Skip to main content

Spatio-Temporal Statistical Methods for Modelling Land Surface Phenology

  • Chapter
  • First Online:
Phenological Research

Abstract

This chapter surveys 12 different spatio-temporal statistical methods to determine the start and end of the growing season using a time series of satellite images. In the first section of the chapter, we divided the methods into four categories: thresholds, derivatives, smoothing functions, and fitted models. The general use, advantages, and potential limitations of each method are discussed. In the second section of the chapter, a case study is presented to highlight one method from each category. The four study areas range from the Northwest Territories in Canada to the winter wheat areas in south-central Kansas. We concluded the case study with a discussion of the differences in results for the four methods. The chapter is finished with a synopsis discussing the use of nomenclature, the problems with a lack of statistical error structure from most methods, and the perennial issue of oversmoothing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahl DE, Gower ST, Burrows SN et al. (2006) Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS. Remote Sens Environ 104:88–95

    Article  Google Scholar 

  • Archibald S, Scholes RJ (2007) Leaf green-up in a semi-arid African savanna - separating tree and grass responses to environmental cues. J Veg Sci 18:583–594

    Article  Google Scholar 

  • Badhwar GD (1984) Use of Landsat-derived profile features for spring small-grains classifications. Int J Remote Sens 5:783–797

    Article  Google Scholar 

  • Baltzer H, Gerard F, George C et al. (2007) Coupling of vegetation growing season anomalies and fire activity with hemispheric and regional-scale climate patterns in Central and East Siberia. J Climate 20:3713–3729

    Article  Google Scholar 

  • Beck PSA, Atzberger C, Hogda KA et al. (2006) Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI. Remote Sens Environ 100:321–334

    Article  Google Scholar 

  • Bradley BA, Jacob RW, Hermance JF et al. (2007) A curve fitting procedure to derive intern-annual phenologies from time series of noisy satellite NDVI data. Remote Sens Environ 106:137–145

    Article  Google Scholar 

  • Bloomfield P (1976) Fourier analysis of time series: an introduction. Wiley, New York

    Google Scholar 

  • Brown ME, de Beurs KM (2008) Evaluation of multi-sensor semi-arid crop season parameters based on NDVI and rainfall. Remote Sens Environ 112:2261–2271

    Article  Google Scholar 

  • Davidson A, Csillag F (2003) A comparison of three approaches for predicting C4 species cover of northern mixed grass prairie. Remote Sens Environ 86:70–82

    Article  Google Scholar 

  • Dennison PE, Roberts DA., Peterson SH (2007) Spectral shape-based temporal compositing algorithms for MODIS surface reflectance data. Remote Sens Environ 109:510–522

    Article  Google Scholar 

  • de Beurs KM, Henebry GM (2004a) Land surface phenology, climatic variation, and institutional change: analyzing agricultural land cover change in Kazakhstan. Remote Sens Environ 89:497–509, doi:10.1016/j.rse.2003.11.006

    Article  Google Scholar 

  • de Beurs KM, Henebry GM (2004b) Trend analysis of the Pathfinder AVHRR Land (PAL) NDVI data for the deserts of Central Asia. IEEE Geosci Remote S 1:282–286, doi:10.1109/LGRS. 2004. 834805

    Article  Google Scholar 

  • de Beurs KM, Henebry GM (2005a) Land surface phenology and temperature variation in the IGBP High-Latitude transects. Global Change Biol 11:779–790

    Article  Google Scholar 

  • de Beurs KM, Henebry GM (2005b) A statistical framework for the analysis of long image time series. Int J Remote Sens 26:151–1573

    Google Scholar 

  • de Beurs KM, Henebry GM (2008) Northern annular mode effects on the land surface phenologies of Northern Eurasia. J Climate 21:4257–4279, DOI: 10.1175/2008JCLI2074

    Article  Google Scholar 

  • Delbart N, Kergoat L, Le Toan T et al. (2005) Determination of phenological dates in boreal regions using normalized difference water index. Remote Sens Environ 97:26–38

    Article  Google Scholar 

  • Eastman JR, Fulk M (1993) Long sequence time series evaluation using standardized principal components. Photogramm Eng Rem S 59:1307–1312

    Google Scholar 

  • Fischer A (1994) A model for the seasonal-variations of vegetation indexes in coarse resolution data and its inversion to extract crop parameters. Remote Sens Environ 48:220–230

    Article  Google Scholar 

  • Fisher JI, Mustard JF (2007) Cross-scalar satellite phenology from ground, Landsat, and MODIS data. Remote Sens Environ 109:261–273

    Article  Google Scholar 

  • Fisher JI, Mustard JF, Vadeboncoeur MA (2006) Green leaf phenology at Landsat resolution: Scaling from the field to the satellite. Remote Sens Environ 100:265–279

    Article  Google Scholar 

  • Friedl MA, Henebry G, Reed B et al. (2006) Land surface phenology: a community white paper requested by NASA. http://ftp://ftp.iluci.org/Land_ESDR/Phenology_Friedl_whitepaper.pdf

  • Gao F, Morisette JT, Wolfe RE et al. (2008) An algorithm to produce temporally and spatially continuous MODIS-LAI time series. IEEE Geosci Remote S 5:60–64

    Article  Google Scholar 

  • Goodin DG, Henebry GM (1997) A technique for monitoring ecological disturbance in tallgrass prairie using seasonal NDVI trajectories and a discriminant function mixture model. Remote Sens Environ 61:270–278

    Article  Google Scholar 

  • Hall-Beyer M (2003) Comparison of single-year and multiyear NDVI time series principal components in cold temperate biomes. IEEE Geosci Remote S 41:2568–2574

    Article  Google Scholar 

  • Henebry GM (1997) Advantages of principal components analysis for land cover segmentation from SAR image series in Proceedings of 3rd ERS Symposium on Space at the service of our Environment, SP-414: 175-178, ESA, Noordwijk. http://earth.esa.int/workshops/ers97/papers/henebry3/index.html

  • Henebry GM (2003) Grasslands of the North American Great Plains. In: Schwartz MD (ed) Phenology: an integrative environmental science. Tasks for vegetation science, vol 39. Kluwer Academic Publishers, The Netherlands, Dordrecht, pp 157–174

    Google Scholar 

  • Hermance JF (2007) Stabilizing high-order, non-classical harmonic analysis of NDVI data for average annual models by damping model roughness. Int J Remote Sens 28:2801–2819

    Article  Google Scholar 

  • Huemann BW, Seaquist JW, Eklundh L et al. (2007) AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982-2005. Remote Sens Environ 108:385–392

    Article  Google Scholar 

  • Jakubauskas ME, Legates DR, Kastens JH (2001) Harmonic analysis of time-series AVHRR NDVI data. Photogramm Eng Rem S 67:461–470

    Google Scholar 

  • James ME, Kalluri SNV (1994) The Pathfinder AVHRR Land data set - an improved coarse resolution data set for terrestrial monitoring. Int J Remote Sens 15:3347–3363

    Article  Google Scholar 

  • Jönsson P, Eklundh L (2002) Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Geosci Remote S 40:1824–1831

    Article  Google Scholar 

  • Jönsson P, Eklundh L (2004) TIMESAT - a program for analyzing time-series of satellite sensor data. Comput Geosci 30:833–845

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R et al. (1996) The NCEP/NCAR 40-Year Reanalysis Project. Bull Amer Meteor Soc 77:437–471

    Article  Google Scholar 

  • Karlsen SR, Elvebakk A, Hogda KA et al. (2006) Satellite-based mapping of the growing season and bioclimatic zones in Fennoscandia. Global Ecol Biogeogr 15:416–430

    Article  Google Scholar 

  • Karlsen SR, Solheim I, Beck PSA et al. (2007) Variability of the start of the growing season in Fennoscandia, 1982–2002. Int J Biometeorol 51:513–524

    Article  PubMed  Google Scholar 

  • Kathuroju N, White MA, Symanzik J et al. (2007) On the use of the Advanced Very High Resolution Radiometer for development of prognostic land surface phenology models. Ecol. Modell. 201:144–156.

    Google Scholar 

  • Kogan FN (1995) Droughts of the late 1980’s in the United States as derived from NOAA polar-orbiting satellite data. Bull Amer Meteor Soc 76:655–668

    Article  Google Scholar 

  • Lloyd D (1990) A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. Int J Remote Sens 11:2269–2279

    Article  Google Scholar 

  • Mitchell R, Fritz J, Moore K et al. (2001) Predicting forage quality in switchgrass and big bluestem. Agron J 93:118–124

    Article  Google Scholar 

  • MODIS user guide (2008) http://tbrs.arizona.edu/project/MODIS/UserGuide_doc.php

  • Moody A, Johnson DM (2001) Land-surface phenologies from AVHRR using the discrete Fourier transform. Remote Sens Environ 75:305–323

    Article  Google Scholar 

  • Moulin S, Kergoat L, Viovy N et al. (1997) Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements. J. Climate 10:1154–1170

    Article  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ et al. (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    Article  CAS  Google Scholar 

  • Pedelty J, Devadiga S, Masuoka E et al. (2007) Generating a long-term land data record from the AVHRR and MODIS Instruments. In: Geoscience and Remote Sensing Symposium IGARSS, 23–28 July 2007

    Google Scholar 

  • Philippon N, Jarlan L, Martiny N et al. (2007) Characterization of the interannual and intraseasonal variability of West African vegetation between 1982 and 2002 by means of NOAA AVHRR data. J Climate 20:1202–1218

    Article  Google Scholar 

  • Piao S, Fang J, Zhou L et al. (2006) Variations in satellite-derived phenology in China’s temperate vegetation. Global Change Biol 12:672–685

    Article  Google Scholar 

  • Reed BC, Brown JF, VanderZee D et al. (1994) Measuring phenological variability from satellite imagery. J Veg Sci 5:703–714

    Article  Google Scholar 

  • Reed BC, White M, Brown JF et al. (2003) Remote sensing phenology. In: Schwartz MD (ed.) Phenology: an integrative environmental science. Tasks for vegetation science, vol 39. Kluwer Academic Publishers, The Netherlands, Dordrecht, pp 365–382

    Google Scholar 

  • Rich PM, Breshears DD, White AB (2008) Phenology of mixed woody-herbaceous ecosystems following extreme events: net and differential responses. Ecology 89:342–352.

    Article  PubMed  Google Scholar 

  • Rickman RW, Klepper EL, Hodges T (eds) (1991) Tillering in Wheat. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Schwartz MD (2003) Phenology: an integrative environmental science. Tasks for vegetation science, vol 39. Kluwer Academic Publishers, The Netherlands, Dordrecht

    Google Scholar 

  • Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Global Change Biol 12:343–351

    Article  Google Scholar 

  • Schwartz MD, Reed BC, White MA (2002) Assessing satellite-derived start-of-season measures in the conterminous USA. Int J Climatol 22:1793–1805

    Article  Google Scholar 

  • Schwartz MD, Reiter, BE (2000) Changes in North American Spring. Int J Climatol 20: 929–932

    Article  Google Scholar 

  • Shabanov NV, Zhou L, Knyazikhin Y et al. (2002) Analysis of interannual changes in northern vegetation activity observed in AVHRR data from 1981 to 1994. IEEE Geosci Remote S 40:115–130

    Article  Google Scholar 

  • Smart AJ, Schacht WH, Moser LE (2001) Predicting leaf/stem ratio and nutritive value in grazed and nongrazed big bluestem. Agron J 93:1243–1249

    Article  Google Scholar 

  • Tateishi R, Ebata M (2004) Analysis of phenological change patterns using 1982–2000 Advanced Very High Resolution Radiometer (AVHRR) data. Int J Remote Sens 25:2287–2300

    Article  Google Scholar 

  • Townshend JRG, Goff TE, Tucker CJ (1985) Multitemporal dimensionality of images of normalized difference vegetation index at continental scale. IEEE Geosci Remote S GE-23:888–895

    Article  Google Scholar 

  • Tucker CJ, Slayback DA, Pinzon JE et al. (2001) Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int J Biometeorol 45:184–190

    Article  CAS  PubMed  Google Scholar 

  • Tucker, CJ, Pinzon JE, Brown ME et al. (2005) An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26:4485–4498

    Article  Google Scholar 

  • Verbesselt J, Jönsson P, Lhermitte S et al. (2006) Evaluating satellite and climate data derived indices as fire risk indicators in savanna ecosystems. IEEE Geosci Remote S 44:1622–1632

    Article  Google Scholar 

  • Wagenseil H, Samimi C (2006) Assessing spatio-temporal variations in plant phenology using Fourier analysis on NDVI time series: results from a dry savannah environment in Namibia. Int J Remote Sens 27:455–3471

    Article  Google Scholar 

  • Wielgolaski FE (1999) Starting dates and basic temperatures in phenological observations of plants. Int J Biometeorol 43:1432–1454

    Google Scholar 

  • White MA, Nemani RR (2006) Real-time monitoring and short-term forecasting of land surface phenology. Remote Sens Environ 104:43–49

    Article  Google Scholar 

  • White MA, Thornton PE, Running SW (1997) A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochem Cy 11:217–234

    Article  CAS  Google Scholar 

  • Zhang X, Friedl MA, Schaaf CB et al. (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84:471–475

    Article  Google Scholar 

  • Zhang X, Friedl MA, Schaaf CB et al. (2004) Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Global Change Biol 10: 1133–1145

    Article  Google Scholar 

  • Zhou L, Kaufmann RK, Tian Y et al. (2003) Relation between interannual variations in satellite measures of northern forest greenness and climate between 1982 and 1999. J Geophys Res 108: doi:10.1029/2002JD002510

    Google Scholar 

Download references

Acknowledgments

The GIMMS data were provided by Tucker, C.J., J.E. Pinzon, and M.E. Brown (2004), Global Inventory Modeling and Mapping Studies, Global Land Cover Facility, University of Maryland, College Park, Maryland. NCEP Reanalysis data were provided by the NOAA-CIRES Climate Diagnostics Center, Boulder, CO from their website at http://www.cdc.noaa.gov/. We would like to thank P. de Beurs for the application development that allowed us to estimate the land surface phenology model parameters more efficiently. This research was supported in part by a NASA LCLUC grant to GMH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten M. de Beurs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

de Beurs, K.M., Henebry, G.M. (2010). Spatio-Temporal Statistical Methods for Modelling Land Surface Phenology. In: Hudson, I., Keatley, M. (eds) Phenological Research. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3335-2_9

Download citation

Publish with us

Policies and ethics