Skip to main content

A Morpho-Elastic Model of Hyphal Tip Growth in Filamentous Organisms

  • Conference paper
  • First Online:
IUTAM Symposium on Cellular, Molecular and Tissue Mechanics

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 16))

Abstract

The growth of filamentous cells is modeled through the use of exact, nonlinear, elasticity theory for shells and membranes. The biomechanical model is able to capture the generic features of growth of a broad array of cells including actinomycetes, fungi, and root hairs. It also provides the means of studying the effects of external surface stresses. The growth mechanism is modeled by a process of incremental elastic growth in which the cell wall responds elastically to the continuous addition of new material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koch AL (1994) The problem of hyphal growth in streptomycetes and fungi. J Theor Biol 171(2):137–150

    Article  Google Scholar 

  2. Howard RJ (1981) Ultrastructural analysis of hyphal tip cell growth in fungi: Spitzenkörper, cytoskeleton and endomembranes after freeze-substitution. J Cell Sci 48:

    Google Scholar 

  3. Money NP (1997) Wishful thinking of turgor revisited: The mechanics of fungal growth. Fungal Genet Biol 21:173–187

    Article  Google Scholar 

  4. Bartnicki-Garcia S, Bracker CE, Gierz G, Lopez-Franco R, Lu HS (2000) Mapping the growth of fungal hyphae: Orthogonal cell wall expansion during tip growth and the role of turgor. Biophys J 79(5):2382–2390

    Article  CAS  Google Scholar 

  5. Goriely A, Tabor M (2008) Biomechanical modeling of growing filamentous cells. Fungal Biol Rev 22:77–83

    Article  Google Scholar 

  6. Koch AL (1995) The problem of hyphal growth in streptomycetes and fungi. In: Koch AL (ed) Bacterial growth and form. Chapman & Hall, New York

    Google Scholar 

  7. Goriely A, Tabor M (2003) Biomechanical models of hyphal growth in actinomycetes. J Theor Biol 222:211–218

    Article  Google Scholar 

  8. Goriely A, Tabor M (2003) Self-similar tip growth in filamentary organisms. Phys Rev Lett 90(10):108101

    Article  CAS  Google Scholar 

  9. Evans EA, Skalak R (1980) Mechanics and thermodynamics of biomembranes. CRC Press, Inc, Boca Raton, FL

    Google Scholar 

  10. Secomb TW, Gross JF (1983) Flow of red blood cells in narrow capillaries: Role of membrane tension. Int J Microcirc Clin Exp 2

    Google Scholar 

  11. Goriely A, Tabor M (2006) Estimates of biomechanical forces in Magnaporthe grisea. Mycol Res 110(Pt 7):755–759

    Google Scholar 

  12. Tongen A, Goriely A, Tabor M (2006) Biomechanical model for appressorial design in Magnaporthe grisea. J Theor Biol 240(1):1–8

    Google Scholar 

  13. Rivlin RS, Saunders DW (1951) Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber. Philos Trans Roy Soc Lond Ser A Math Phys Sci 243(865):251–288

    Article  Google Scholar 

  14. Fung YC (1993) Biomechanics: Mechanical properties of living tissues. Springer, New York

    Google Scholar 

  15. Ma H, Snook L, Kaminskyj S, Dahms T (2005) Surface ultrastructure and elasticity in growing tips and mature regions of aspergillus hyphae describe wall maturation. Microbiology 151(Pt 11):3679–3688

    Article  CAS  Google Scholar 

  16. Thwaites JJ, Mendelson NH (1989) Mehcanical properties of peptidoglycan as determined from bacterial thread. Int J Biol Macromol 11(4):201–6

    Article  CAS  Google Scholar 

  17. Arnoldi M, Fritz M, Bauerlein E, Radmacher M, Sackmann E, Boulbitch A (2000) Bacterial turgor pressure can be measured by atomic force microscopy. Phys Rev E 62(1 Pt B): 1034–1044

    Google Scholar 

  18. Dumais J, Shaw SL, Steele CR, Long SR, Ray PM (2006) An anisotropic-viscoplastic model of plant cell morphogenesis by tip growth. Int J Develop Biol 50(2, 3):209–222

    Google Scholar 

  19. Rodriguez EK, Hoger A, McCulloch A (1994) Stress-dependent finite growth in soft elastic tissue. J Biomechan 27:455–467

    Article  CAS  Google Scholar 

  20. Dumais J, Long SR, Shaw SL (2004) The mechanics of surface expansion anisotropy in Medicago truncatula root hairs. Plant Physiol 136:3266–3275

    Article  CAS  Google Scholar 

  21. Landau LD, Lifshitz EM (1959) Theory of elasticity. Pergamaon Press, Oxford

    Google Scholar 

  22. Boudaoud A (2003) Growth of walled cells: From shells to vesicles. Phys Rev Lett 91:#018104

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. N. P. Money and J. Dumais for helpful discussions. This material is based in part upon work supported by the National Science Foundation under grant No. DMS-0604704 (A.G. and M.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Goriely .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Goriely, A., Tabor, M., Tongen, A. (2010). A Morpho-Elastic Model of Hyphal Tip Growth in Filamentous Organisms. In: Garikipati, K., Arruda, E. (eds) IUTAM Symposium on Cellular, Molecular and Tissue Mechanics. IUTAM Bookseries, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3348-2_21

Download citation

Publish with us

Policies and ethics