., Zilberman, D. Policy Research Working paper 4341 (WPS4341), The World Bank, Sept. 2007.

    Google Scholar 

  84. http://iv2s.rastaf.net/errichtung-und-demonstrationsbetrieb-einer-biosngtankstelle/_/prog1/subprog26/project350?MyDic_action=set_langid;langid=2

  85. http://www.bio-sng.com.

  86. Vogel, F., Waldner, M.H., Rouff, A.A., Rabe, S. (2007) Synthetic natural gas from biomass by catalytic conversion in supercritical water. Green Chemistry, 9, 616–619.

    Article  CAS  Google Scholar 

  87. Bridgwater, A.V. (2003) Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal, 91(2–3), 87–102.

    Article  CAS  Google Scholar 

  88. http://www.iec.tu-freiberg.de/conference/conf07/pdf/7.1.pdf

  89. Demirbas, A. (2007) Progress and recent trends in biofuels. Progress in Energy and Combustion Science, 33, 1–18.

    Article  CAS  Google Scholar 

  90. Nakagawa, H.; Harada, T.; Ichinose, T.; Takeno, K., Matsumoto, S., Kobayashi, M., Sakai, M. (2007) Biomethanol production and CO2 emission reduction from forage grasses, trees, and crop residues. JARQ, 41, 173–180.

    CAS  Google Scholar 

  91. http://www.refuel.eu/biofuels/biomethanol/.

  92. http://www.solarix.eu/en/news/33 (accessed December 2008).

  93. van Kasteren, J.M.N., Dizdarevic, D., van der Waall, W.R., Guom, J., Verbernem, R. (2005) Bioethanol from syngas. Project number 0456.472.

    Google Scholar 

  94. http://www.iogen.ca/.

  95. http://www.processum.se/eng/press/filer/FOLDER_eng.pdf.

  96. http://powerecalene.com/

  97. Demirbas, A. (2008) Biohydrogen generation from organic waste. Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 30, 475–482.

    Article  CAS  Google Scholar 

  98. Demirbas, A. (2004) Hydrogen-rich gas from fruit shells via supercritical water extraction. International Journal of Hydrogen Energy, 29, 1237–1243.

    Article  CAS  Google Scholar 

  99. Bhaskar, T., Sera, A., Muto, A., Sakata, Y. (2008) Hydrothermal upgrading of wood biomass: Influence of the addition of K2CO3 and cellulose/lignin ratio. Fuel, 87(10–11), 2236–2242.

    Article  CAS  Google Scholar 

  100. Steinmann, L. (1999) PCT Int. Pat., WO 9915605 A1 19990401

    Google Scholar 

  101. http://www.cpi.umist.ac.uk/eminent/Confidential/meeting/RigaMeeting/Riga%20Workshop/March%2008%20HTU%20case.ppt.

  102. http://www.refuel.eu/biofuels/htu-diesel/.

  103. Dry, M.E. (1996) Practical and theoretical aspects of the catalytic Fischer-Tropsch process. Applied Catalysis A: General, 138(2), 319–344.

    Article  CAS  Google Scholar 

  104. Dry, M.E. (2001) High quality diesel via the Fischer-Tropsch process – a review. Journal of Chemical Technology and Biotechnology, 77(1), 43–50.

    Article  CAS  Google Scholar 

  105. Li, S., Krishnamoorthy, S., Li, A., Meitzner, G.D. Iglesia, E. (2002) Promoted iron-based catalysts for the Fischer-Tropsch synthesis: Design, synthesis, site densities, and catalytic properties. Journal of Catalysis, 206(2), 202–217.

    Article  CAS  Google Scholar 

  106. Schulz, H. (1999) Short history and present trends of Fischer-Tropsch synthesis. Applied Catalysis A: General, 186(1–2), 3–12.

    Article  CAS  Google Scholar 

  107. Alleman, T.L., McCormick, R.L. (2003) SAE Technical Paper No. 2003-01-0763

    Google Scholar 

  108. Demirbas, A. (2007) Alternatives to petroleum diesel fuel. Energy Sources Part B: Economics, Planning and Policy, 2, 343–351.

    Article  CAS  Google Scholar 

  109. Tijmensen, M.J.A., Faaij, A.P.C., Hamelinck, C.N., van Hardeveld, M.R.M. (2002) Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification. Biomass and Bioenergy, 23(2), 129–152.

    Article  CAS  Google Scholar 

  110. Russo, G. (2006) Special report: Biofuels: Bio bonanza. Nature, 444, 648–649.

    Article  CAS  Google Scholar 

  111. Tilman, D., Hill, J., Lehman, C. (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science, 314, 1598–1600.

    Article  CAS  Google Scholar 

  112. Lange, J.P. (2007) Lignocellulose conversion: An introduction to chemistry, process and economics. Biofuels Bioproducts Biorefining, 1(1), 39–48.

    Article  CAS  Google Scholar 

  113. Pu, Y., Zhang, D., Singh, M.P., Ragauskas, A.J. (2008) The new forestry biofuels sector. Biofuels Bioproducts Biorefining, 2(1), 58–73.

    Article  CAS  Google Scholar 

  114. Lynd, L.R., Van Zyl, W.H., McBride, J.E., Laser, M. (2005) Consolidated bioprocessing of cellulosic biomass: An update. Current Opinion in Biotechnology, 16(5), 577–583.

    Article  CAS  Google Scholar 

  115. Atsumi, S., Hanai, T., Liao, J.C. (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 451, 86–90.

    Article  CAS  Google Scholar 

  116. Tollefson, J. (2008) Energy: Not your father’s biofuels. Nature, 451, 880–883.

    Article  CAS  Google Scholar 

  117. Tollefson, J. (2008) Chemistry World, 5(2), 21.

    Google Scholar 

  118. Mata-Alvarez, J., Macé, S., Llabrés, P. (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74, 3–16.

    Article  CAS  Google Scholar 

  119. Derbimas, A. (2001) Energy Conversion and Management, 42, 1375–1378.

    Google Scholar 

  120. Ramage, J., Scurlock, J. (1996) in: Biomass, Boyle, G. (Ed.), Renewable Energy-Power for a Sustainable Future, Oxford University Press, Oxford, UK.

    Google Scholar 

  121. Demirbas, A. (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Conversion and Management, 49, 2106–2116.

    Article  CAS  Google Scholar 

  122. Kapdi, S.S., Vijai, V.K., Rajesh, S.K., Prasad, R. (2005) Biogas scrubbing, compression and storage: Perspective and prospectus in Indian context. Renewable Energy, 30(8), 1195–1202.

    Article  CAS  Google Scholar 

  123. Kuwahara, N., Berni, M.D., Bajay, S.V. (1999) Energy supply from municipal wastes: The potential of biogas-fuelled buses in Brazil. Renewable Energy, 16(1–4), 1000–1003.

    Article  CAS  Google Scholar 

  124. http://www.trendsetter-europe.org/index.php?ID=2842.

  125. Lantz, M., Svensson, M., Björnsson, L., Börjesson, P. (2007) The prospects for an expansion of biogas systems in Sweden—Incentives, barriers and potentials. Energy Policy, 35(3), 1830–1843.

    Article  Google Scholar 

  126. Das, D., Veziroglu, T.N. (2008) Advances in biological hydrogen production processes. International Journal of Hydrogen Energy, 33(21), 6046–6057.

    Article  CAS  Google Scholar 

  127. Melis, A. (2002) Green alga hydrogen production: Progress, challenges and prospects. International Journal of Hydrogen Energy, 27(11–12), 1217–1228.

    Article  CAS  Google Scholar 

  128. Murphy, D.J. (2008) Future prospects for biofuels. Chimica Oggi, 26, 14–19.

    CAS  Google Scholar 

  129. Manish, S., Banerjee, R. (2008) Comparison of biohydrogen production processes. International Journal of Hydrogen Energy, 33(1), 279–286.

    Article  CAS  Google Scholar 

  130. Davila-Vazquez, G., Arriaga, S., Alatriste-Mondragon, F., De Leon-Rodriguez, A., Rosales-Colunga, L.M., Razo-Flores, E. (2008) Fermentative biohydrogen production: Trends and perspectives. Reviews in Environmental Science and Bio/Technology, 7(1), 27–45.

    Article  CAS  Google Scholar 

  131. Ren, N., Li, J., Li, B., Wang, Y., Liu, S. (2006) Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. International Journal of Hydrogen Energy, 31(15), 2147–2157.

    Article  CAS  Google Scholar 

  132. Zhang, L., Happe, T., Melis, A. (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta, 214(4), 552–561.

    Article  CAS  Google Scholar 

  133. Kaplan, C., Arslan, R., Sürmen, A. (2006) Performance characteristics of sunflower methyl esters as biodiesel. Energy Sources, 28, 751–755.

    Article  Google Scholar 

  134. Kaufman, K.R., Ziejewski, M. (1984) Sunflower methyl esters for direct injection diesel engines. Transactions of the ASAE, 27(6), 1626–1633.

    CAS  Google Scholar 

  135. Hansen, K.F., Jensen, M.G. (1997) Chemical and biological characteristics of exhaust emissions from a DI diesel engine fuelled with rapeseed oil methyl ester (RME). SAE paper, 971689.

    Google Scholar 

  136. Çetinkaya, M., Ulusoy, Y., Tekin, Y., Karaosmanoglu, F. (2005) Engine and winter road test performances of used cooking oil originated biodiesel. Energy Conversion Management, 46, 1279–1291.

    Article  CAS  Google Scholar 

  137. Dorado, M.P., Ballesteros, E., Arnal, J.M., Gomez, J., Lopez, F. J. (2003) Exhaust emissions from a diesel engine fueled with transesterified waste olive oil. Fuel, 82(11), 1311–1315.

    Article  CAS  Google Scholar 

  138. Dorado, M.P., Ballesteros, E., Arnal, J.M., Gomez, J., Lopez, F.J (2003) Testing waste olive oil methyl ester as a fuel in a diesel engine. Energy & Fuels, 17(6), 1560–1565.

    Article  CAS  Google Scholar 

  139. Sims, R.E.H. (1985) Tallow esters as an alternative diesel fuel. Transactions of the ASAE, 28, 716–721.

    CAS  Google Scholar 

  140. Staat, F., Vallet, E. (1994) Vegetable oil methyl esters as a diesel substitute. Chemistry and Industry, 21, 863–865.

    Google Scholar 

  141. Ali, Y., Hanna, M.A., Borg, J.E. (1995) Optimization of diesel, methyl tallowate and ethanol blend for reducing emissions from diesel engine. Bioresource Technology, 52, 237–243.

    Article  CAS  Google Scholar 

  142. Lin, Y.C., Lee, W.J., Wu, T.S., Wang, C.T. (2006) Comparison of PAH and regulated harmful matter emissions from biodiesel blends and paraffinic fuel blends on engine accumulated mileage test. Fuel, 85(17–18), 2516–2523.

    Article  CAS  Google Scholar 

  143. Hasimoglu, C., Ciniviz, M., Oezsert, I., Icinguer, Y., Parlak, A., Sahir Salman, M. (2008) Performance characteristics of a low heat rejection diesel engine operating with biodiesel. Renewable Energy, 33(7), 1709–1715.

    Article  CAS  Google Scholar 

  144. Lapuerta, M., Armas, O., Rodríguez-Fernández, J. (2008) Effect of biodiesel fuels on diesel engine emissions. Progress in Energy and Combustion Science, 34(2), 198–223.

    Article  CAS  Google Scholar 

  145. Carraretto, C., Macor, A., Mirandola, A., Stoppato, A., Tonon, S. (2004) Biodiesel as alternative fuel: Experimental analysis and energetic evaluations. Energy, 29(12–15), 2195–2211.

    Article  CAS  Google Scholar 

  146. Silva, F.N., Prata, A.S., Teixeira, J.R. (2003) Technical feasibility assessment of oleic sunflower methyl ester utilization in diesel bus engines. Energy Conversion and Management, 44, 2857–2878.

    Article  CAS  Google Scholar 

  147. Yücesu, H.S., İlkiliç, C. (2006) Effect of cotton seed oil methyl ester on the performance and exhaust emission of a diesel engine. Energy Sources, 28, 389–398.

    Article  CAS  Google Scholar 

  148. Murillo, S., Miguez, J.L., Porteiro, J., Granada, E., Moran, J.C. (2007) Performance and exhaust emissions in the use of biodiesel in outboard diesel engines. Fuel, 86(12–13), 1765–1771.

    Article  CAS  Google Scholar 

  149. Altiparmak, D., Keskin, A.; Koca, A.; Guerue, M. (2007) Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends. Bioresource Technology, 98(2), 241–246.

    Article  CAS  Google Scholar 

  150. Usta, N. (2005) An experimental study on performance and exhaust emissions of a diesel engine fuelled with tobacco seed oil methyl ester. Energy Conversion and Management, 46(15–16), 2373–2386.

    Article  CAS  Google Scholar 

  151. Monyem, A., Van Gerpen, J.H., Canakci, M. (2001) The effect of timing and oxidation on emissions from biodiesel-fueled engines. Transactions of the ASAE, 44(1), 35–42.

    CAS  Google Scholar 

  152. Kegl, B. (2006) Experimental investigation of optimal timing of the diesel engine injection pump using biodiesel fuel. Energy & Fuels, 20, 1460–1470.

    Article  CAS  Google Scholar 

  153. Kegl, B., Pehan, S. (2008) Influence on biodiesel injection, fuel spray, and engine characteristics. Thermal Science, 12(2), 171–182.

    Article  Google Scholar 

  154. Sun, X., Wang, W., Bata, R. (1994) Performance evaluation of low heat rejection engines. Transactions of the ASME, 116, 758–764.

    Google Scholar 

  155. Rakopoulos, C.D., Hountalas, D.T.; Zannis, T. C.; Levendis, Y.A. (2004) Operational and environmental evaluation of diesel engines burning oxygen-enriched intake air or oxygen-enriched fuels: A review. SAE paper, 2004-01-2924.

    Google Scholar 

  156. Graboski, M.S., Ross, J.D., McCormick, R.L. (1996) Transient emissions from no. 2 diesel and biodiesel blends in a DDC series 60 engine. SAE paper, 961166.

    Google Scholar 

  157. Turrio-Baldassarri, L., Battistelli, C.L., Conti, L., Crebelli, R., De Berardis, B., Iamiceli, A.L., Gambino, M., Iannaccone, S. (2004) Emission comparison of urban bus engine fueled with diesel oil and biodiesel blend. Science of the Total Environment, 327(1–3), 147–162.

    Article  CAS  Google Scholar 

  158. Canakci, M., Van Gerpen, J.H. (2001) Comparison of engine performance and emissions for petroleum diesel fuel, yellow grease biodiesel, and soybean oil biodiesel. ASAE Annual international meeting, 016050.

    Google Scholar 

  159. Senatore, A., Caraceni, A., Cioffi, V., Garofalo, F., Vittorioso, G., Barberio, C., Saroglia, G. (2000) A comparative analysis of combustion process in D.I. Diesel engine fueled with biodiesel and diesel fuel. SAE paper, 2000–01–0691.

    Google Scholar 

  160. Tsolakis, A. (2006) Effects on particle size distribution from the diesel engine operating on RME-biodiesel with EGR. Energy & Fuels, 20(4), 1418–1424.

    Article  CAS  Google Scholar 

  161. Lapuerta, M., Armas, O., Ballesteros, R., Fernandez, J. (2005) Diesel emissions from biofuels derived from Spanish potential vegetable oils. Fuel, 84(6), 773–780.

    Article  CAS  Google Scholar 

  162. Monyem, A., Van Gerpen, J.H. (2001) The effect of biodiesel oxidation on engine performance and emissions. Biomass and Bioenergy, 20(4), 317–325.

    Article  CAS  Google Scholar 

  163. Puhan, S., Vedaraman, N., Sankaranarayanan, G., Ram, B.V.B. (2005) Performance and emission study of Mahua oil (madhuca indica oil) ethyl ester in a 4-stroke natural aspirated direct injection diesel engine. Renewable Energy, 30(8), 1269–1278.

    Article  CAS  Google Scholar 

  164. Hess, M.A., Haas, M.J., Foglia, T.A. (2007) Attempts to reduce NOx exhaust emissions by using reformulated biodiesel. Fuel Processing Technology, 88(7), 693–699.

    Article  CAS  Google Scholar 

  165. Ali, Y., Hanna, M.A. (1994) Alternative diesel fuels from vegetable oils. Bioresource Technology, 50(2), 153–163.

    Article  CAS  Google Scholar 

  166. Chang, D.Y.Z., Van Gerpen, J.H., Lee, I., Johnson, L.A., Hammond, E.G., Marley, S.J. (1996) Fuel properties and emissions of soybean oil esters as diesel fuel. Journal of American Oil Chemists Society, 73, 1549–1555.

    Article  CAS  Google Scholar 

  167. Peterson, C., Reece, D. (1996) Emissions characteristics of ethyl and methyl ester of rapeseed oil compared with low sulfur diesel control fuel in a chassis dynamometer test of a pickup truck. Transactions of the ASAE, 39(3), 805–816.

    CAS  Google Scholar 

  168. Agarwal, A.K., Das, L.M. (2001) Biodiesel development and characterization for use as a fuel in compression ignition engine. Journal of Engineering for Gas and Turbines Power, 123, 440–447.

    Article  CAS  Google Scholar 

  169. Kalligeros, S., Zannikos, F., Stournas, S., Lois, E., Anastopoulos, G., Teas, Ch., Sakellaropoulos, F. (2003) An investigation of using biodiesel/marine diesel blends on the performance of a stationary diesel engine. Biomass and Bioenergy, 24(2), 141–149.

    Article  CAS  Google Scholar 

  170. Manahan, S.E. (2000) Environmental Chemistry, (7th Ed.), Lewis/CRC Press, London/Boca Ratón, FL.

    Google Scholar 

  171. Szybist, J.P., Kirby, S.R., Boehman, A.L. (2005) NOx emissions of alternative diesel fuels: A comparative analysis of biodiesel and FT diesel. Energy & Fuels, 19(4), 1484–1492.

    Article  CAS  Google Scholar 

  172. Knothe, G., Sharp, C.A., Ryan, T.W. (2006) Exhaust emissions of biodiesel, petrodiesel, neat methyl esters, and alkanes in a new technology engine. Energy & Fuels, 20, 403–408.

    Article  CAS  Google Scholar 

  173. Mittelbach, M., Tritthart, P. (1988) Diesel fuel derived from vegetable oils, III. Emission tests using methyl esters of used frying oil. Jounal of the American Oil Chemists Society, 65(7), 1185–1187.

    Article  CAS  Google Scholar 

  174. Agarwal, A.K. (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progress in Energy and Combustion Science, 33(3), 233–271.

    Article  CAS  Google Scholar 

  175. Cardone, M., Prati, M.V., Rocco, V., Seggiani, M., Senatore, A., Vitolo, S. (2002) Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: Engine performance and regulated and unregulated exhaust emissions. Environmental Science and Technology, 36(21), 4656–4662.

    Article  CAS  Google Scholar 

  176. Tat, M.E. (2003) Investigation of Oxides of Nitrogen Emissions from Biodiesel-Fueled Engines, Iowa State University, Ames, IW.

    Google Scholar 

  177. Hansen, A.C., Zhang, Q., Lyne, P.W.L. (2005) Ethanol-diesel fuel blends-a review. Bioresource Technology, 96(3), 277–285.

    Article  CAS  Google Scholar 

  178. Balat, M. (2007) Global bio-fuel processing and production trends. Energy Exploration & Exploitation, 25(3), 195–218.

    Article  CAS  Google Scholar 

  179. MacLean, H.L., Lave, L.B. (2003) Evaluating automobile fuel/propulsion system technologies. Progress in Energy and Combustion Science, 29(1), 1–69.

    Article  CAS  Google Scholar 

  180. Nag, A. (2008) Biofuels Refining and Performance, McGraw Hill Professional, New York.

    Google Scholar 

  181. Bailey, B.K. (1996) in: Wyman, C.E. (Ed.), Performance of Ethanol as a Transportation fuel in Handbook on Bioethanol: Production and Utilization, Applied Energy Technology Series, Taylor and Francis, London, 37–60.

    Google Scholar 

  182. Andrae, J.C.G., Head, R.A. (2009) HCCI experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model. Combustion and Flame, 156(4), 842–851.

    Article  CAS  Google Scholar 

  183. Gerdes, K.R., Suppes, G.J. (2001) Miscibility of ethanol in diesel fuels. Industrial & Engineering Chemistry Research, 40(3), 949–956.

    Article  CAS  Google Scholar 

  184. Heywood, J.B. (1988) Internal Combustion Engine Fundamentals, Publications of McGraw-Hill Inc., New York.

    Google Scholar 

  185. Wrage, K.E., Goering, C.E. (1980) Technical feasibility of diesohol. Transactions of the ASAE, 23(6), 1338–1343.

    CAS  Google Scholar 

  186. Hansen, A.C., Hornbaker, R.H., Zhang, Q., Lyne, P.W.L. (2001) On-farm evaluation of diesel fuel oxygenated with ethanol. ASAE Paper No. 01-6173. , St. Joseph, MI: ASAE.

    Google Scholar 

  187. Wyman, C.E. (2004) in: Cutler, J.C. (Ed.), Ethanol Fuel in Encyclopedia of Energy, Elsevier Inc., New York, 541–555.

    Chapter  Google Scholar 

  188. Cataluña, R., da Silva, R., de Menezes, E.W., Ivanov, R.B. (2008) Specific consumption of liquid biofuels in gasoline fuelled engines. Fuel, 87(15–16), 3362–3368.

    Article  CAS  Google Scholar 

  189. Dagaut, P., Togbe, C. (2008) Oxidation kinetics of butanol-gasoline surrogate mixtures in a jet-stirred reactor: Experimental and modeling study. Fuel, 87(15–16), 3313–3321.

    Article  CAS  Google Scholar 

  190. Pumphrey, J.A., Brand, J.I., Scheller, W.A. (2000) Vapour pressure measurements and predictions for alcohol-gasoline blends. Fuel, 79(11), 1405–1411.

    Article  CAS  Google Scholar 

  191. Kim, S., Dale, B.E. (2005) Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel. Biomass and Bioenergy, 29(6), 426–439.

    Article  Google Scholar 

  192. Hsieh, W.D., Chen, R.H., Wu, T.L., Lin, T.H. (2002) Engine performance and pollutant emission of an SI engine using ethanol-gasoline blended fuels. Atmospheric Environment, 36(3), 403–410.

    Article  CAS  Google Scholar 

  193. He, B.Q., Shuai, S.J., Wang, J.X., He, H. (2003) The effect of ethanol blended diesel fuels on emissions from a diesel engine. Atmospheric Environment, 37(35), 4965–4971.

    Article  CAS  Google Scholar 

  194. Taylor, A.B., Taylor, A.B., Moran, D.P., Bell, A.J., Hodgson, N.G., Myburgh, I.S., Botha, J.J. (1996) Gasoline/alcohol blends: Exhaust emission, performance and Burn-rate in multi-valve production engine. Society of Automotive Engineers, Topics in Alternative Fuels and Their Emissions, SP–1208.

    Google Scholar 

  195. Furey, R.L., Jackson, M.W. (1977) Exhaust and evaporative emissions from a Brazilian Chevrolet fuelled with ethanol-gasoline blends. SAE paper no. 779008.

    Google Scholar 

  196. Merritt, P.M., Ulmet, V., McCormick, R.L., Mitchell, W.E., Baumgard, K.J. (2005) Regulated and unregulated exhaust emissions comparison for three tier II non-road diesel engines operating on ethanol- diesel blends, SAE paper no. 2005-01-2193.

    Google Scholar 

  197. Muja, I., Toma, A., Popescu, D.C., Ivanescu, I., Stanisteanu, V. (2005) Thermodynamic study of the methanol addition to isoamylen. Chemical Engineering and Processing, 44(6), 645–651.

    Article  CAS  Google Scholar 

  198. Islas, J., Manzini, F., Masera, O. (2007) A prospective study of bioenergy use in Mexico. Energy, 32(12), 2306–2320.

    Article  CAS  Google Scholar 

  199. Lopes, T.J., Bender, D.A. (1998) Nonpoint sources of volatile organic compounds in urban areas – relative importance of land surfaces and air. Environmental Pollution, 101(2), 221–230.

    Article  CAS  Google Scholar 

  200. Ancilloti, F., Fattore, V. (1998) Oxygenate fuels: Market expansion and catalytic aspects of synthesis. Fuel Processing Technology, 57, 163–194.

    Article  Google Scholar 

  201. Gressel, J. (2008) Transgenics are imperative for biofuel crops. Plant Science, 174, 246–263.

    Article  CAS  Google Scholar 

  202. Van Eijck, J., Romijn, H. (2008) Prospects for Jatropha biofuels in Tanzania: An analysis with Strategic Niche Management. Energy Policy, 36, 311–325.

    Article  Google Scholar 

  203. Francis, G., Edinger, R., Becker, K. (2005) A concept for simultaneous wasteland reclamation, fuel production, and socio-economic development in degraded areas in India: Need, potential and perspectives of Jatropha plantations. Natural Resources Forum, 29, 12–24.

    Article  Google Scholar 

  204. Gubitz, G.M., Mittelbach, M., Trabi, M.L. (1998) Exploitation of the tropical oil seed plant Jatropha curcas L. Bioresource Technology, 67, 73–82.

    Article  Google Scholar 

  205. Luque, R., Herrero-Davila, L., Campelo, J.M., Clark, J.H., Hidalgo, J.M., Luna, D., Marinas, J.M., Romero, A.A. (2008) Biofuels: A technological perspective. Energy and Environmental Science, 1, 542–564.

    Article  CAS  Google Scholar 

  206. Lai, C.C., Zullaikah, S.S., Vali, R., Ju, Y.H. (2005) Lipase-catalyzed production of biodiesel from rice bran oil. Journal of Chemical Technology and Biotechnology, 80, 331–337.

    Article  CAS  Google Scholar 

  207. Molina Grima, E., Belarbi, E.H., Acien Fernandez, F.G., Robles Medina, A., Chisti, Y. (2003) Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnology Advances, 20, 491–515.

    Article  CAS  Google Scholar 

  208. Dijkstra, A.J. (2006) Revisiting the formation of trans isomers during partial hydrogenation of triacylglycerol oils. European Journal of Lipid Science and Technology, 108, 249–264.

    Article  CAS  Google Scholar 

  209. Vosloo, A.C. (2001) Fischer-Tropsch: A futuristic view. Fuel Processing Technology, 71, 149–155.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors greatly acknowledge funds from Ministerio de Ciencia e Innovación (Projects CTQ2007-65754/PPQ, CTQ2008-01330/BQU, ENE2007-65490/ALT and HI2008-0229), Spanish International Cooperation Agency AECID (project PCI-C/019212/08) and Junta de Andalucía (FQM-191, TEP-169 and P07 FQM-02695), cofinanced with FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Luque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Luque, R. et al. (2010). Biofuels for Transport: Prospects and Challenges. In: Shah, V. (eds) Emerging Environmental Technologies, Volume II. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3352-9_8

Download citation

Publish with us

Policies and ethics