Skip to main content

Introduction and Overview

  • Chapter
  • First Online:
Book cover Phenological Research

Abstract

The term phenology was first introduced by Charles Morren in 1849 in a public lecture on the 16th of December entitled “Le globe, le temps et la vie” (Morren 1849, 1851). Phenology which he took from the Greek ϕαινομαι, (Morren 1849), was defined as “apparaître, se manifester: phénologie, la science des phénomènes qui apparaissent successivement sur le globe.” This translates as: to show, to appear: the science of phenomena that appear successively on the globe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbe C (1905) A first report on the relations between climates and crops. Bulletin no 36. Weather Bureau, USDA, Washington

    Google Scholar 

  • Aitken Y (1974) Flowering time, climate and genotype. Melbourne University Press, Melbourne

    Google Scholar 

  • Alm DM, McGiffen Jr ME, Hesketh JD (1991) Weed phenology. In: Hodges T (ed) Predicting crop phenology. CRC Press, Boca Raton, pp. 191–213

    Google Scholar 

  • Alonso C (1997) Choosing a place to grow. Importance of within-plant abiotic microenvironment for Yponomeuta mahalebella. Entomol Exp App 83:171–180

    Google Scholar 

  • Anon (1875) Phenological phenomena. Nature 11:408

    Google Scholar 

  • Anon (1884) Contributions to phenology. Nature 30:558–559

    Google Scholar 

  • Aono Y, Kazui K (2007) Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to reconstruction of springtime temperatures since the 9th century. Int J Climatol 28:905–914 DOI: 10.1002/joc.1594

    Google Scholar 

  • Baltzer H, Gerard F, George C et al. (2007) Coupling of vegetation growing season anomalies and fire activity with hemispheric and regional-scale climate patterns in Central and East Siberia. J Climate 20:3713–3729

    Google Scholar 

  • Baccini M, Biggeri A, Accetta G et al. (2008) Heat effects on mortality in 15 European cities. Epidemiology 19:711–719

    PubMed  Google Scholar 

  • Bassett IJ, Holmes RM, MacKay KH (1961) Phenology of several plant species at Ottawa, Ontario and the examination of the influence of air temperatures. Can J Plant Sci 41:643–652

    Google Scholar 

  • Batschelet E (1981) Circular statistics in biology. Academic, London

    Google Scholar 

  • Berliner LM, Levine RA, Shea DJ (2000) Bayesian climate change assessment. J Climate 13:3805–3820

    Google Scholar 

  • Bencke CSC, Morellato LPC (2002) Comparação de dois métodos de avaliação da fenologia de plantas, sua interpretação e representação. Rev Bras Bot 25: 269–276

    Google Scholar 

  • Berchtold A (2006) March v.3.00 Markovian models computation and analysis users guide. URL http://www.andreberchtold.com/march.html

  • Berchtold A, Raftery AE (2002) The mixture transition distribution model for high-order Markov chains and non-Gaussian time series. Stat Sci 17:328–356

    Google Scholar 

  • Bertin RI (2008) Phenology and distribution in relation to recent climate change. J Torrey Bot Soc 135:126–146

    Google Scholar 

  • Branzi GP, Zanotti AL (1989) Methods in phenological mapping. Aerobiologia 5:44–54

    Google Scholar 

  • Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449

    Google Scholar 

  • Bruns E, van Vliet AJH (2003) Standardisation and observation methodologies of phenological networks in Europe. Wageningen University and German Weather Service, Wageningen, Offenbach

    Google Scholar 

  • Caprio JM (1966) Pattern of plant development in the Western United States. Montana State University, Bozeman, Montana

    Google Scholar 

  • Caprio JM, Hopp RJ, Williams JS (1974) Computer mapping in phenolgical analysis. In: Leith H (ed) Phenology and seasonality modeling. Springer-Verlag, New York, pp. 77–82

    Google Scholar 

  • Cenci CA, Pitzalis M, Lorenzetti MC (1997) Forecasting anthesis dates of wild vegetation on the basis of thermal and photothermal indices. In: Phenology in seasonal climates vol 1. Backhuys Publishers, Leiden, The Netherlands, pp. 94–104

    Google Scholar 

  • Chambers LE (2006) Associations between climate change and natural systems in Australia. B Am Meteorol Soc 87:201–206

    Google Scholar 

  • Chapman CA, Chapman LJ, Wangham R et al. (1992) Estimators of fruit abundance of tropical trees. Biotropica 24(4): 527–531

    Google Scholar 

  • Chapman CA, Wrangham R, Chapman L (1994) Indices of habitat-wide fruit abundance in tropical forests. Biotropica 26(2): 160–171

    Google Scholar 

  • Chen X, Tan Z, Xu C (1999) Determining the growing season of land vegetation based on plant phenology and satellite data in the northern china. In: de Dear RJ, Kalma JD, Oke TR et al. (eds) Biometeorology and urban climatology at the turn of the century selected papers from the conference ICB-ICUC '99. World Meteorological Organisation, Geneva, Switzerland

    Google Scholar 

  • Cleland EE, Chuine I, Menzel A et al. (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365

    PubMed  Google Scholar 

  • COST 725 (2008) Establishing a European phenological data platform for climatological applications. http://topshare.wur.nl/cost725. Cited 15 Jan 2008

  • Davies SJ, Ashton PS (1999) Phenology and fecundity in 11 sympatric pioneer species of Macaranga (Euphorbiaceae) in Borneo. Am J Bot 86:1786–1795

    PubMed  Google Scholar 

  • D’Eça Neves FF, Morellato LPC (2004) Métodos de amostragem e avaliação utilizados em estudos fenológicos de florestas tropicais. Acta Bot Bras 18(1): 99-108de

    Google Scholar 

  • de Beurs KM, Henebry GM (2008) Northern annular mode effects on the land surface phenologies of Northern Eurasia. J Climate 21:4257–4279, DOI: 10.1175/2008JCLI2074

    Google Scholar 

  • de Selys-Longchamps M (1853) Le calendrier de faune en Belgique. La Belgique Horticole 3: 344–352

    Google Scholar 

  • de Vries J (1980) Measuring the impact of climate on history: searching for appropriate methodologies. J Inter Hist 10:599–630

    Google Scholar 

  • Degrandi-Hoffman G, Thorp R, Loper G et al. (1996) Describing the progression of almond bloom using accumulated heat units. J Appl Ecol 33:812–818

    Google Scholar 

  • Delbart N, Kergoat L, Le Toan T et al. (2005) Determination of phenological dates in boreal regions using normalized difference water index. Remote Sens Environ 97:26–38

    Google Scholar 

  • Demarée G, Curnel Y (2008) Plant phenology in Belgium. In: Nekovář J, Koch E, Kubin E et al. (eds) Cost action 725: The history and current status of plant phenology in Europe. Finnish Forest Research Institute Muhos Research Unit and COST Office, Vammalan Kirjapaino Oy, Finland, pp. 29–33

    Google Scholar 

  • Dierschke H (1972) On the recording and presentation of phenological phenomena in plant communities. Dr. W. Junk, The Hague

    Google Scholar 

  • Diggle PJ, Heagerty P, Liang KY et al. (2002) Analysis of longitudinal data, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • D‘Odorico PD, Yoo J, Jaeger S (2002) Changing seasons: an effect of the North Atlantic oscillation. J Climate 15:435–445

    Google Scholar 

  • Doi H (2007) Winter flowering phenology of Japanese apricot >Prunus mume reflects climate change across Japan. Climate Res 34:99–104

    Google Scholar 

  • Doi H, Katano I (2008) Phenological timings of leaf budburst with climate change in Japan. Agri Forest Meteorol 148:512–516

    Google Scholar 

  • Donnelly A, Jones MB, Sweeney J (2004) A review of indicators of climate change for use in Ireland. Int J Biometeorol 49:1–12

    PubMed  Google Scholar 

  • Doktor D, Badeck F-W, Hattermann F et al. (2005) Analysis and modelling of spatially and temporally varying phenological phases. In: Renard P, Demougeot-Renard H, Froidevaux R (eds) Geostatistics for environmental applications. Proceedings of the fifth European conference on geostatistics for environmental applications. Springer, Berlin pp 137–148

    Google Scholar 

  • Dose V, Menzel A (2004) Bayesian analysis of climate change impacts in phenology. Global Change Biol 10:259–272

    Google Scholar 

  • Dose V, Menzel A (2006) Bayesian correlation between temperature and blossom onset data. Global Change Biol 12:1451–1459

    Google Scholar 

  • Draper NR, Smith H (1981) Applied regression analysis. Wiley, New York

    Google Scholar 

  • Dunlop M, Howden M (2003) Policy discussion. In: Howden M, Hughes L, Dunlop M et al. (eds) Climate change impacts on biodiversity in Australia outcomes of a workshop sponsored by the Biological Diversity Advisory Committee. Commonwealth of Australia, Canberra, pp. 67–79

    Google Scholar 

  • Eastman JR, Fulk M (1993) Long sequence time series evaluation using standardized principal components. Photogramm Eng Rem S 59:1307–1312

    Google Scholar 

  • Egerton FN (1977) Ecological studies and observations before 1900. In: Press A, Egerton FN (eds) History of American ecology: an original anthology. Arno Press, New York, pp. 311–351

    Google Scholar 

  • Eilers PHC, Marx BD (2003) Multivariate calibration with temperature interaction using two-dimensional penalized signal regression. Chemometr Intel Lab 66:159–174

    CAS  Google Scholar 

  • Estrella N, Menzel A (2006) Responses of leaf colouring in four deciduous tree species to climate and weather in Germany. Climate Res 32:253–267

    Google Scholar 

  • Fischer A (1994) A model for the seasonal-variations of vegetation indexes in coarse resolution data and its inversion to extract crop parameters. Remote Sens Environ 48:220–230

    Google Scholar 

  • Fisher NI (1993) Statistical analysis of circular data. Cambridge University Press, Cambridge

    Google Scholar 

  • Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691

    CAS  PubMed  Google Scholar 

  • Fitter AH, Fitter RSR, Harris ITB et al. (1995) Relationship between first flowering date and temperature in the flora of a locality in central England. Funct Ecol 9:55–60

    Google Scholar 

  • Fournier LA (1974) Un método cuantitativo para la medición de características fenológicas en árboles. Turrialba 24:54–59

    Google Scholar 

  • Fournier LA, Charpantier C (1975) El tamaño de la muestra y la frecuencia de las observaciones en el estudio de las características fenológicas de los árboles tropicales. Turrialba 25: 45–48

    Google Scholar 

  • Frankie GW, Baker HG, Opler PA (1974) Tropical plant phenology: applications for studies in community ecology. In: Lieth H (ed) Phenology and seasonality modeling. Springer-Verlag, Berlin

    Google Scholar 

  • Fukuda K, Hudson IL (2005) Global and local climatic factors on sulfur dioxide levels: comparison of residential and industrial sites. In: Francis AR, Matawie KM, Oshlack A et al. (eds) Statistical Solutions to Modern Problems Proceedings of the 20th International Workshop on Statistical Modelling Sydney, Australia

    Google Scholar 

  • Gallagher RV, Hughes L, Leishman MR (2009) Phenological trends among Australian alpine species: using herbarium records to identify climate-change indicators. Aust J Bot 57:1–9

    Google Scholar 

  • Gamborg M, Byberg L, Rasmussen F et al. (2007) Weight and systolic blood pressure in adolescence and adulthood: meta-regression analysis of sex- and age-specific results from 20 Nordic studies. Am J Epidemiol 166:634–645

    PubMed  Google Scholar 

  • García-Mozo H, Galán C, Vázquez L (2006) The reliability of geostatistic interpolation in olive field floral phenology. Aerobiologia 22:97–108

    Google Scholar 

  • Goddard Institute for Space Studies (2009) GISS surface temperature analysis. Global temperature trends: 2008 annual summation http://data.giss.nasa.gov/gistemp/2008/ Accessed June 2009

  • Golyandina N, Nekrutkin V, Zhigljavsky A (2001) Analysis of time series structure: SSA and related techniques. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Golyandina N, Osipov E (2007) The “Caterpillar” - SSA method for analysis of time series with missing values. J Stat Plan Infer 137:2642–2653

    Google Scholar 

  • Gordo O, Sanz JJ (2005) Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia 146:484–495

    PubMed  Google Scholar 

  • Grove JM (1988) The little ice age. Methuen, London

    Google Scholar 

  • Hall-Beyer M (2003) Comparison of single-year and multiyear NDVI time series principal components in cold temperate biomes. IEEE Geosci Remote S 41:2568–2574

    Google Scholar 

  • Häkkinen R, Linkosalo T, Hari P (1995) Methods for combining phenological time series: application to budburst in birch (B. pendula) in Central Finland for the period 1896–1955. Tree Physiol 15:721–726

    PubMed  Google Scholar 

  • Hamer KC, Hill JK, Mustaffa N et al. (2005) Temporal variation in abundance and diversity of butterflies in Bornean rain forests: opposite impacts of logging recorded in different seasons. J Trop Ecol 21:417–425

    Google Scholar 

  • Hasselmann K (1998) Conventional and Bayesian approach to climate-change detection and attribution. Q J Roy Meteor Soc 124:2541–2565

    Google Scholar 

  • Hemingway CA, Overdorff DJ (1999) Sampling effects on food availability estimates: phenological method, sample size, and species composition. Biotropica 31(2): 354–364

    Google Scholar 

  • Herrera CM (1988) The fruiting ecology of Osyris quadripartita - individual variation and evolutionary potential. Ecology 69:233–249

    Google Scholar 

  • Hobbs BF (1997) Bayesian methods for analysing climate change and water resource uncertainties. J Environ Manage 49:53–72

    Google Scholar 

  • Hodgkinson K, Freudenberger D (1997) Production pulses and flow-ons in rangeland landscapes. In: Ludwig J, Tongway D, Freudenberger D et al. (eds) Landscape ecology: function and management. CSIRO, Australia, pp 23–34

    Google Scholar 

  • Hopp RJ (1974) Plant phenology observation networks. In: Leith H (ed) Phenology and seasonality modeling. Springer-Verlag, New York, pp. 25–43

    Google Scholar 

  • Hudson IL, Fukuda K, Keatley MR (2004) Detecting underlying time series structures and change points within a phenological dataset using SSA. In: XXIInd International Biometric Conference Cairns, Australia, 12–16 July 2004

    Google Scholar 

  • Hudson IL, Keatley MR, Roberts AMI (2005) Statistical methods in phenological research. In: Francis AR, Matawie KM, Oshlack A et al. (eds) Statistical Solutions to Modern Problems Proceedings of the 20th International Workshop on Statistical Modelling, Sydney, Australia

    Google Scholar 

  • Hudson IL, Kim SW, Keatley MR (2009) Climatic influences on the flowering phenology of four eucalypts: a GAMLSS approach. In: Anderssen RS, Braddock RD, Newham LTH (eds)18th World International Association for Mathematics and Computers in Simulation (IMACS) Congress and the International Congress on Modelling and Simulation MODSIM09, Cairns, Australia, 13–17 July 2009

    Google Scholar 

  • Idso SB, Jackson RD, Reginato RJ (1978) Extending the “Degree day” Concept of plant phenological development to include water stress effects. Ecology 59:431–433

    Google Scholar 

  • IPCC (ed) (2001) Climate change 2001: Impacts, adaptation, and vulnerability. Contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge

    Google Scholar 

  • Jammalamadaka RS, SenGupta A (2001) Topics in circular statistics. World Scientific, Singapore

    Google Scholar 

  • Jeanneret F (1974) Statistische und kartographische Bearbeitung phänologischer Beobachtungen am Beispiel der Daten der Weizenernte 1970. Inf Beitr Klimaforsch 11:1–31

    Google Scholar 

  • Jönsson P, Eklundh L (2002) Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Geosci Remote S 40:1824–1831

    Google Scholar 

  • Kang I, Hudson IL, Keatley MR (2004) Wavelets analysis in phenological research. In: XXIInd International Biometric Conference Cairns, Australia, 12–16 July 2004

    Google Scholar 

  • Karlsen SR, Elvebakk A, Hogda KA et al. (2006) Satellite-based mapping of the growing season and bioclimatic zones in Fennoscandia. Global Ecol Biogeogr 15:416–430

    Google Scholar 

  • Karlsen SR, Solheim I, Beck PSA et al. (2007) Variability of the start of the growing season in Fennoscandia, 1982–2002. Int J Biometeorol 51:513–524

    PubMed  Google Scholar 

  • Keatley MR, Hudson IL (2000) Influences on the flowering phenology of three eucalypts. In: de Dear RJ, Kalma JD, Oke TR et al. (eds) Biometeorology and urban climatology at the turn of the century selected papers from the conference ICB-ICUC'99. World Meteorological Organisation, Geneva, Switzerland

    Google Scholar 

  • Keatley MR, Fletcher TD, Hudson IL et al. (2002) Phenological studies in Australia: potential application in historical and future climate analysis. Int J Climatol 22: 769–1780

    Google Scholar 

  • Keatley MR, Hudson IL (2008) Shifts and changes in a 24 year Australian flowering record. In: Harmony within Nature The 18th International Congress of Biometeorology, Tokyo, Japan, 22–26 September 2008

    Google Scholar 

  • Kim SW, Hudson IL, Keatley MR (2005) Mixture transition distribution analysis of flowering and climatic states. In: Francis AR, Matawie KM, Oshlack A et al. (eds) Statistical Solutions to Modern Problems Proceedings of the 20th International Workshop on Statistical Modelling, Sydney, Australia

    Google Scholar 

  • Kim SK, Hudson IL, Agrawal M et al. (2008) Modelling and synchronization of four Eucalyptus species via mixed transition distribution MTD and extended kalman filter EKF. In: Eilers PHC (ed) Proceedings of the 23rd International Workshop on Statistical Modelling, Ipskamp Partners, Enschede, The Netherlands

    Google Scholar 

  • Kim SW, Hudson IL, Keatley MR (2009) Modelling the flowering of four eucalypts species via MTDg with interactions. In: R. Braddock et al. (eds) World Congress - MODSIM09 International Congress on Modelling and Simulation, Cairns, Australia

    Google Scholar 

  • Koch M, Marković D (2007) Evidences for climate change in Germany over the 20th century from the stochastic analysis of hydro-meteorological time-series. In: Oxley L, Kulasiri D (eds) MODSIM 2007 International Congress on Modelling and Simulation, Christchurch, New Zealand

    Google Scholar 

  • Kramer K (1995) Modelling comparison to evaluate the importance of phenology for the effects of climate change on growth of temperate-zone decidous trees. Clim Res 5:119–130

    Google Scholar 

  • Lavoie C, Lachance D (2006) A new herbarium-based method for reconstructing the phenology of plant species across large areas. Am J Bot 93(4): 512–516

    Google Scholar 

  • Leith H (ed) (1974) Phenology and seasonal modeling. Springer-Verlag, New York

    Google Scholar 

  • Leroy SS (1998) Detecting climate signals: some Bayesian aspects. J Climate 11:640–651

    Google Scholar 

  • Linkosalo T (1999) Regularities and patterns in the spring phenology of some boreal trees. Silva Fenn 33:237–245

    Google Scholar 

  • Linkosalo T, Häkkinen R, Hari P (1996) Improving the reliability of a combined phenological time series by analyzing observation quality. Tree Physiol 16:661–664

    PubMed  Google Scholar 

  • Linkosalo T, Carter TR, Häkkinen R, et al. (2000) Predicting spring phenology and frost damageiskof betula spp. Under climatic warming: A comparison of two models. Tree Physiol 20:1175–1182

    Google Scholar 

  • Linkosalo T, Häkkinen R, Terhivuo J et al. (2009) The time series of flowering and leaf bud burst of boreal trees (1846–2005) support the direct temperature observations of climatic warming. Agr Forest Meteorol 149:453–461

    Google Scholar 

  • Linne C (1751) Philosophia botanica. (H. Rose (1775) in the elements of botany: Containing the history of science). T. Cadell and M. Hingeston, London

    Google Scholar 

  • Lloyd D (1990) A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. Int J Remote Sens 11:2269–2279

    Google Scholar 

  • Loiselle BA, Jørgensen PM, Consiglio T et al. (2008) Predicting species distributions from herbarium collections: does climate bias in collection sampling influence model outcomes? J Biogeogr 35:105–116

    Google Scholar 

  • Lu P-L, Yu Q, Liu J-D et al. (2006) Effects of changes in spring temperature on flowering dates of woody plants across China. Botanical Studies 47:153–181

    Google Scholar 

  • Lu X, Liu R, Liu J et al. (2007) Removal of noise by wavelet method to generate high quality temporal data of terrestrial MODIS products. Photogramm Eng Rem S 73:1129–1140

    Google Scholar 

  • Lynn WT (1910) Phenology-phrenology. The Observatory 33:370–371

    Google Scholar 

  • Mackey B (2007) Climate change, connectivity and biodiversity conservation. In: Taylor M, Figgis P (eds) Protected Areas: buffering nature against climate change. Proceedings of a WWF and IUCN World Commission on Protected Areas symposium, 18–19 June 2007, Canberra. WWF-Australia, Sydney, p 90

    Google Scholar 

  • Mardia KV, Jupp PE (2000) Directional statistics. Wiley, Chichester

    Google Scholar 

  • Mariani L, Failla O, Dal Monte G et al. (2007) Iphen: A model for real-time production of grapevine phenological maps. In: Mainar MA (ed) Congress on climate and viticulture, Zaragoza, 2007

    Google Scholar 

  • McMichael AJ (1993) Global environmental change and human population health: a conceptual and scientific challenge for epidemiology. Int J Epidemiol 22:1–8

    CAS  PubMed  Google Scholar 

  • Meier U (2003) Phenological growth stages. In: Schwartz MD (ed) Phenology: an integrative environmental science. Tasks for vegetation science, vol 39. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Menzel A (2003a) Europe. In: Schwartz MD (ed) Phenology: an integrative environmental science. Tasks for vegetation science, vol 39. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Menzel A (2003b) Plant phenology “Fingerprints”. In: Schwartz MD (ed) Phenology: an integrative environmental science. Tasks for vegetation science, vol 39. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Menzel A, Dose V (2005) Analysis of long-term time-series of beginning of flowering by bayesian function estimation. Meteorol Z 14:429–434

    Google Scholar 

  • Menzel A, Sparks TH, Estrella N et al. (2006) Altered geographic and temporal variability in phenology in response to climate change. Global Ecol Biogeogr 15:498–504

    Google Scholar 

  • Menzel A, Estrella N, Heitland W et al. (2008) Bayesian analysis of the species-specific lengthening of the growing season in two European countries and the influence of an insect pest. Int J Biometeorol 52:209–218

    PubMed  Google Scholar 

  • Messerli B, Volz R, Wanner H et al. (1978) Beiträge zum klima des Kantons Bern. Jahrbuch der geographischen Gesellschaft von Bern 52/1975–76

    Google Scholar 

  • Michelozzi P, Accetta G, De Sario M et al. (2009) High temperature and hospitalizations for cardiovascular and respiratory causes in 12 European cities. Am J Respir Crit Care Med 179:383–389

    PubMed  Google Scholar 

  • Milton K (1991) Leaf change and fruit production in six neotropical Moraceae species. J Ecol 79:1–26

    Google Scholar 

  • Miller-Rushing AJ, Primack RB (2008) Global warming and flowering times in Thoreau’s Concord: a community perspective. Ecology 89:332–341

    PubMed  Google Scholar 

  • Miller-Rushing AJ, Primack RB, Primack D et al. (2006) Photographs and herbarium specimens as tools to document response to global warming. Am J Bot 93: 667–1674

    Google Scholar 

  • Moody A, Johnson DM (2001) Land-surface phenologies from AVHRR using the discrete Fourier transform. Remote Sens Environ 75:305–323

    Google Scholar 

  • Morellato LPC (2003) South America. In: Schwartz MD (ed) Phenology: an integrative environmental science. Tasks for vegetation science, vol 39. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Morellato LPC, Rodrigues RR, Leitão-Filho HF et al. (1989) Estudo comparativo da fenologia de espécies arbóreas de floresta de altitude e floresta mesófila semidecídua na Serra do Japi, Jundiaí, São Paulo. Rev Bras Bot 12:85–98

    Google Scholar 

  • Morellato LPC, Talora DC, Takahasi A et al. (2000) Phenology of Atlantic rain forest trees: a comparative study. Biotropica 32:811–823

    Google Scholar 

  • Morren C (1849) Principes d‘horticulture. Des phénomènes periodiques de la végétation. Les Annales de la Société royale d‘agriculture et de botanique de Gand 5:441–450

    Google Scholar 

  • Morren C (1851) Le globe, le temps et la vie or discours sur le phénomènes periodiques auxquels la physiologie de la terra est soumise In: Morren C (ed) Lobelia ou receuil d‘observations de botanique. M. Hayez, imprimeur de l‘Académie Royale de Belgique, Bruxelles

    Google Scholar 

  • Morren C (1853) Souvenirs phénologiques de l’hiver 1852–1853. Bull de l‘Académie royale des Sciences, des Lettres et des Beaux-Artes de Belgique 20:160–186

    Google Scholar 

  • Moskvina V, Zhigljavsky A (2003) Change-point detection algorithm based on the singular-spectrum analysis. Comm Stat Simulat Comput 32:319–352

    Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ et al. (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    CAS  Google Scholar 

  • Nekovář J, Kock E, Kubin E et al. (eds) (2008) Cost action 725: The history and current status of plant phenology in Europe. Finnish Forest Research Institute Muhos Research Unit and COST Office, Vammalan Kirjapaino Oy, Finland

    Google Scholar 

  • Newstrom LE, Frankie GW, Baker HG et al. (1994) Diversity of long-term flowering patterns. In: McDade LA, Bawa KS, Hespenheide HA et al. (eds) La Selva: ecology and natural history of a neotropical rain forest, University of Chicago Press, Chicago, pp 142–160

    Google Scholar 

  • Oxford English Dictionary (2008) Oed online. URL <http://dictionary.oed.com/cgi/entry/30004148; Cited January 19 2009

  • Paluš M, Novotná D, Tichavský P (2005) Shifts of seasons at the European mid-latitudes: natural fluctuations correlated with the North Atlantic Oscillation. Geophys Res Lett 32: L12805, DOI:12810.11029/12005GL022838

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Ann Rev Ecol Syst 37:637–669

    Google Scholar 

  • Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Change Biol 13:1860–1872

    Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    CAS  PubMed  Google Scholar 

  • Peng RD, Dominici F, Welty LJ (2009) A Bayesian hierarchical distributed lag model for estimating the time course of risk of hospitalization associated with particulate matter air pollution. Appl Statist 58:3–24

    Google Scholar 

  • Percival D, Walden A (2000) Wavelet methods for time series analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Pfister C (1980) The little ice age: thermal and wetness indices for central Europe. J Inter Hist 10:665–696

    Google Scholar 

  • Puppi G (2007) Origin and development of phenology as a science. Ital J Agrometeorol 3:24–29

    Google Scholar 

  • Ranta E, Kaitala V, Lindström J (1997) Spatial dynamics of populations. In: Bascompte J, Solé RV (eds) Modeling spatiotemporal dynamics of populations. Springer, Berlin Heidelberg New York, pp 47–62

    Google Scholar 

  • Ranta E, Kaitala V, Lindström J (1999) Spatially autocorrelated disturbances and patterns in population synchrony. Proc Roy Soc Lond B 266:1851–1856

    Google Scholar 

  • Reed BC, Brown JF, VanderZee D et al. (1994) Measuring phenological variability from satellite imagery. J Veg Sci 5:703–714

    Google Scholar 

  • Reed BC, White M, Brown JF (2003) Remote sensing phenology. In: Schwartz MD (ed) Phenology: An Integrative Environmental Science. Tasks for vegetation science, vol 39. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Rigby RA, Stasinopoulos DM (2005) Generalized additive models for location, scale and shape. Appl Statist 54:507–554

    Google Scholar 

  • Roberts AMI (2008) Exploring relationships between phenological and weather data using smoothing. Int J Biometeorol 52:463–470

    PubMed  Google Scholar 

  • Roberts AMI, Last FT, Kempton E (2004) Preliminary analyses of changes in the first flowering dates of a range of plants between 1978 and 2001. Scottish Natural Heritage Commissioned Report No. 035, Edinburgh

    Google Scholar 

  • Robertson I, Lucy D, Baxter L et al. (1999) A kernel-based Bayesian approach to climatic reconstruction. Holocene 9:495–500

    Google Scholar 

  • Root TL, Price JT, Hall KR et al. (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    CAS  PubMed  Google Scholar 

  • Rosenzweig C, Karoly D, Vicarelli M et al. (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–358

    CAS  PubMed  Google Scholar 

  • Rötzer T, Wittenzeller M, Haeckel H et al. (2000) Phenology in central Europe—differences and trends of spring phenophases in urban and rural areas. Int J Biometerol 44:60–66

    Google Scholar 

  • Roy DB, Sparks T (2000) Phenology of British butterflies and climate change. Global Change Biol 6:407–416

    Google Scholar 

  • Rumpff L, Coates F, Messina A et al. (2008) Potential biological indicators of climate change: Evidence from phenology of plants along the Victorian coast. Arthur Rylah Institute for Environmental Research, Technical Report No. 175. Department of Sustainability and Environment: East Melbourne

    Google Scholar 

  • Ruppert D, Wand MP, Carroll RJ (2009) Semiparametric regression during 2003-2007. J Am Stat Assoc accepted

    Google Scholar 

  • Rutishauser T, Luterbacher J, Jeanneret F et al. (2007) A phenology-based reconstruction of interannual changes in past spring seasons. J Geophys Res 112:G04016

    Google Scholar 

  • Sakai S (2001) Phenological diversity in tropical forests. Popul Ecol 43:77–86

    Google Scholar 

  • Schaber J, Badeck FW (2002) Evaluation of methods for the combination of phenological time series and outlier detection. Tree Physiol 22:973–982

    PubMed  Google Scholar 

  • Schaber J, Badeck FW (2005) Plant phenology in Germany over the 20th century. Reg Environ Change 5:37–46

    Google Scholar 

  • Schleip C, Menzel A, Estrella N et al. (2006) The use of Bayesian analysis to detect recent changes in phenological events throughout the year Agr Forest Meteorol 141:179–191

    Google Scholar 

  • Schleip C, Rutishauser T, Luterbacher J et al. (2008) Time series modeling and central European temperature impact assessment of phenological records over the last 250 years. J Geophys Res 113:G04026, doi:10.1029/2007JG000646

    Google Scholar 

  • Schleip C, Menzel A, Dose V (2009) Bayesian analysis of changes in radiosonde atmospheric temperature. Int J Climatol 29:629–641

    Google Scholar 

  • Schneider SH, Semenov S, Patwardhan A et al. (2007) Assessing key vulnerabilities and the risk from climate change. In: Parry ML, Canziani OF, Palutikof JP et al. (eds) Climate change impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom, pp 779–810

    Google Scholar 

  • Schoelzel C (2006) Palaeoenvironmental transfer functions in a Bayesian framework with application to Holocene climate variability in the Near East. Bonner Meteorologische Abhandlungen 62, 104 S

    Google Scholar 

  • Schwartz MD (ed) (2003a) Phenology: an integrative environmental science. Tasks for vegetation science, vol 39. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Schwartz MD (2003b) Preface. In: Schwartz MD (ed) Phenology: an integrative environmental science. Tasks for vegetation science, vol 39. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Shabanov NV, Zhou L, Knyazikhin Y et al. (2002) Analysis of interannual changes in northern vegetation activity observed in AVHRR data from 1981 to 1994. IEEE Geosci Remote S 40:115–130

    Google Scholar 

  • Siljamo P, Sofiev M, Ranta H et al. (2008) Representativeness of point-wise phenological Betula data collected in different parts of Europe. Global Ecol Biogeogr 17:489–502

    Google Scholar 

  • Sparks TH (2007) Lateral thinking on data to identify climate impacts. Trends Ecol Evol 22:169–171

    PubMed  Google Scholar 

  • Sparks TH, Carey PD (1995) The responses of species to climate over two centuries: an analysis of the Marshman phenological record, 1736–1947. J Ecol 83:321–329

    Google Scholar 

  • Sparks TH, Menzel A (2002) Observed changes in seasons: an overview. Int J Climate 22:1715–1725

    Google Scholar 

  • Sparks TH, Tryjanowski P (2005) The detection of climate change impacts: Some methodological considerations. Int J Climate 25:271–277

    Google Scholar 

  • Sparks TH, Huber K, Croxton PJ (2006) Plant development scores from fixed-date photographs: the influence of weather variables and recorder experience. Int J Biometeorol 50:275–279

    CAS  PubMed  Google Scholar 

  • Stasinopoulos DM, Rigby RA (2007) Generalized additive models for location, scale and shape (GAMLSS). R J Stat Softw 23:1–46

    Google Scholar 

  • Stenseth NC, Mysterud A, Ottersen G et al. (2002) Ecological effects of climate fluctations. Science 297:1292–1296

    CAS  PubMed  Google Scholar 

  • Stöckli R, Vidale PL (2004) European plant phenology and climate as seen in a 20-year AVHRR. Int J Rem Sensing 25:3303–3330

    Google Scholar 

  • Studer S, Appenzeller C, Defila C (2005) Inter-annual variability and decadal trends in alpine spring phenology: a multivariate approach. Clim Change 73:395– 414

    Google Scholar 

  • Studer S, Stöckli R, Appenzeller C et al. (2007) A comparative study of satellite and ground-based phenology. Int J Biometeorol 51:405–414

    CAS  PubMed  Google Scholar 

  • Tallmon DA, Luikart G, Waples RS (2004) The alluring simplicity and complex reality of genetic rescue. Trends Ecol Evol 19:489–496

    PubMed  Google Scholar 

  • Tateishi R, Ebata M (2004) Analysis of phenological change patterns using 1982–2000 Advanced Very High Resolution Radiometer (AVHRR) data. Int J Remote Sens 25:2287–2300

    Google Scholar 

  • Thompson R, Clark RM (2006) Spatio-temporal modelling and assessment of within-species phenological variability using thermal time methods. Int J Biometeorol 50:312–322

    CAS  PubMed  Google Scholar 

  • Thuiller W, Albert C, Araújo MB et al. (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol 9:137–152

    Google Scholar 

  • van Vliet AJH, de Groot RS, Bellens Y et al. (2003) The European phenology network. Int J Biometeorol 47:202–212

    PubMed  Google Scholar 

  • Verbeke G, Molenberghs G (2000) Linear mixed models for longitudinal data. Springer, Berlin Heidelberg New York

    Google Scholar 

  • von Storch H, Zwiers FW (2001) Statistical analysis in climate research. Cambridge University Press, Cambridge

    Google Scholar 

  • von Storch H, Tol RSJ, Floser G (2007) Environmental crises. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Walther G-R, Post E, Convey P et al. (2002) Ecological responses to recent climate change. Nature 416:389–395

    CAS  PubMed  Google Scholar 

  • White MA, Thornton PE, Running SW (1997) A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochem Cy 11:217–234

    CAS  Google Scholar 

  • Wolda H (1988) Insect seasonality: why? Annu Rev Ecol Syst 19:1–18

    Google Scholar 

  • Wolda H (1989) Seasonal cues in tropical organisms. Rainfall? Not necessarily! Oecologia 80:437–442

    Google Scholar 

  • World Health Organisation (2003) Phenology and human health: allergic disorders. In. World Health Organisation, Europe, Rome, p 64

    Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice Hall, New Jersey

    Google Scholar 

  • Zimmerman JK, Wright SJ, Calderón O et al. (2007) Flowering and fruiting phenologies of seasonal and aseasonal neotropical forests: the role of annual changes in irradiance. J Trop Ecol 23:231–251

    Google Scholar 

  • Zhang X, Friedl MA, Schaaf CB et al. (2004) Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Global Change Biol 10:1133–1145

    Google Scholar 

  • Zhou L, Kaufmann RK, Tian Y et al. (2003) Relation between interannual variations in satellite measures of northern forest greenness and climate between 1982 and 1999. J Geophys Res 108: doi:10.1029/2002JD002510

    Google Scholar 

  • Zwiers FW, von Storch H (2004). On the role of statistics in climate research. Int J Climatol 24:665–680

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie R. Keatley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Keatley, M.R., Hudson, I.L. (2010). Introduction and Overview. In: Hudson, I., Keatley, M. (eds) Phenological Research. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3335-2_1

Download citation

Publish with us

Policies and ethics