Skip to main content

Soil Solarization and Sustainable Agriculture

  • Chapter
  • First Online:
Book cover Sociology, Organic Farming, Climate Change and Soil Science

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 3))

Abstract

Pesticide treatments provide an effective control of soilborne pests in vegetable and fruit crops, but their toxicity to animals and people and residual toxicity in plants and soil, and high cost make their use hazardous and economically inconvenient. Moreover, actual environmental legislation is imposing severe restrictions on the use or the total withdrawal of most soil-applied pesticides. Therefore, an increasing emphasis has been placed on the use of nonchemical or pesticide-reduced control methods. Soil solarization is a nonpesticidal technique which kills a wide range of soil pathogens, nematodes, and weed seed and seedlings through the high soil temperatures raised by placing plastic sheets on moist soil during periods of high ambient temperature. Direct thermal inactivation of target organisms was found to be the most important mechanism of solarization biocidal effect, contributed also by a heat-induced release of toxic volatile compounds and a shift of soil microflora to microorganisms antagonist of plant pathogens. Soil temperature and moisture are critical variables in solarization thermal effect, though the role of plastic film is also fundamental for the solarizing process, as it should increase soil temperature by allowing the passage of solar radiation while reducing energetic radiative and convective losses. Best solarizing properties were shown by low-density or vynilacetate-coextruded polyethylene formulations, but a wide range of plastic materials were documented as also suitable to soil solarization. Solar heating was normally reported to improve soil structure and increase soil content of soluble nutrients, particularly dissolved organic matter, inorganic nitrogen forms, and available cations, and shift composition and richness of soil microbial communities, with a marked increase of plant growth beneficial, plant pathogen antagonistic or root quick recolonizer microorganisms. As a consequence of these effects, soil solarization was largely documented to increase plant growth and crop yield and quality along more than two crop cycles. Most important fungal plant pathogenic species were found strongly suppressed by the solarizing treatment, as several studies documented an almost complete eradication of economically relevant pathogens, such as Fusarium spp., Phytophthora spp., Pythium spp., Sclerotium spp., Verticillium spp., and their related diseases in many vegetable and fruit crops and different experimental conditions. Beneficial effects on fungal pathogens were stated to commonly last for about two growing seasons and also longer. Soil solarization demonstrated to be effective for the control of bacterial diseases caused by Agrobacterium spp., Clavibacter michiganensis, and Erwinia amylovora, but failed to reduce incidence of tomato diseases caused by Pseudomonas solanacearum. Solarization was generally found less effective on phytoparasitic nematodes than on other organisms, due to their quicker soil recolonization compared to fungal pathogens and weeds, but field and greenhouse studies documented consistent reductions of root-knot severity and population densities of root-knot nematodes, Meloidogyne spp., as well as a satisfactory control of cyst nematode species, such as Globodera rostochiensis and Heterodera carotae, and bulb nematode Ditylenchus dipsaci. Weeds were variously affected by solar heating, as annual species were generally found almost completely suppressed and perennial species more difficult to control, due to the occurrence deep propagules not exposed to lethal temperature. Residual effect of solarization on weeds was found much more pronounced than on nematodes and most fungal pathogens. Soil solarization may be a perfect fit for all situations in which use of pesticides is restricted or completely banned, such as in organic production, or in farms located next to urban areas, or specialty crops with few labeled pesticides. Advantages of solarization also include economic convenience, as demonstrated by many comparative benefit/cost analyses, ease of use by growers, adaptability to many cropping systems, and a full integration with other control tools, which makes this technique perfectly compatible with principles of integrated pest management required by sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Megid MS, Ibrahim AS, Khalid SA, Satour MM (1998) Studies on vegetable transplants using seed-bed solarization: improvement of onion transplant characters and smut disease control. In: Stapleton JJ, DeVay JE, Elmore CL(eds) Proceedings of the second international conference on soil solarization and integrated management of soil-borne pests, Aleppo, Syrian Arab Republic, 16–21 March 1997. FAO Plant Protection and Production Paper 147, FAO, Rome, Italy, pp 165–174

    Google Scholar 

  • Abdel-Rahim MF, Satour MM, Mickail KY, El-Eraki SA, Grinstein A, Chen Y, Katan J (1988) Effectiveness of soil solarization in furrow-irrigated soils. Plant Dis 72:143–146. doi:10.1094/PD-72-0143

    Google Scholar 

  • Abu-Gharbieh WI, Saleh H, Abu-Blan H (1991) Use of black plastic for soil solarization and post-plant mulching. In: DeVay JE, Stapleton JJ, Elmore CL (eds) Proceedings of the first international conference on soil solarization, Amman, Jordan, 19–25 February 1990. FAO Plant Protection and Production Paper No. 109, FAO, Rome, Italy, pp 229–242

    Google Scholar 

  • Abu-Irmaileh BE (1991a) Soil solarization controls broomrapes (Orobanche spp.) in host vegetable crops in the Jordan Valley. Weed Technol 5:575–581

    Google Scholar 

  • Abu-Irmaileh BE (1991b) Weed control in squash and tomato fields by soil solarization in the Jordan Valley. Weed Res 31:125–133. doi:10.1111/j.1365-3180.1991.tb01751.x

    Google Scholar 

  • Abu-Irmaileh BE (1994) Weed control by soil solarization in newly established fruit trees. Dirasat 21:207–219

    Google Scholar 

  • Abu-Irmaileh BE, Thahabi S (1997) Comparative solarization effect on Cuscuta and Orobanche species. In: Stapleton JJ, DeVay JE, Elmore CL (eds) Proceedings of the second international conference on soil solarization and integrated management of soil-borne pests, Aleppo, Syrian Arab Republic, 16–21 March 1997. FAO Plant Protection and Production Paper 147, FAO, Rome, Italy, pp 227–239

    Google Scholar 

  • Afek U, Menge JA, Johnson ELV (1991) Interaction among mycorrhizae, soil solarization, metalaxyl, and plants in the field. Plant Dis 75:665–672

    CAS  Google Scholar 

  • Ahmad Y, Hameed A, Aslam M (1996) Effect of soil solarization on corn stalk rot. Plant Soil 179:17–24. doi:10.1007/BF00011638

    CAS  Google Scholar 

  • Alabouvette C, Hoeper H, Lemanceau P, Steinberg C (1996) Soil suppressiveness to diseases induced by soilborne plant pathogens. In: Stotzky G, Bollag JM (eds) Soil biochemistry, vol 9. Marcel Dekker Inc, New York, USA, pp 371–413

    Google Scholar 

  • Albregts EE, Gilreath JP, Chandler CK (1996) Soil solarization and fumigant alternatives to methyl bromide for strawberry fruit production. Fla Soil Crop Sci Soc Proc 55:16–20

    Google Scholar 

  • Al-Karaghouli AA, Al-Kaysi AW (2001) Influence of soil moisture content on soil solarization efficiency. Renew Energy 24:131–144. doi:10.1016/S0960 1481(00)00179-8

    Google Scholar 

  • Al-Kaysi AW, Al-Karaghouli A (2002) A new approach for soil solarization by using paraffin-wax emulsion as a mulching material. Renew Energy 26:637–648

    Google Scholar 

  • Al-Kaysi AW, Ahmed S, Hussain R (1989) Influence of soil solarization on salts movement and distribution. Plasticulture 84:47–53

    Google Scholar 

  • Al-Masoom AA, Saghir AR, Itani S (1993) Soil solarization for weed management in the UAE. Weed Technol 2:507–510

    Google Scholar 

  • Anastasiadis IA, Giannakou IO, Prophetou-Athanasiadou DA, Gowen SR (2008) The combined effect of the application of a biocontrol agent Paecilomyces lilacinus with various practices for the control of root-knot nematodes. Crop Prot 27:352–361. doi:10.1016/j.cropro.2007.06.008

    Google Scholar 

  • Angus JF, Gardner PA, Kirkegaard JA, Desmarchelier JM (1994) Biofumigation: Isothiocyanates released from Brassica roots inhibit growth of the take-all fungus. Plant Soil 162:107–112

    CAS  Google Scholar 

  • Anith KN, Manomohandas TP, Jayarajan M, Vasanthakumar K, Aipe KC (2000) Integration of soil solarization and biological control with a fluorescent Pseudomonas sp. for controlling bacterial wilt Ralstonia solanacearum (E. F. Smith) Yabuuchi et al. of ginger. J Biol Cont 14:25–29

    Google Scholar 

  • Annesi T, Motta E (1994) Soil solarization in an Italian forest nursery. For Pathol 24:203–209. doi:10.1111/j.1439-0329.1994.tb00986.x

    Google Scholar 

  • Antoniou PP, Tjamos EC, Panagopoulos CG (1995) Use of soil solarization for controlling bacterial canker of tomato in plastic houses in Greece. Plant Pathol 44:438–447. doi:10.1111/j.1365-3059.1995.tb01666.x

    Google Scholar 

  • Arora DK, Pandey AK (1989) Effects of solarization of Fusarium wilt chickpea. J Phytopathol 124:13–22

    Google Scholar 

  • Arora A, Yaduraju NT (1998) High-temperature effects on germination and viability of weed seeds in soil. J Agron Crop Sci 181:35–43

    CAS  Google Scholar 

  • Ashworth Ll, Gaona SA (1982) Evaluation of clear polyethylene mulch for controlling Verticillium wilt in established pistachio nut groves. Phytopathology 72:243–246

    Google Scholar 

  • Atta-Aly MA (2007) Long-term impact of soil solarization on cucumber production under cold greenhouse conditions. Acta Hort (ISHS) 747:171–177

    Google Scholar 

  • Barakat RM (1987) Comparative effect of different colors of polyethylene tarping on soil borne pathogens, M.Sc. Thesis, University of Jordan, Amman

    Google Scholar 

  • Barbercheck ME, Von Broembsen SL (1986) Effects of soil solarization on plant-parasitic nematodes and Phytophthora cinnamomi in South Africa. Plant Dis 70:945–950

    Google Scholar 

  • Barbour EK, Husseini SA, Farran MT, Itani DA, Houalla RH, Hamadeh SK (2002) Soil solarization: a sustainable agriculture approach to reduce microorganisms in chicken manure-treated soil. J Sustain Agric 19:95–104

    Google Scholar 

  • Basallote-Ureba MJ, Melero-Vara JM (1993) Control of garlic white rot by soil solarization. Crop Prot 12:219–223. doi:10.1016/0261-2194(93)90112-V

    Google Scholar 

  • Bastioli C (1998) Properties and applications of Mater-Bi starch-based materials. Polym Degrad Stab 59:263–272. doi:10.1016/S0141-3910(97)00156-0

    CAS  Google Scholar 

  • Becker JO, Wrona AF (1995) Effect of solarization and soil fumigation on Pythium, nematodes, weeds and carrot yield, 1993/94. Biol Cult Tests 10:134

    Google Scholar 

  • Bell CE (1998) The economics of soil solarization compared to conventional agricultural production. In: Stapleton JJ, DeVay JE, Elmore CL (eds) Proceedings of the second international conference on soil solarization and integrated management of soil-borne pests, Aleppo, Syrian Arab Republic, 16–21 March 1997. FAO Plant Protection and Production Paper 147, FAO, Rome, Italy, pp 506–516

    Google Scholar 

  • Bell CE, Elmore CL (1983) Soil solarization as a weed control method in fall planted cantaloupes. Proc West Soc Weed Sci 36:174–177

    Google Scholar 

  • Bello A, López-Pérez JA, Díaz-Viruliche L, Tello J (2001) Alternatives to methyl bromide for soil fumigation in Spain. In: Labrada R, Fornasari L (eds) Global report on validated alternatives to the use of methyl bromide for soil fumigation. FAO-UNEP Paper 166, Roma, Italy, pp 33–46

    Google Scholar 

  • Bello A, Arias M, López-Pérez JA, García-Álvarez A, Fresno J, Escuer M, Arcos SC, Lacasa A, Sanz R, Gómez P, Díez-Rojo M, Piedra Buena A, Goitia C, Horra JL de la, Martínez C (2004) Biofumigation, fallow, and nematode management in vineyard replant. Nematropica 34:53–64

    Google Scholar 

  • Bendavid-Val R, Rabinowitch HD, Katan J, Kapulnik Y (1997) Variability of VA-mycorrhizal fungi following soil solarisation and fumigation. Plant Soil 195:185–193. doi:10.1023/A:1004200316520

    CAS  Google Scholar 

  • Benlioglu S, Boz Ö, Yildiz A, Kakavalci G, Benlioglu K (2005) Alternative soil solarization treatments for the control of soil-borne diseases and weeds of strawberry in the Western Anatolia of Turkey. J Phytopathol 153:423–430

    Google Scholar 

  • Benson DM (1978) Thermal inactivation of Phytophthora cinnamomi for control of Fraser fir root rot. Phytopathology 68:1373–1376

    Google Scholar 

  • Ben-Yephet Y (1988) Control of sclerotia and apothecia of Sclerotinia sclerotiorum by metham-sodium methyl bromide and soil solarization. Crop Prot 7:25–27. doi:10.1016/0261-2194(88)90033-6

    CAS  Google Scholar 

  • Ben-Yephet Y, Stapleton JJ, Wakeman RJ, DeVay JE (1987) Comparative effects of soil solarization with single and double layers of polyethylene film on survival of Fusarium oxysporum f. sp. vasinfectum. Phytoparasitica 15:181–185

    Google Scholar 

  • Ben-Yephet Y, Melero-Vara JM, DeVay JE (1988) Interaction of soil solarization and metham-sodium in the destruction of Verticillium dahliae and Fusarium oxysporum f.sp. vasinfectum. Crop Prot 7:327–331

    CAS  Google Scholar 

  • Besri M (1982) Solar heating (solarization) of tomato supports for control of Didymella lycopersici Kleb. stem canker. Phytopathology 7:939

    Google Scholar 

  • Bhattacharya K, Rao VNM (1984) Effect of soil covers and soil moisture regimes on nematode population in soil and in roots of banana. J Res Assam Agric Univ 5:206–209

    Google Scholar 

  • Blok WJ, Lamers JG, Termorshuizen AJ, Bollen GJ (2000) Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology 90:253–259

    CAS  PubMed  Google Scholar 

  • Bollen GJ (1985) Lethal temperatures of soil fungi. In: Parker CA, Rovira AD, Moore KJ, Wong PTW, Kollmorgen JF (eds) Ecology and management of soilborne plant pathogens. The American Phytopathological Society, St. Paul, MN, USA, pp 191–193

    Google Scholar 

  • Bourbos VA, Skoudridakis MT (1996) Soil solarization for the control of Verticillium wilt of greenhouse tomato. Phytoparasitica 24:277–280

    Google Scholar 

  • Bourbos VA, Skoudridakis MT, Darakis GA, Koulizakis M (1997) Calcium cyanamide and soil solarization for the control of Fusarium solani f.sp. cucurbitae in greenhouse cucumber. Crop Prot 16:383–386. doi:10.1016/S0261-2194(96)00110-X

    Google Scholar 

  • Briassoulis D (2004) An overview on the mechanical behaviour of biodegradable agricultural films. J Polym Environ 12:65–81. doi:10.1023/B:JOOE.0000010052.86786

    CAS  Google Scholar 

  • Bristow KL, Campbell GS (1986) Simulation of heat and moisture transfer through a surface-residue-soil system. Agric For Meteorol 136:193–214

    Google Scholar 

  • Brock TD (1978) (Ed) Thermophylic microorganisms and life at high temperatures. Springer, New York, USA

    Google Scholar 

  • Burrows WC, Larson WE (1962) Effect of amount of mulch on soil temperature and early growth of corn. Agron J 54:19–23

    Google Scholar 

  • Campiglia E, Temperini O, Mancinelli R, Saccardo F (2000) Effects of soil solarization on the weed control of vegetable crops and on the cauliflower and fennel production in the open field. Acta Hort (ISHS) 533:249–255

    Google Scholar 

  • Camprubí A, Estaún V, El Bakali MA, Garcia-Figueres F, Calvet C (2007) Alternative strawberry production using solarization, metham sodium and beneficial soil microbes as plant protection methods. Agron Sustain Dev 27:179–184. doi:10.1051/agro:2007007

    Google Scholar 

  • Candido V, Miccolis V, Basile M, D’Addabbo T, Gatta G (2005) Soil solarization for the control of Meloidogyne javanica on eggplant in southern italy. Acta Hort (ISHS) 698:195–200

    Google Scholar 

  • Candido V, Castronuovo D, Lucarelli G, Manera C, Miccolis V (2006) Efficacia erbicida della solarizzazione nella coltivazione della lattuga. Atti Giornate Fitopatologiche 1:413–420

    Google Scholar 

  • Candido V, D’Addabbo T, Basile M, Castronuovo D, Miccolis V (2008) Greenhouse soil solarization: effect of weeds, nematodes and yield of tomato and melon. Agron Sustain Dev 28:221–230. doi:10.1051/agro:2007053

    Google Scholar 

  • Cartia G (1998) Solarization in integrated management systems for greenhouses. In: Stapleton JJ, DeVay JE, Elmore CL (eds) Proceedings of the second international conference on soil solarization and integrated management of soil-borne pests, Aleppo, Syrian Arab Republic, 16–21 March 1997. FAO Plant Protection and Production Paper 147, FAO, Rome, Italy, pp 333–350

    Google Scholar 

  • Cartia G, Greco N, Cipriano T (1989) Effect of soil solarization and fumigants on soil-borne pathogens of pepper in greenhouse. Acta Hort (ISHS) 255:111–116

    Google Scholar 

  • Cascone G D’Emilio A (2000) Effectiveness of greenhouse soil solarization with different plastic mulches in controlling corky root and knot-rot on tomato plants. Acta Hort (ISHS) 532:145–150

    Google Scholar 

  • Cascone G, Arcidiacono C, D’Emilio A, Mazzarella R (2005) Radiometric properties and field performances of different greenhouse plastic coverings. Acta Hort (ISHS) 691:693–700

    Google Scholar 

  • Castronuovo D, Candido V, Margiotta S, Manera C, Miccolis V, Basile M, D’Addabbo T (2005) Potential of a corn starch-based biodegradable plastic film for soil solarization. Acta Hort (ISHS) 698:201–206

    Google Scholar 

  • Caussanel JP, Trouvelot A, Vivant J, Gianinazzi S (1998) Effects of soil solarization on weed infestation and mycorrhiza management. In: Stapleton JJ, DeVay JE, Elmore CL (eds) Proceedings of the second international conference on soil solarization and integrated management of soil-borne pests, Aleppo, Syrian Arab Republic, 16–21 March 1997. FAO Plant Protection and Production Paper 147, FAO, Rome, Italy, pp 212–226

    Google Scholar 

  • Cenis JL (1984) Control of the nematode Meloidogyne javanica by soil solarization. In: Proceedings of the 6th congress of the phytopathological Mediterranean Union, Cairo, Egypt, 1–6 October 1984, p 132

    Google Scholar 

  • Cenis JL (1987) Double plastic sheet for improving soil solarization efficiency. In: Proceedings of the 7th congress of the phytopathological Mediterranean Union, Granada, Spain, 20–26 September 1987, p 73

    Google Scholar 

  • Cenis JL (1989) Temperature evaluation in solarized soils by Fourier analysis. Phytopathology 79:506–510

    Google Scholar 

  • Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335. doi:10.1016/S0079-6700(97)00039-7

    CAS  Google Scholar 

  • Chan-Jung L, Jong-Tae L, Jin-Seong M, In-Jong H, Hee-Dae K, Woo-Il K, Mi-Geon C (2007) Effects of solar heating for control of pink root and other soil-borne diseases of onions. Plant Pathol J 23:295–299

    Google Scholar 

  • Chase CA, Sinclair TR, Shilling DG, Gilreath JP, Locascio SJ (1998) Light effects on rhizome morphogenesis in nutsedges (Cyperus spp.): implications for control by soil solarization. Weed Sci 46:575–580

    CAS  Google Scholar 

  • Chase CA, Sinclair TR, Chellemi DO, Olson SM, Gilreath JP, Locascio SJ (1999a) Heat-retentive films for increasing temperatures during solarization in a humid cloudy environment. HortSci 34:1089–1095

    Google Scholar 

  • Chase CA, Sinclair TR, Locascio SJ (1999b) Effects of soil temperature and tuber depth on Cyperus spp. control. Weed Sci 47:467–472

    CAS  Google Scholar 

  • Chaube HS, Dhananjay S (2003) Soil solarization: an ecofriendly and effective technique for the management of soil borne pests in nurseries. Appl Bot Abstr 23:191–203

    Google Scholar 

  • Chauhan YS, Nene YL, Johansen C, Hawarme P, Saxena NP, Singh S, Sharma SB, Sahrawakt C, Burford IR, Rupelao P, Kumar Rao JDVK, Sithanantham S (1988) Effects of soil solarization on pigeonpea and chickpea. ICRISAT Res Bull 11:1–16

    Google Scholar 

  • Chellemi DO (1998) Contribution of soil solarization to integrated pest management systems for field production. In: Stapleton JJ, DeVay JE, Elmore CL (eds) Proceedings of the second international conference on soil solarization and integrated management of soil-borne pests, Aleppo, Syrian Arab Republic, 16–21 March 1997. FAO Plant Protection and Production Paper 147, FAO, Rome, Italy, pp 322–332

    Google Scholar 

  • Chellemi DO (2006) Effect of urban plant debris and soil management practices on plant parasitic nematodes Phytophthora blight and Pythium root rot of bell pepper. Crop Prot 25:1109–1116. doi:10.1016/j.cropro.2006.02.012

    Google Scholar 

  • Chellemi DO, Mirusso J (2006) Optimizing soil disinfestation procedures for fresh market tomato and pepper production. Plant Dis 90:668–674. doi:10.1094/PD-90-0668

    Google Scholar 

  • Chellemi DO, Olson SM, Scott JW, Mitchell DJ, McSorley R (1993) Reduction of phytoparasitic nematodes on tomato by soil solarization and genotype. J Nematol 25(4S):800–805

    Google Scholar 

  • Chellemi DO, Olson SM, Mitchell DJ (1994) Effects of soil solarization and fumigation on survival of soilborne pathogens of tomato in northern Florida. Plant Dis 78:1167–1172. doi:10.1094/PD-78-1167

    Google Scholar 

  • Chellemi DO, Olson SM, Mitchell DJ, Seeker I, McSorley R (1997) Adaptation of soil solarization to the integrated management of soilborne pests of tomato under humid conditions. Phytopathology 87:250–258. doi:10.1094/PHYTO.1997.87.3.250

    CAS  PubMed  Google Scholar 

  • Chellemi DO, Rhoads FM, Olson SM, Rich JR, Murray D, Murray G, Sylvia DM (1999) An alternative, low-input production system for fresh market tomatoes. Am J Altern Agric 14:59–68

    Google Scholar 

  • Chen Y, Katan J (1980) Effect of solar heating of soils by transparent poliethilene mulching on their chemical properties. Soil Sci 130:271–277

    CAS  Google Scholar 

  • Chen Y, Gamliel A, Stapleton JJ, Aviad T (1991) Chemical, physical, and microbial changes related to plant growth in disinfested soils. In: Katan J, DeVay JE (eds) Soil Solarization. CRC, Boca Raton, FL, USA, pp 103–129

    Google Scholar 

  • Chen Y, Magen H, Riov Y (1994) Humic substances originating from rapidly decomposing organic matter: properties and effects on plant growth. In: Senesi N, Miano TM (eds) Humic substances in the global environment and implications on human health. Elsevier Science, Amsterdam, The Netherland, pp 427–443

    Google Scholar 

  • Chen Y, Katan J, Gamliel A, Aviad T, Schnitzer M (2000) Involvement of soluble organic matter in increased plant growth in solarized soils. Biol Fert Soils 32:28–34. doi:10.1007/s003740000209

    CAS  Google Scholar 

  • Chet I, Elad Y, Kalfon A, Hadar Y, Katan J (1982) Integrated control of soilborne and bulbborne pathogens in iris. Phytoparasitica 10:229–236

    Google Scholar 

  • Choi H, Chung I, Sin MH, Kim YS, Sim J, Kim J, Kim KD, Chun S (2007) The effect of spent mushroom sawdust compost mixes, calcium cyanamide and solarization on basal stem rot of the cactus Hylocereus trigonus caused by Fusarium oxysporum. Crop Prot 26:162–168. doi:10.1016/j.cropro.2006.04.017

    CAS  Google Scholar 

  • Christensen LK, Thinggaard K (1999) Solarization of greenhouse soil for prevention of Pythium root rot in organically grown cucumber. J Plant Pathol 81:137–144

    Google Scholar 

  • Chun D, Lockwood JL (1985) Reduction of Pythium ultimum, Thielaviopsis basicola, and Macrophomina phaseolina populations in soil associated with ammonia generated from urea. Plant Dis 69:154–158

    Google Scholar 

  • Coates-Beckford PL, Cohen JE, Ogle LR, Prendergast CH, Riley DM (1997) Effects of plastic mulches on growth and yield of cucumber (Cucumis sativus L.) and on nematode and microbial population densities in the soil. Nematropica 27:191–207

    Google Scholar 

  • Coates-Beckford PL, Cohen JE, Ogle LR, Prendergast CH, Riley DM (1998) Mulching soil to increase yield and manage plant parasitic nematodes in cucumber (Cucumis sativus L.) fields: influence of season and plant thickness. Nematropica 28:81–93

    Google Scholar 

  • Coelho L, Chellemi DO, Mitchell DJ (1999) Efficacy of solarization and cabbage amendment for the control of Phytophthora spp. in North Florida. Plant Dis 83:293–299. doi:10.1094/PDIS.1999.83.3.293

    Google Scholar 

  • Coelho L, Mitchell DJ, Chellemi DO (2000) Thermal inactivation of Phytophthora nicotianae. Phytopathology 90:1089–1097

    Google Scholar 

  • Coelho L, Mitchell DJ, Chellemi DO (2001) The effect of soil moisture and cabbage amendment on the thermoinactivation of Phytophthora nicotianae. Eur J Plant Pathol 107:883–894. doi:10.1023/A:1013144820816

    Google Scholar 

  • Cohen R, Pivonia S, Burger Y, Edelstein M, Gamliel A, Katan J (2000) Toward integrated management of Monosporascus wilt of melons in Israel. Plant Dis 84:496–505. doi:10.1094/PDIS.2000.84.5.496.11

    Google Scholar 

  • Culman SW, Duxbury JM, Lauren JG, Thies JE (2006) Microbial community response to soil solarization in Nepal’s rice – wheat cropping system. Soil Biol Biochem 38:3359–3371. doi:10.1016/j.soilbio.2006.04.053

    CAS  Google Scholar 

  • D’Addabbo T, Sasanelli N, Greco N, Stea V, Brandonisio A (2005) Effect of water, soil temperatures and exposure times on the survival of the sugar beet cyst nematode, Heterodera schachtii. Phytopathology 4:339–344. doi:10.1094/PHYTO-95-0339

    Google Scholar 

  • Daft MJ, Spencer D, Thomas GE (1987) Infectivity of vesicular arbuscular mycorrhizal inocula after storage under various environmental conditions. T Brit Mycol Soc 88(21):27

    Google Scholar 

  • Dahlquist RM, Prather TS, Stapleton JJ (2007) Time and temperature requirements for weed seed thermal death. Weed Sci 55:619–625. doi:10.1614/WS-04-178.1

    CAS  Google Scholar 

  • Daulton AC, Nusbaum CJ (1961) The effect of soil temperature on the survival of the root-knot nematodes Meloidogyne javanica and M. hapla. Nematologica 6:280–294

    Google Scholar 

  • Davis JR (1991) Soil solarization: pathogen and disease control and increases in crop yield and quality: short and long-term effects and integrated control. In: Katan J, DeVay JE (eds) Soil solarization. CRC, Boca Raton, FL, USA, pp 39–50

    Google Scholar 

  • Davis JR, Sorensen LH (1986) Influence of soil solarization at moderate temperatures on potato genotypes with differing resistance to Verticillium dahliae. Phytopathology 76:1021–1026

    Google Scholar 

  • De Vries DA (1963) Thermal properties of soils. In: Van Wijk WR (ed) Physics of plant environment. North-Holland Publishing Co., Amsterdam, The Netherland, pp 210–235

    Google Scholar 

  • DeVay JJ (1991) Historical review and principles of soil solarization. In: DeVay JE, Stapleton JJ, Elmore CL (eds) Proceedings of the first international conference on soil solarization, Amman, Jordan, 19–25 February 1990. FAO Plant Protection and Production Paper 109, Rome, Italy, pp 1–11

    Google Scholar 

  • DeVay JE, Katan J (1991) Mechanisms of pathogen control in solarized soils. In: Katan J, DeVay JE (eds) Soil solarization. CRC, London, UK, pp 97–101

    Google Scholar 

  • DeVay JE, Stapleton JJ, Elmore CL (eds) (1991) Proceedings of the first international conference on soil solarization, Amman, Jordan, 19–25 February 1990. FAO Plant Plant Protection and Production Paper, Rome, Italy

    Google Scholar 

  • Di Vito M, Greco N, Saxena MC (1991) Effectiveness of soil solarization for control of Heterodera ciceri and Pratylenchus thornei on chickpea in Syria. Nematol Medit 19:109–111

    Google Scholar 

  • Díaz Hernández S, Rodríguez Pérez A, Domínguez Correa P, Gallo Llobet L (2005) Solar heating, biofumigation and conventional chemical treatments for the control of corky root in tomato. Acta Hort (ISHS) 698:311–314

    Google Scholar 

  • Doran JW (2002) Soil health and global sustainability: translating science into practice. Agric Ecosys Environ 88:119–127. doi:10.1016/S0167-8809(01)00246-8

    Google Scholar 

  • Dubois P (1978) Plastic in agriculture. Applied Science Publishers, London, UK

    Google Scholar 

  • Duff JD, Barnaart A (1992) Solarisation controls soilborne fungal pathogens in nursery potting mixes, Australas. Plant Pathol 21:20–23. doi:10.1071/APP9920020

    Google Scholar 

  • Duncan RA, Stapleton JJ, McKenry MV (1992) Establishment of orchards with black polyethylene film mulching: effect on nematode and fungal pathogens, water conservation, and tree growth. J Nematol 24(4S):681–687

    Google Scholar 

  • Duranti A, Cuocolo L (1988) Solarization in weed control for onion (Allium cepa L). Adv Hort Sci 2:104–108

    Google Scholar 

  • Economou G, Mavrogiannopoulos G, Paspatis EA (1997) Weed seed responsiveness to thermal degree hours under laboratory conditions and soil solarization in greenhouse. In: Proceedings of the second conference on soil solarization. FAO Plant Production and Protection Paper 147, Rome, Italy, pp 246–263

    Google Scholar 

  • Egley GH (1983) Weed seed and seedling reduction by soil solarization with transparent polyethylene sheets. Weed Sci 31:404–409

    Google Scholar 

  • Egley GH (1990) High-temperature effects on germination and survival of weed seeds in soil. Weed Sci 38:429–435

    Google Scholar 

  • Eleftherohorinos IG, Giannopolitis CN (1999) Alternatives to methyl bromide for the control of weeds in greenhouses and seed beds. In: Proceedings of international workshop “alternatives to methyl bromide for the Southern European countries”, 7–10 December. Heraklion, Crete, Greece, pp 34–36

    Google Scholar 

  • Elena K, Tjamos EC (1992) Evaluation of soil solarization singly or in combination with fungal or bacterial biocontrol agents to control Fusarium wilt of carnation. In: Tjamos EC, Papavizas GC, Cook RJ (eds) Biological control of plant diseases: progress and challenges for the future. Springer, Athens, Greece, pp 75–78

    Google Scholar 

  • El-Keblawy A, Ksiksi T, Al-Ammadi F (2006) Effect of polyethylene colors and thickness on the efficiency of soil solarization under the environment of UAE. In: Mohamed AMO (ed) Arid Land Hydrogeology: in search of a solution to a threatened resource. Taylor and Francis, London, UK, pp 177–184

    Google Scholar 

  • Elmore CL (1991a) Cost of soil solarization. In: DeVay JE, Stapleton JJ, Elmore CL (eds) Soil solarization. FAO Plant Production and Protection Paper 109, Rome, Italy, pp 351–360

    Google Scholar 

  • Elmore CL (1991b) Weed control by solarization. In: Katan J, DeVay JE (eds) Soil solarization. CRC, Boca Raton, FL, USA, pp 61–72

    Google Scholar 

  • Elmore CL (1998) Sensitivity of pest organisms to soil solarization. In: Stapleton JJ, DeVay JE, Elmore CL (eds) Soil solarization and integrated management of soil pests: proceedings of the second conference on soil solarization, Aleppo, Syria. FAO Plant Production and Protection Paper 147,Rome, Italy, pp 450–462

    Google Scholar 

  • Elmore CL, Roncaroni JA, Giraud DD (1993) Perennial weeds respond to control by soil solarization. Cal Ag 47:19–22

    Google Scholar 

  • Elmore CL, Stapleton JJ, Bell CE, DeVay JE (1997) Soil solarization: a nonpesticidal method for controlling diseases, nematodes and weeds. UC DANR Pub. 21377, Oakland, CA, USA, p 14

    Google Scholar 

  • Endo BY (1962) Lethal time-temperature relations for Heterodera glycines. Phytopathology 52:992–997

    Google Scholar 

  • Eshel D, Gamliel A, Grinstein A, Di Primo P, Katan J (2000) Combined soil treatments and sequence of application in improving the control of soilborne pathogens. Phytopathology 90:751–757

    CAS  PubMed  Google Scholar 

  • Esperancini MST, De Souza NL, Baldini EM (2003) Economic evaluation of solarization method for weed control. Científica 31:123–130

    Google Scholar 

  • Espí E, Salmerón A, Fontecha A, García Y, Real AI (2006) Plastic films for agricultural applications. J Plast Film Sheet 22:85–102. doi:10.1177/8756087906064220

    Google Scholar 

  • Evans K (1991) Lethal temperatures for eggs of Globodera rostochiensis, determined by staining with New Blue R. Nematologica 37:225–229

    Google Scholar 

  • Flores P, Castellar I, Hellín P, Fenoll J, Navarro J (2007) Response of pepper plants to different rates of mineral fertilizers after soil biofumigation and solarization. J Plant Nutr 30:367–379. doi:10.1080/01904160601171264

    CAS  Google Scholar 

  • Flores-Moctezuma HE, Montes-Belmont R, Jimenez-Perez A, Nava-Juarez R (2006) Pathogenic diversity of Sclerotium rolfsii isolates from Mexico, and potential control of southern blight through solarization and organic amendments. Crop Prot 25:195–201. doi:10.1016/j.cropro.2005.04.007

    CAS  Google Scholar 

  • Francis CA, Poincelot RP, Bird GW (eds) (2006) Developing and extending sustainable agriculture: a new social contract. Haworth Food and Agric. Prod., New York, USA, pp xxii, 367

    Google Scholar 

  • Frank ZR, Katan J, Ben-Yephet Y (1986) Synergistic effect of metham and solarization in controlling delimited shell spots of peanut-pods. Crop Prot 5:199–202. doi:10.1016/0261-2194(86)90102-X

    CAS  Google Scholar 

  • Freeman S, Katan J (1988) Weakening effect on propagules of Fusarium by sublethal heating. Phytopathology 78:1656–1661

    Google Scholar 

  • Freeman S, Ginzburg C, Katan J (1989) Heat shock protein synthesis in propagules of Fusarium oxysporum f. sp. niveum. Phytopathology 79:1054–1059

    CAS  Google Scholar 

  • Freeman S, Sztejnberg A, Shabi E, Katan J (1990) Long-term effect of soil solarization for the control of Rosellinia necatrix in apple. Crop Prot 9:312–316. doi:10.1016/0261-2194(90)90110-S

    Google Scholar 

  • Gallo L, Siverio F, Rodrıguez-Perez AM (2007) Thermal sensitivity of Phytophthora cinnamomi and long-term effectiveness of soil solarisation to control avocado root rot. Ann Appl Biol 150:65–73. doi:10.1111/j.1744-7348.2007.00108

    Google Scholar 

  • Gamliel A, Katan J (1991) Involvement of fluorescent Pseudomonas and other micro-organisms in increased growth response of plants in solarized soils. Phytopathology 81:494–502

    Google Scholar 

  • Gamliel A, Katan J (1993) Suppression of major and minor pathogens by fluorescent pseudomonads in solarized and nonsolarized soils. Phytopathology 83:68–75

    Google Scholar 

  • Gamliel A, Stapleton JJ (1993a) Characterization of antifungal volatile compounds evolved from solarized soil amended with cabbage residues. Phytopathology 83:899–905

    CAS  Google Scholar 

  • Gamliel A, Stapleton JJ (1993b) Effect of soil amendment with chicken compost or ammonium phosphate and solarization on pathogen control, rhizosphere microorganisms, and lettuce growth. Plant Dis 77:886–891

    CAS  Google Scholar 

  • Gamliel A, Stapleton JJ (1997) Improvement of soil solarization by volatile compounds generated from organic amendments. Phytoparasitica 25(S):315–385

    Google Scholar 

  • Gamliel A, Hadar E, Katan J (1989) Soil solarization to improve yield of gypsophila in monoculture systems. Acta Hortic. (ISHS) 255:131–138

    Google Scholar 

  • Gamliel A, Austerweil M, Kritzman G (2000) Non-chemical approach to soilborne pest management-organic amendments. Crop Prot 19:847–853. doi:10.1016/S0261-2194(00)00112-5

    Google Scholar 

  • Gamliel A, Skutelsky Y, Perez-Alon Y, Becker E (2001) Soil solarization using sprayable plastic polymers to control soilborne pathogens in field crops. In: Proceedings annual international research conference on methyl bromide alternatives and emissions reductions. San Diego, CA, USA, pp 101–103

    Google Scholar 

  • Gamliel A, Gadkar V, Zilberg V, Beniches M, Rabinowich E, Wininger S, Manor H, Kapulnik Y (2004) Effect of solarization intensity on the control of pink root of chives, and the response of the crop to AM fungal application. Symbiosis 37:233–247

    Google Scholar 

  • Ganguly AK, Pankaj A, Sirohi A (1996) Effect of soil solarization of rice nursery beds to suppress plant parasitic nematodes. Int Rice Res Notes 2–3

    Google Scholar 

  • Garibaldi A, Gullino ML (1991) Soil solarization in Southern European countries, with emphasis on soilborne diseases control of protected crops. In: Katan J, DeVay JE (eds) Solarization. CRC, Boca Raton, FL, USA, pp 227–235

    Google Scholar 

  • Garibaldi A, Tamietti G (1984) Attempts to use soil solarization in closed glasshouses in northern Italy for controlling corky root of tomato. Acta Hort (ISHS) 152:237–243

    Google Scholar 

  • Gasoni L, Kahn N, Yossen V, Cozzi J, Kobayashi K, Babbitt S, Barrera V, Zumelzu G (2007) Effect of soil solarization and biocontrol agents on plant stand and yield on table beet in Cordoba (Argentina). Crop Prot 27:337–342. doi:10.1016/j.cropro.2007.06.004

    Google Scholar 

  • Gaur HS, Dhingra A (1991) Management of Meloidogyne incognita and Rotylenchus reniformis in nursery-beds by soil solarization and organic soil amendment. Revue de Nématologie 14:189–95

    Google Scholar 

  • Gelsomino A, Cacco G (2006) Compositional shifts of bacterial groups in a solarized and amended soil as determined by denaturing gradient gel electrophoresis. Soil Biol Biochem 38:91–102. doi:10.1016/j.soilbio.2005.04.021

    CAS  Google Scholar 

  • Gelsomino A, Badalucco L, Landi L, Cacco G (2006) Soil carbon, nitrogen and phosphorus dynamics as affected by solarization alone or combined with organic amendment. Plant Soil 279:307–325. doi:10.1007/s11104-005-2155-1

    CAS  Google Scholar 

  • Ghini R, Patricio FRA, Souza MD, Sinigaglia C, Barros BC, Lopes MEBM, Tessarioli Neto J, Cantarella H (2003) Efeito da solarizacao sobre propriedades fısicas, quımicas e biologicas de solos. Rev Brasil Cie Solo 27:71–79

    CAS  Google Scholar 

  • Giannakou IO, Anastasiadis IA, Gowen SR, Prophetou-Athanasiadou DA (2007) Effects of a non-chemical nematicide combined :with soil solarization for the control of root-knot nematodes. Crop Prot 26:1644–1654. doi:10.1016/j.cropro.2007.02.003

    Google Scholar 

  • Giblin-Davis RM, Verkade SD (1988) Solarization for nematode disinfestation of small volumes of soil. Ann Appl Nematol 2:41–5

    Google Scholar 

  • Gilreath JP, Motis TN, Santos BM, Noling JW, Locascio SJ, Chellemi DO (2005) Resurgence of soilborne pests in double-cropped cucumber after application of methyl bromide chemical alternatives and solarization in tomato. HortTechnology 15:797–801

    CAS  Google Scholar 

  • Gokte N, Mathur VK (1995) Eradication of root-knot nematodes from grapevine rootstocks by thermal therapy. Nematologica 41:269–271

    Google Scholar 

  • Gonzáles-Torres R, Melero-Vara JM, Gómez-Vázquez J, Jiménez-Díaz RM (1993) The effects of soil solarization and soil fumigation on Fusarium wilt of watermelon grown in plastic houses in south-eastern Spain. Plant Pathol 42:858–864

    Google Scholar 

  • Graefe J (2005) Simulation of soil heating in ridges partly covered with plastic mulch. I. Energy balance model. Biosys Eng 92:391–407. doi:10.1016/j.biosystemseng.2005.07.010

    Google Scholar 

  • Greco N, Brandonisio A, Elia F (1985) Control of Ditylenchus dipsaci, Heterodera carotae and Meloidogyne javanica by solarization. Nematol Medit 13:191–197

    Google Scholar 

  • Greco N, D’Addabbo T, Brandonisio A, Zweep A (1990) Combined effect of soil solarization and 1,3 dichloropropene for control of Heterodera carotae. Nematol Medit 18:261–264

    Google Scholar 

  • Greco N, Di Vito M, Saxena M (1991) Soil solarization for control of Pratylenchus thornei on chickpea in Syria. In: DeVay JE, Stapleton JJ, Elmore CL (eds) Proceedings of the first international conference on soil solarization, Amman, Jordan, 19–25 February 1990. FAO Plant Protection and Production Paper 109, FAO, Rome, Italy, pp 182–188

    Google Scholar 

  • Greco N, D’Addabbo T, Stea V, Brandonisio A (1992) The synergism of soil solarization with fumigant nematicides and straw for the control of Heterodera carotae and Ditylenchus dipsaci. Nematol Medit 20:25–32

    Google Scholar 

  • Greco N, D’Addabbo T, Sasanelli N, Senhorst JW, Stea V, Brandonisio A (1998) Effect of temperature and exposure times on the mortality of the carrot cyst nematode Heterodera carotae. Int J Pest Manage 44:99–107

    Google Scholar 

  • Greco N, Brandonisio A, Dangelico A (2000) Control of the potato cyst nematode, Globodera rostochiensis, with soil solarization and nematicides. Nematol Medit 28:93–99

    Google Scholar 

  • Greenberger A, Yogev A, Katan J (1984) Biological control in solarized soils. In: Proceedings of the 6th congress of the phytopathological Mediterranean Union. Cairo, Egypt, 1-6 October, pp 112–114

    Google Scholar 

  • Greenberger A, Yogev A, Katan J (1987) Induced suppressiveness in solarized soils. Phytopathology 77:1663–1667

    Google Scholar 

  • Grinstein A, Ausher R (1991) Soil solarization in Israel. In: Katan J, DeVay JE (eds) Soil solarization. CRC, Boca Raton, FL, USA, pp 193–204

    Google Scholar 

  • Grinstein A, Hetzroni A (1991) The technology of soil solarization. In: Katan J, DeVay JE (eds) Soil solarization. CRC, Boca Raton, FL, USA, pp 159–170

    Google Scholar 

  • Grinstein A, Katan J, Abdul Razik A, Zeidan O, Elad Y (1979a) Control of Sclerotium rolfsii and weeds in peanuts by solar heating of the soil. Plant Dis Rep 63:1056–1059

    Google Scholar 

  • Grinstein A, Orion D, Greenberger A, Katan J (1979b) Solar heating of the soil for the control of Verticillium dahliae and Pratylenchus thornei in potatoes. In: Schippers B, Gams W (eds) Soilborne plant pathogens. Academic, London, UK, pp 431–438

    Google Scholar 

  • Grinstein A, Katan J, Abdul-Razik A, Zeidan O, Elad Y (1979c) Control of Sclerotium rolfsii and weeds in peanuts by solar heating of soil. Plant Dis Rep 63:1056–1059

    Google Scholar 

  • Grooshevoy SE (1939) Disinfection of seed-bed soil in cold frames by solar energy The A.I. Mikoyan Pam-Soviet Sci. Res. Inst. Tob. and Indian Tob. Ind. (VITIM). Kransnadar. Publ. 137, 51–56

    Google Scholar 

  • Gruenzweig JM, Rabinowitch HD, Katan J (1993) Physiological and developmental aspects of increased plant growth in solarised soils. Ann Appl Biol 122:579–591. doi:10.1111/j.1744-7348.1993.tb04059.x

    Google Scholar 

  • Grünzweig JM, Katan J, Ben-Tal Y, Rabinowitch HD (1999) The role of mineral nutrients in the increased growth response of tomato plants in solarized soil. Plant Soil 206:21–27

    Google Scholar 

  • Grünzweig JM, Rabinowitch HD, Katan J, Wodner M, Ben-Tal Y (2000) Involvement of endogenous gibberellins in the regulation of increased tomato shoot growth in solarized soil. Plant Growth Regul 30:233–239. doi:10.1023/A:1006368626210

    Google Scholar 

  • Guerrero MM, Martínez MA, Martínez MC, Barceló N, Lacasa A, Ros C, Guirao P, Bello A, López JA (2005) Biofumigation plus solarization efficacy for soil disinfestation in sweet pepper greenhouses in the southeast of Spain. Acta Hort (ISHS) 698:293–298

    Google Scholar 

  • Guirado L, Rodrígues JM, Serrano Y, Gómez J, Sáez E (2005) Control of Olpidium radicale in soilless culture. Acta Hort (ISHS) 697:431–436

    Google Scholar 

  • Gupta AK, Khosla K (2007) Integration of soil solarization and potential native antagonist for the management of crown gall on cherry rootstock colt. Scientia Horticulturae 112:51–57. doi:10.1016/j.scienta.2006.12.004

    Google Scholar 

  • Gupta VVSR, Yeates GW (1997) Soil microfauna as bioindicators of soil health. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CABI, Wallingford, UK, pp 201–234

    Google Scholar 

  • Haidar MA, Sidahmed MM (2000) Soil solarization and chicken manure for the control of Orobanche crenata and other weeds in Lebanon. Crop Prot 19:169–173. doi:10.1016/S0261-2194(99)00083-6

    Google Scholar 

  • Haidar MA, Iskandarani N, Sidahmed M, Baalbaki R (1999) Response of field dodder (Cuscuta campestris) seeds to soil solarization and chicken manure. Crop Prot 18:253–258. doi:10.1016/S0261-2194(99)00023-X

    Google Scholar 

  • Ham JM, Kluitenberg GJ (1994) Modeling the effect of mulch optical properties and mulch-soil contact resistance on soil heating under plastic mulch culture. Agric For Meteorol 71:403–424. doi:10.1016/0168-1923(94)90022-1

    Google Scholar 

  • Ham JM, Kluitenberg GJ, Lamont WJ (1993) Optical properties of plastic mulches affect the field temperature regime. J Am Soc Hort Sci 118:188–193

    Google Scholar 

  • Hancock M (1988) Mineral additives for thermal barrier plastic films. Plasticulture 79:4–14

    Google Scholar 

  • Harman GE (2000) Myths and dogma of biocontrol: Changes in perceptions derived from research on Trichoderma hartzianum T-22. Plant Dis 84:377–393. doi:10.1094/PDIS.2000.84.4.377

    Google Scholar 

  • Hartz TK, Carter WW, Bruton BD (1987) Failure of fumigation and solarization to control Macrophomina phaseolina and subsequent muskmelon vine decline. Crop Prot 6:261–264. doi:10.1016/0261-2194(87)90048-2

    Google Scholar 

  • Hartz TK, Boble CR, Bender DA, Avila FA (1989) Control of pink root disease in onion using solarization and fumigation. J Am Soc Hort Sci 114:587–590

    Google Scholar 

  • Hartz TK, DeVay JE, Elmore CL (1993) Solarization is an effective soil disinfestation technique for strawberry production. Hortscience 28:104–106

    Google Scholar 

  • Hasing JE, Motsenbocker CE, Monlezun CJ (2004) Agroeconomic effect of soil solarization on fall-planted lettuce (Lactuca sativa). Sci Hort 101:223–233. doi:10.1016/j.scienta.2003.11.001

    Google Scholar 

  • Hasson AM, Hassaballah T, Hussain R, Abbass L (1987) Effect of solar soil sterilization on nitrification in soil. J Plant Nutr 10:1805–1809

    CAS  Google Scholar 

  • Hatcher PE, Melander B (2003) Combining physical, cultural and biological methods: prospects for integrated non-chemical weed management strategies. Weed Res 43:303–322. doi:10.1046/j.1365-3180.2003.00352.x

    Google Scholar 

  • Hawthorne BT (1975) Effect of mulching on the incidence of Sclerotinia minor on lettuce. N Z J Exp Agric 3:273–274

    Google Scholar 

  • Heald CM, Robinson AF (1987) Effects of soil solarization on Rotylenchulus reniformis in the lower Rio Grande Valley of Texas. J Nematol 19:93–103

    CAS  PubMed  Google Scholar 

  • Heald CM, Thomas CE (1983) Nematode control by soil solarization. J Nematol 13:114–115

    Google Scholar 

  • Heissner A, Schmidt S, von Elsner B (2005) Comparison of plastic films with different optical properties for soil covering in horticulture: test under simulated environmental conditions. J Sci Food Agric 85:539–548. doi:10.1002/jsfa.1862

    CAS  Google Scholar 

  • Herrera F, Ramirez C (1996) Soil solarization and chicken manure additions on propagule survival of Cyperus rotundus, Rottboellia cochinchinensis and Bidens pilosa. Agronomia Meso­americana 7:1–8. Available online at http://www.mag.go.cr/rev_meso/v07n01_001.pdf

  • Horita H, Manabe T (2005) Control of melon necrotic spot disease by a soil solarization in closed and irrigated plastic house. Bull Hokkaido Pref Agric Exp Stn 89:35–42

    Google Scholar 

  • Horiuchi S (1991) Soil solarization in Japan. In: Katan J, DeVay JE (eds) Soil solarization. CRC, Boca Raton, FL, USA, pp 215–226

    Google Scholar 

  • Horiuchi S, Hori M (1983) Control of clubroot disease of crucifers, with reference to the soil solarization technique. JARQ 17:1–5

    Google Scholar 

  • Horiuchi S, Hori M, Takahashi S, Shimuzu K (1982) Factors responsible for the development of clubroot-suppressing effect in soil solarization. BullChugoku Nat Agric Exp Stn 20:25–48

    Google Scholar 

  • Horowitz M, Regev Y, Herzlinger G (1983) Solarization for weed control. Weed Sci 31:170–179

    Google Scholar 

  • Horton R, Chung S (1991) Soil heat flow. In: Hanks J, Ritchie JT (eds) Modeling plant and soil systems. American Society of Agronomy, Inc, Madison, WI, USA, pp 397–438

    Google Scholar 

  • Ioannou N (2000) Soil solarization as a substitute for methyl bromide fumigation in greenhouse tomato production in Cyprus. Phytoparasitica 28:1–9

    Google Scholar 

  • Ioannou N (2001) Integrating soil solarization with grafting on resistant rootstocks for management of soil-borne pathogens of eggplant. J Hort Sci Biotechnol 76:396–401

    Google Scholar 

  • Israel S, Mawar R, Lodha S (2005) Soil solarisation, amendments and bio-control agents for the control of Macrophomina phaseolina and Fusarium oxysporum f.sp. cumini in arid soils. Ann Appl Biol 146:481–491. doi:10.1111/j.1744-7348.2005.040127.x

    Google Scholar 

  • Itoh K, Toyota K, Kimura M (2000) Effects of soil solarization and fumigation on root rot of melon caused by Phomopsis sclerotioides and on soil microbial community. Jap J Soil Sci Plant Nutr 71:154–164

    CAS  Google Scholar 

  • Jacobsohn R, Greenberger A, Katan J, Levi M, Alon H (1980) Control of Egyptian broomrape (Orobanche aegyptiaca) and other weeds by means of solar heating of the soil by polyethylene mulching. Weed Sci 28:312–316

    Google Scholar 

  • Jayaraj J, Radhakrishnan NV (2008) Enhanced activity of introduced biocontrol agents in solarized soils and its implications on the integrated control of tomato damping-off caused by Pythium spp. Plant Soil 304:189–197. doi:10.1007/s11104-008-9539-y

    Google Scholar 

  • Jensen P, Buszard D (1988) The effects of chemical fumigants, nitrogen, plastic mulch, and metalaxyl on the establishment of young apple trees in apple replant disease soil. Can J Plant Sci 68:255–260

    CAS  Google Scholar 

  • Johnson WC, Davis RF, Mullinix BG (2007) An integrated system of summer solarization and fallow tillage for Cyperus esculentus and nematode management in the southeastern coastal plain. Crop Prot 26:1660–1666. doi:10.1016/j.cropro.2007.02.005

    Google Scholar 

  • Juarez-Palacios C, Felix-Gastelum R, Wakeman RJ, Paplomatas EJ, DeVay JE (1991) Thermal sensitivity of three species of Phytophthora and the effect of soil solarization on their survival. Plant Dis. 75:1160–1164. doi:10.1094/PD-75-1160

    Google Scholar 

  • Kadman-Zahavi A, Zammer N, Elingham Y (1986) Weed development and temperature measurements under selective or non-selective plastic mulches in winter. Hassadeh 1986:353–357

    Google Scholar 

  • Kaewruang W, Sivasithamparam K, Hardy GE (1989a) Effect of solarization of soil within plastic bags on root rot of gerbera (Gerbera jamasonii L). Plant Soil 120:303–306

    Google Scholar 

  • Kaewruang W, Sivasithamparam K, Hardy GE (1989b) Use of soil solarization to control root rots in gerberas (Gerbera jamesonii). Biol Fert Soils 8:38–47

    Google Scholar 

  • Kamra A, Gaur HS (1998) Control of nematodes, fungi and weeds in nursery beds by soil solarization. Int J Nematol 8:46–52

    Google Scholar 

  • Kassaby FY (1985) Solar-heating soil for control of damping-off diseases. Soil Biol Biochem 17:429–434

    Google Scholar 

  • Katan (1981) Solar heating (solarization) of soil for control of soilborne pests. Ann Rev Phytopathol 19:211–236. doi:10.1146/annurev.py.19.090181.001235

    Google Scholar 

  • Katan J (1987) Soil solarization. In: Chet I (ed) Innovative approaches to plant disease control. Wiley, New York, USA, pp 77–105

    Google Scholar 

  • Katan J (1996) Soil solarization for the control of diseases caused by Rhizoctonia spp. In: Sneh B, Jabaji-Hare S, Neate S, Dijst G (eds) Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Kluwer, Dordrecht, The Netherland, pp 423–432

    Google Scholar 

  • Katan J (2000) Physical and cultural methods for the management of soil-borne pathogens. Crop Prot 19:725–731. doi:10.1016/S0261-2194(00)00096-X

    Google Scholar 

  • Katan J, DeVay JE (eds) (1991) Solarization. CRC, Boca Raton, FL, USA, p 267

    Google Scholar 

  • Katan J, Greenberger A, Alon H, Grinstein A (1976) Solar heating by polyethylene mulching for the control of diseases caused by soilborne pathogens. Phytopathology 66:683–688

    Google Scholar 

  • Katan J, Fishler G, Grinstein A (1983) Short- and long-term effects of soil solarization and crop sequence on Fusarium wilt and yield of cotton in Israel. Phytopathology 73:1215–1219

    Google Scholar 

  • Katan J, Grinstein A, Greenberger A, Yarden O, DeVay JE (1987) The first decade (1976–1986) of soil solarization (solar heating): a chronological bibliography. Phytoparasitica 15:229–255

    Google Scholar 

  • Katan J, DeVay JE, Greenberger A (1989) The biological control induced by soil solarization. In: Tjamos EC, Beckman CH (eds) Vascular wilt diseases of plants. Basic Studies and Control. NATO ASI Series, vol. H28, Springer, Berlin, pp 493–499

    Google Scholar 

  • Keel CJ (1992) Bacteria as antagonists of plant pathogens in the rhizosphere: mechanisms and prospects. In: Jensen DF, Hoikenhull J, Fokkemma NJ (eds) New approaches in biological control of soil-borne diseases. Intl. Union Biol. Sci, Wageningen, The Netherlands, pp 93–99

    Google Scholar 

  • Keinath AP (1995) Reductions in inoculum density of Rhizoctonia solani and control of belly rot on pickling cucumber with solarization. Plant Dis 79:1213–1219

    Google Scholar 

  • Keinath AP (1996) Soil amendment with cabbage residue and crop rotation to reduce gummy stem blight and increase growth and yield of watermelon. Plant Dis 80:564–570

    Google Scholar 

  • Khair A, Bakir MA (1995) Investigations of the effect of solarization on soil borne fungal and bacterial populations, Bangladesh. J Sci Ind Res 30:137–145

    Google Scholar 

  • Khaleeque MI, Khan SM, Khan MA (1999) Effect of soil solarization on population density of thermophilic fungi, actinomycetes and soil bacteria. Pak J Phytopathol 11:159–162

    Google Scholar 

  • Khlaif H (2003) Effect of soil solarization on total Agrobacterium spp. population, inoculated Agrobacterium tumefaciens, and on the development of crown gall. J Plant Pathol 85:117–122

    Google Scholar 

  • Kim KK, Fravel DR, Papavizas GC (1988) Identification of a metabolite produced by Talaromyces flavus as glucose oxidase and its role in the biocontrol of Verticillium dahliae. Phytopathology 78:488–492

    CAS  Google Scholar 

  • Kluepfel DA, Nyczepir AP, Lawrence JE, Wechter WP, Leverentz B (2002) Biological control of the phytoparasitic nematode Mesocriconema xenoplax on peach trees. J Nematol 34:120–123

    CAS  PubMed  Google Scholar 

  • Kodama T, Fukui T (1982) Solar heating in closed plastic house for control of soil borne diseases. Application for control of Fusarium wilt of strawberry. Ann Phytopathol Soc Japan 48:570–577

    Google Scholar 

  • Kogan M (1998) Integrated pest management: historical perspectives and contemporary developments. Ann Rev Entomol 43:243–270

    CAS  Google Scholar 

  • Kokalis-Burelle N, Vavrina CS, Rosskopf EN, Shelby RA (2002) Field evaluation of plant growth-promoting Rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257–266. doi:10.1023/A:1014464716261

    Google Scholar 

  • Kumar R, Sharma J (2005) Effect of soil solarization on true potato ( Solanum tuberosum L.) seed germination, seedling growth, weed population and tuber yield. Potato Res 48:15–23. doi:10.1007/BF02733678

    Google Scholar 

  • Kumar B, Yaduraju NT, Ahuja KN, Prasad D (1993) Effect of soil solarization on weeds and nematodes under tropical Indian conditions. Weed Res 33:423–429

    Google Scholar 

  • Kurt S, Emir B (2004) Effect of soil solarization, chicken litter and viscera on populations of soilborne fungal pathogens. Plant Pathol J 3:118–124

    Google Scholar 

  • Kyrikou I, Briassoulis D (2007) Biodegradation of agricultural plastic films: a critical review. J Polym Environ 15:125–150. doi:10.1007/s10924-007-0053-8

    CAS  Google Scholar 

  • Lai R (1974) Soil temperature, soil moisture, and maize yield from mulched and unmulched tropical soils. Plant Soil 40:129–143

    Google Scholar 

  • Lamberti F, Basile M (1991) Improvement in plastic technology for soil heating. In: DeVay JE, Stapleton JJ, Elmore CL (eds) Proceedings of the first international conference on soil solarization, Amman, Jordan, 19–25 February 1990. FAO Plant Protection and Production Paper No. 109, FAO, Rome, Italy, pp 309–330

    Google Scholar 

  • Lamberti F, Greco N (1991) Effectiveness of soil solarization for control of plant parasitic nematodes. In: DeVay JE, Stapleton JJ, Elmore CL (eds) Proceedings of the first international conference on soil solarization, Amman, Jordan, 19–25 February 1990. FAO Plant Protection and Production Paper No. 109, FAO, Rome, Italy, pp 167–172

    Google Scholar 

  • Lamberti F, D’Addabbo T, Greco P, Carella A, De Cosmis P (2000) Management of root-knot nematodes by combination of soil solarization and fenamiphos in southern Italy. Nematol Medit 28:31–45

    Google Scholar 

  • LaMondia JA, Brodie BB (1984) Control of Globodera rostochiensis by solar heat. Plant Dis 68:474–476

    Google Scholar 

  • Lamont WJ Jr (1993) Plastic mulches for the production of vegetable crops. HortTecnology 3:35–39

    Google Scholar 

  • Lazarovits G, Hawke MA, Tomlin AD, Olthof THA, Squire S (1991) Soil solarization to control Verticillium dahliae and Pratylenchus penetrans on potatoes in central Ontario. Can J Plant Pathol 13:116–123

    Google Scholar 

  • Lazarovits G, Tenuta M, Conn KL (2001) Organic amendments as a disease control strategy for soilborne diseases of high-value agricultural crops. Aus Plant Pathol 30:111–117. doi:10.1071/AP01009

    Google Scholar 

  • Le Bihan B, Soulas ML, Camporota P, Salerno MI, Perrin R (1997) Evaluation of soil solar heating for control of damping-off fungi in two forest nurseries in France. Biol Fert Soils 25:189–195. doi:10.1007/s003740050302

    Google Scholar 

  • Lifshitz R, Tabachnik M, Katan J, Chet I (1983) The effect of sublethal heating on sclerotia of Sclerotium rolfsii. Can J Microbiol 29:1607–1610. doi:10.1139/m83-246

    Google Scholar 

  • Lindquist S (1986) The heat-shock response. Ann Rev Biochem 55:1151–1191

    CAS  PubMed  Google Scholar 

  • Linke KH (1994) Effects of soil solarization on arable weeds under Mediterranean conditions: control lack of response or stimulation. Crop Prot 13:115–120. doi:10.1016/S0261-2194(99)00083-6

    Google Scholar 

  • Linke KH, Saxena MC, Sauerborn J, Masri H (1991) Effect of soil solarization on the yield of food legumes and on pest control. In: DeVay JE, Stapleton JJ, Elmore CL (eds) Proceedings of the first international conference on soil solarization, Amman, Jordan, 19–25 February 1990. FAO Plant Protection and Production Paper 109, FAO, Rome, Italy, pp 139–154

    Google Scholar 

  • Lira-Saldivar RH, Cruz J, Beltran F, Jimenez F (2004) Effect of biofumigation with solarization and Larrea tridentata extract on soil-borne pathogens of pepper plants. Biol Agric Hort 22:21–29

    Google Scholar 

  • Lodha S (1995) Soil solarization, summer irrigation and amendments for the control of Fusarium oxysporum f. sp. cumini and Macrophomina phaseolina in arid soils. Crop Prot 14:215–219. doi:10.1016/0261-2194(95)00014-D

    Google Scholar 

  • Lodha S, Mawar R (2000) Utilizing solar heat for enhancing efficiency of cruciferous residues for disinfesting soil borne pathogens from arid soils. Acta Hort (ISHS) 532:49–52

    Google Scholar 

  • Lodha S, Sharma SK, Aggarwal RK (1997) Solarization and natural heating of irrigated soil amended with cruciferous residues for improved control of Macrophomina phaseolina. Plant Pathol 46:186–190. doi:10.1046/j.1365-3059.1997.d01-223.x

    Google Scholar 

  • Lodha S, Sharma SK, Mathur BK, Aggarwal KK (2003) Integrating sub-lethal heating with Brassica amendments and summer irrigation for control of Macrophomina phaseolina. Plant Soil 256:423–430. doi:10.1023/A:1026181009751

    CAS  Google Scholar 

  • López Escudero FJ, Blanco López MA (2001) Effect of a single or double soil solarization to control Verticillium wilt in established olive orchards in Spain. Plant Dis 85:489–496. doi:10.1094/PDIS.2001.85.5.489

    Google Scholar 

  • Lopez-Herrera CJ, Perez-Jimenez RM, Zea-Bonilla T, Basallote-Ureba MJ, Melero-Vara JM (1998) Soil solarisation in established avocado trees for control of Dematophora necatrix. Plant Dis 82:1088–1092. doi:10.1094/PDIS.1998.82.10.1088

    Google Scholar 

  • Luken R, Grof T (2006) The Montreal Protocol’s multilateral fund and sustainable development. Ecol Econ 56:241–255. doi:10.1016/j.ecolecon.2004.04.013

    Google Scholar 

  • Mahmoud SM (1996) Effect of soil solarization on population densities of some soil microorganisms. Assiut J Agric Sci 27:93–105

    Google Scholar 

  • Mahmoudpour MA, Stapleton JJ (1997) Influence of sprayable mulch colour on yield of eggplant (Solanum melongena L. cv. Millionaire). Sci Hort 70:331–338. doi:10.1016/S0304-4238(97)00039-3

    Google Scholar 

  • Mahrer Y (1979) Prediction of soil temperature of a soil mulched with transparent polyethylene. J Appl Meterol 18:1263–1267

    Google Scholar 

  • Mahrer YA (1980) A numerical model for calculating the soil temperature regime under transparent polyethylene mulches. Agric Meteorol 22:227–234

    Google Scholar 

  • Mahrer Y, Katan J (1981) Spatial soil temperatures regime under transparent polyethilene mulch. Numerical and experimental studies. Soil Sci 131:82–87

    Google Scholar 

  • Mahrer Y, Naot O, Rawaitz E, Katan J (1984) Temperature and moisture regimes in soils mulched with transparent polethylene. Soil Sci Soc Am J 48:362–367

    Google Scholar 

  • Malathrakis NE, Loulakis MD (1989) Effectiveness of the type of polyethylene sheet on soil solarization. Acta Hort (ISHS) 255:235–242

    Google Scholar 

  • Malinconico M, Immirzi B, Massenti S, La Mantia FP, Mormile P, Petti L (2002) Blends of polyvinylalcohol and functionalized polycaprolactone. A study on the melt extrusion and post-cure of films suitable for protected cultivation. J Mat Sci 37:4973–4978

    CAS  Google Scholar 

  • Mallek SB, Prather TS, Stapleton JJ (2007) Interaction effects of Allium spp. residues, concentrations and soil temperature on seed germination of four weedy plant species. Appl Soil Ecol 37:233–239. doi:10.1016/j.apsoil.2007.07.003

    Google Scholar 

  • Manera C, Margiotta S, Di Muro E, Gatta G (2002) Experimental tests on innovative and biodegradable films for solarization soil in a site of south Italy. Acta Hort (ISHS) 578:363–371

    Google Scholar 

  • Mansoori B, Jaliani NKH (1996) Control of soilborne pathogens of watermelon by solar heating. Crop Prot 15:423–424. doi:10.1016/0261-2194(95)00148-4

    Google Scholar 

  • Marenco RA, Lustosa DC (2000) Soil solarization for weed control in carrot. Pesq Agropec Bras 35:2025–2032

    Google Scholar 

  • Martin FN (2003) Development of alternative strategies for management of soilborne pathogens currently controlled with methyl bromide. Annu Rev Phytopathol 41:325–350. doi:10.1146/annurev.phyto.41.052002.095514

    CAS  PubMed  Google Scholar 

  • Martyn RD, Hartz TK (1986) Use of soil solarization to control Fusarium wilt of watermelon. Plant Dis 70:762–766

    Google Scholar 

  • Matthiessen J, Kirkegaard J (2006) Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Crit Rev Plant Sci 25:235–265. doi:10.1080/07352680600611543

    CAS  Google Scholar 

  • Mauromicale G, Restuccia G, Marchese M (2001) Soil solarization, a non-chemical technique for controlling Orobanche crenata and improving yield of faba bean. Agronomie 21:757–765. doi:10.1051/agro:2001167

    Google Scholar 

  • Mauromicale G, Lo Monaco A, Longo AMG, Restuccia A (2005a) Soil solarization, a nonchemical method to control branched broomrape (Orobanche ramosa) and improve the yield of greenhouse tomato. Weed Sci. 53:877–883. doi:10.1614/WS-05-023R1.1

    CAS  Google Scholar 

  • Mauromicale G, Marchese M, Restuccia A, Sapienza O, Restuccia G, Longo AMG (2005b) Root nodulation and nitrogen accumulation and partitioning in legume crops as affected by soil solarization. Plant Soil 271:275–284. doi:10.1007/s11104-004-2772-0

    CAS  Google Scholar 

  • Mayton HS, Olivier C, Vaughn SF, Loria R (1996) Correlation of fungicidal activity of Brassica species with allyl isothiocyanate production in macerated leaf tissue. Phytopathology 86:267–271

    CAS  Google Scholar 

  • McGovern RJ, McSorley R (1997) Physical methods of soil sterilization for disease management including soil solarization. In: Rechcigl NA, Rechcigl JE (eds) Environmentally safe approaches to crop disease control. CRC Lewis, Boca Raton, FL, USA, pp 283–313

    Google Scholar 

  • McGovern RJ, McSorley R, Urs RR (2000) Reduction of Phytophthora blight of Madagascar periwinkle in Florida by soil solarization in autumn. Plant Dis 84:185–191. doi:10.1094/PDIS.2000.84.2.185

    Google Scholar 

  • McGovern RJ, McSorley R, Bell ML (2002) Reduction of landscape pathogens in Florida by soil solarization. Plant Dis 86:1388–1395. doi:10.1094/PDIS.2002.86.12.1388

    Google Scholar 

  • McLean KL, Swaminathan J, Stewart A (2001) Increasing soil temperature to reduce sclerotial viability of Sclerotium cepivorum in New Zealand soil. Soil Biol Biochem 33:137–143. doi:10.1016/S0038-0717(00)00119-X

    CAS  Google Scholar 

  • McSorley R, McGovern RJ (2000) Effects of solarization and ammonium amendments on plant-parasitic nematodes. J Nematol 32(4S):537–541

    Google Scholar 

  • McSorley R, Parrado JL (1986) Application of soil solarization to Rockdale soils in a subtropical environment. Nematropica 16:125–140

    Google Scholar 

  • Melero-Vara JM, Blanco-López MA, Béjarano-Alcázar J, Jiménez-Díaz RM (1995) Control of Verticillium wilt of cotton by means of soil solarization and tolerant cultivars in Southern Spain. Plant Pathol 44:250–260. doi:10.1111/j.1365-3059.1995.tb02776.x

    Google Scholar 

  • Melero-Vara JM, Prados-Ligero AM, Basallote-Ureba MJ (2000) Comparison of physical, chemical and biological methods of controlling garlic white rot. Eur J Plant Pathol 106:581–588

    CAS  Google Scholar 

  • Menge JA, Raski DJ, Lider LA, Johnson ELV, Jones NO (1983) Interactions between mycorrhizal fungi, soil fumigation and growth of grapes in California. Am J Enol Viticult 34:117–121

    Google Scholar 

  • Mihail JD, Alcorn SM (1984) Effects of soil solarization on Macrophomina phaseolina and Sclerotium rolfsii. Plant Dis 68:156–159

    Google Scholar 

  • Miles JE, Nishimoto RK, Kawabata O (1996) Diurnally alternating temperatures stimulate sprouting of purple nutsedge (Cyperus rotundus) tubers. Weed Sci 44:122–125

    CAS  Google Scholar 

  • Miles JE, Kawabata O, Nishimoto RK (2002) Modeling purple nutsedge sprouting undersoil solarization. Weed Sci 50:64–71. doi:10.1614/0043 1745(2002) 050[0064:MPNSUS]2.0.CO;2

    CAS  Google Scholar 

  • Minuto A, Migheli Q, Garibaldi A (1995) Integrated control of soil-borne plant pathogens by solar heating and antagonistic microorganisms. Acta Hort (ISHS) 382:138–144

    Google Scholar 

  • Minuto A, Spadaro D, Garibaldi A, Gullino ML (2006) Control of soilborne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization. Crop Prot 25:468–475. doi:10.1016/j.cropro.2005.08.001

    Google Scholar 

  • Morgan DP, Liebman JA, Epstein L, Pimenez MJ (1991) Solarizing soil planted with cherry tomatoes vs. solarizing fallow ground for control of Verticillium wilt. Plant Dis 75:148–151

    Google Scholar 

  • Moura MLR, Palminha J (1994) A non-chemical method for the control of Pyrenochaeta lycopersici of tomato in the north of Portugal. Acta Hort (ISHS) 366:317–322

    Google Scholar 

  • Moya M, Furukawa G (2000) Use of solar energy and chemical alternatives to methyl bromide for weed control in greenhouse soil for ornamental crops. N Z Plant Prot 53:34–37

    Google Scholar 

  • Mullen JD, Norton GW, Reaves DW (1997) Economic analysis of environmental benefits of integrated pest management. J Agric Appl Econ 29:243–253. Available on line at http://ageconsearch.umn.edu/handle/123456789/21053

  • Mushobozy D, Khan VA, Stevens C (1998) The use of soil solarization to control weeds, plant diseases, and integration of chicken litter amendment for tomato production in Tanzania. In: Proceedings of the 27th national agricultural plastics congress of american society for plasticulture, p 279–285

    Google Scholar 

  • Myers DF, Campbell RN, Greathead AS (1983) Thermal inactivation of Plasmodiophora brassicae Woron. and its attempted control by solarization in the Salinas Valley of California. Crop Prot 2:325–333

    Google Scholar 

  • Nair SK, Peethambaran CK, Geetha D, Nayar K, Wilson KI (1990) Effect of soil solarization on nodulation, infection by mycorrizal fungi and yield of cowpea. Plant Soil 125:153–154. doi:10.1007/BF00010757

    Google Scholar 

  • Naot O, Mahrer Y, Avissar R, Rawitz E, Katan J (1987) The effect of reirrigation by trickling on polyethylene mulched soils. Soil Sci 144:101–106

    Google Scholar 

  • Narayan R (2001) Drivers for biodegradable/compostable plastics and role of composting in waste management and sustainable agriculture. Bioprocess Solid Waste Sludge 1(1)

    Google Scholar 

  • Nasr Esfahani M (2007) Integration of solar-heating and soil-amendment, as effective control measure against root-knot nematodes in cucumber fields. Acta Hort (ISHS) 731:183–187

    Google Scholar 

  • Ndiaye M, Termorshuizen AJ, Van Bruggen AHC (2007) Combined effects of solarization and organic amendment on charcoal rot caused by Macrophomina phaseolina in the Sahel. Phytoparasitica 35:392–400

    Google Scholar 

  • Newhall AG (1955) Soil disinfestations of soil by heat, hot water, flooding and fumigation. Bot Rev 21:189–233

    CAS  Google Scholar 

  • Nico AI, Jiménez-Díaz RM, Castillo P (2003) Solarization of soil in piles for the control of Meloidogyne incognita in olive nurseries in southern Spain. Plant Pathol 52:770–778. doi:10.1111/j.1365-3059.2003.00927.x

    Google Scholar 

  • Oka Y, Shapira N, Fine P (2007) Control of root-knot nematodes inorganic farming systems by organic amendments and soil solarization. Crop Prot 26:1556–1565. doi:10.1016/j.cropro.2007.01.003S0261-2194(07)00038-5

    Google Scholar 

  • Okur N, Gocmez S, Tuzel Y (2006) Effect of organic manure application and solarization on soil microbial biomass and enzyme activities under greenhouse conditions. Biol Agric Hort 23:305–320

    Google Scholar 

  • Orion D (1995) Structure and function of the root-knot (Meloidogyne spp.) gelatinous matrix. Nematologica 41:395–397

    Google Scholar 

  • Osman MA, Raju PS, Peacock JM (1991) The effect of soil temperature, moisture and nitrogen on Striga asiatica (L.) Kuntze seed germination, viability and emergence on sorghum (Sorghum bicolor L. Moench) roots under field conditions. Plant Soil 131:265–273. doi:10.1007/BF00009458

    Google Scholar 

  • Ostrec L, Grubisic D (2003) Effects of soil solarization on nematodes in Croatia. J Pest Sci 76:139–144. doi:10.1007/s10340-003-0005-6

    Google Scholar 

  • Otieno W, Termorshuizen A, Jeger M, Otieno C (2003) Efficacy of soil solarization, Trichoderma harzianum and coffee pulp amendment against Armillaria sp. Crop Prot 22:325–331. doi:10.1016/S0261-2194(02)00174-6

    Google Scholar 

  • Overman AJ (1985) Off-season land management, soil solarization and fumigation for tomato. Soil Crop Sci Soc Fla Proc 44:35–39

    Google Scholar 

  • Ozores-Hampton M, Roe NE, McSorley R, Chellemi DO, Stansly PA, Obreza T (2001) Soil solarization affects weed and nematode populations in a large-scale vegetable production system. HortScience 36:474

    Google Scholar 

  • Palese AM, Giovannini G, Lucchese S, Dumontet S, Perucci P (2004) Effect of fire on soil C N, and microbial biomass. Agronomie 24:47–53. doi:10.1051/agro:2003061

    Google Scholar 

  • Panattoni A, Luvisi A, Triolo E, Filippi F, Magnani G (2004) Biodegradable film for solarization: an alternative to plastic. Colture Protette 33:89–93

    Google Scholar 

  • Papadakis G, Briassoulis D, Scarascia-Mugnozza G, Vox G, Feuilloley P, Stoffers JA (2000) Radiometric and thermal properties of, and testing methods for greenhouse covering materials. J Agric Eng Res 77:7–38. doi:10.1006/jaer.2000.0525

    Google Scholar 

  • Parish RL, Bracy RP, McCoy JE (2000) Evaluation of field incineration of plastic mulch. J Veget Crops Prod 6:17–24

    Google Scholar 

  • Patel BK, Patel HR (1997) Effect of soil solarization, rabbing, nematocides and green manuring on soil microbes in bidi tobacco nursery. Indian J Environ Toxic 7:42–46

    Google Scholar 

  • Patel HR, Makwana MG, Patel BN (1995) The control of nematode and weeds by soil solarization in tobacco nursery: effects of the film thickness and of the covering duration. Plasticulture 107:21–27

    Google Scholar 

  • Patricio FRA, Sinigaglia C, Barros BC, Freitas SS, Tessarioli Neto J, Cantarella H, Ghini R (2006) Solarization and fungicides for the control of drop, bottom rot and weeds in lettuce. Crop Prot 25:31–38. doi:10.1016/j.cropro.2005.03.002

    CAS  Google Scholar 

  • Patricio FRA, Kimati H, Tessarioli Neto J, Petenatti A, Barros BC (2007) Efeito da solarização, associada à aplicação de Trichoderma spp. Ou fungicidas, sobre o controle de Pythium aphanidermatum e de Rhizoctonia solani AG-4. Summa Phytopathol 33:142–146. doi:10.1590/S0100-54052007000200007

    Google Scholar 

  • Patterson DT (1998) Suppression of purple nutsedge (Cyperus rotundus) with polyethylene film mulch. Weed Technol 12:275–280

    Google Scholar 

  • Peachey RE, Pinkerton JN, Ivors KL, Miller ML, Moore LW (2001) Effect of soil solarization, cover crops, and metham on field emergence and survival of buried annual bluegrass (Poa annua) seeds. Weed Technol 15:81–88

    Google Scholar 

  • Perkins JH, Patterson BR (1997) Pest pesticides and the environment: A historical perspective on the prospects for pesticide reduction. In: Pimentel D (ed) Techniques for reducing pesticide use. Wiley, New York, USA, pp 13–33

    Google Scholar 

  • Perrin RM (1997) Crop protection: taking stock for the new millennium. Crop Prot 16:449–456. doi:10.1016/S0261-2194(97)00014-8

    Google Scholar 

  • Perrin R, Camporota P, Soulas ML, Le Bihan B (1998) The management of mycorrhizal symbiosis and solarization as an alternative to soil fumigation. In: Bello A, González JA, Arias M, Rodríguez-Kábana R (eds) Alternatives to methyl bromide for the southern european countries. DG XI EU, CSIC, Valencia, Spain, pp 301–310

    Google Scholar 

  • Phillips AJL (1990) The effects of soil solarization on sclerotial population of Sclerotinia sclerotiorum. Plant Pathol 39:38–43. doi:10.1111/j.1365-3059.1990.tb02473.x

    Google Scholar 

  • Pimentel D, Acquay H, Biltonen M, Rice P, Silva M, Nelson J, Lipner V, Giordano S, Horowitz A, D’Amore M (1992) Environmental and economic costs of pesticide use. BioScience 42:750–760

    Google Scholar 

  • Pinkas Y, Kariv A, Katan J (1984) Soil solarization for the control of Phytophthora cinnamomi: thermal and biological effects. Phytopathology 74:796

    Google Scholar 

  • Pinkerton JN, Ivors KL, Miller ML, Moore LW (2000) Effect of soil solarization and cover crops on populations of selected soilborne plant pathogens in Western Oregon. Plant Dis 84:952–960. doi:10.1094/PDIS.2000.84.9.952

    Google Scholar 

  • Pinkerton JN, Ivors KL, Reeser PW, Bristow PR, Windom GE (2002) The use of soil solarization for the management of soilborne plant pathogens in strawberry and red raspberry production. Plant Dis 86:645–651. doi:10.1094/PDIS.2002.86.6.645

    Google Scholar 

  • Pivonia S, Cohen R, Levita R, Katan J (2002) Improved solarization of containerized medium for the control of Monosporascus collapse in melon. Crop prot 21:907–912. doi:10.1016/S0261-2194(02)00057-1

    Google Scholar 

  • Plesofsky-vig N, Brambl R (1985) The heat shock response of fungi. Exp Mycol 9:187–194

    Google Scholar 

  • Ploeg AT, Stapleton JJ (2001) Glasshouse studies on the effects of time, temperature and amendment of soil with broccoli plant residues on the infestation of melon plant by Meloidogyne incognita and M. javanica. Nematology 3:855–861

    Google Scholar 

  • Pokharel RR (1995) Effect of crop rotation and solarization on the population densities of rice root nematode Hirschmanniella spp. in Nepal. Int Rice Res Notes 20:28–29

    Google Scholar 

  • Polizzi G, La Rosa R, Arcidiacono C, D’Emilio A (2003) Effects of innovative films in soil solarization for the control of soil-borne pathogens. Acta Hort (ISHS) 614:805–811

    Google Scholar 

  • Porras M, Barrau C, Romero F (2007a) Effects of soil solarization and Trichoderma on strawberry production. Crop Prot 26:782–787. doi:10.1016/j.cropro.2006.07.005

    Google Scholar 

  • Porras M, Barrau C, Arroyo FT, Santos B, Blanco C, Romero F (2007b) Reduction of Phytophthora cactorum in strawberry fields by Trichoderma spp. and soil solarization. Plant Dis 91:142–146. doi:10.1094/PDIS-91-2-0142

    Google Scholar 

  • Porter IJ, Merriman PR (1983) Effect of solarization of soil on nematode and fungal pathogens at two sites in Victoria. Soil Biol Biochem 15:39–44

    Google Scholar 

  • Porter IJ, Merriman PR (1985) Evaluation of soil solarization for control of root diseases of row crops in Victoria. Plant Pathol 34:108–118. doi:10.1111/j.1365-3059.1985.tb02767 x

    Google Scholar 

  • Porter IJ, Merriman PR, Keane PJ (1989) Integrated control of pink root (Pyrenochaeta terrestris) of onions by dazomet and soil solarization. Aus J Agric Res 40:861–869. doi:10.1071/AR9890861

    Google Scholar 

  • Porter IJ, Merriman PR, Keane PJ (1991) Soil solarisation combined with low rates of soil fumigants controls clubroot of cauliflowers, caused by Plasmodiophora brassicae Woron. Aus J Exp Agric 31:843–851. doi:10.1071/EA9910843

    CAS  Google Scholar 

  • Pullman GS, DeVay JE, Garber RH, Weinhold AR (1979) Control of soil-borne fungal pathogens by plastic tarping of soil. In: Schippers B, Gams W (eds) Soil-borne plant pathogens. Academic, New York, USA, pp 439–446

    Google Scholar 

  • Pullman GS, DeVay JE, Garber RH (1981a) Soil solarization and thermal death: a logarithmic relationship between time and temperature for four soilborne plant pathogens. Phytopathology 71:959–964

    Google Scholar 

  • Pullman GS, DeVay JE, Garber RH, Weinhold AR (1981b) Soil solarization: Effects on Verticillium wilt of cotton and soilborne populations of Verticillium dahliae, Pythium spp., Rhizoctonia solani, and Thielaviopsis basicola. Phytopathology 71:954–959

    Google Scholar 

  • Rabinowitch HD, Katan J, Ben David B, Rotem L, Zig U (1985) Soil solarization in onion: effects in successive years. Hassadeh 65:1792

    Google Scholar 

  • Raio A, Zoina A, Moore LW (1997) The effect of solar heating of soil on natural and inoculated agrobacteria. Plant Pathol 46:320–328. doi:10.1046/j.1365-3059.1997.d01-28.x

    Google Scholar 

  • Ramirez-Villapudua J, Munnecke DE (1987) Control of cabbage yellows (Fusarium oxysporum f. sp. conglutinans) by solar heating of field soils amended with dry cabbage residues. Plant Dis 71:217–221

    Google Scholar 

  • Ramirez-Villapudua J, Munnecke DE (1988) Effect of solar heating and soil amendments of cruciferous residues on Fusarium oxysporum f.sp. conglutinans and other organisms. Phytopathology 78:289–295

    Google Scholar 

  • Restuccia G, Marchese M, Mauromicale G (1994) Solarizzazione e lotta contro le infestanti. Riv Agron 28:21–30

    Google Scholar 

  • Reynolds SG (1970) The effect of mulches on southern blight (Sclerotium rolfsii) in dwarf bean (Phaseolus vulgaris). Trop Agric 47:137–144

    Google Scholar 

  • Ricci MS, De Almeida DL, Ribeiro RD, Aquino AM, Pereira JC, Polli D, Reis VM, Eklund CR (2000) Cyperus rotundus control by solarization. Biol Agric Hort 17:151–157

    Google Scholar 

  • Rieger M, Krewer G, Lewis P (2001) Solarization and chemical alternatives to methyl bromide for preplant soil treatment of strawberries. HortTechnology 11:258–264

    CAS  Google Scholar 

  • Ristaino JB, Perry KB, Lumsden RD (1991) Effect of soil solarization and Gliocladium virens on sclerotia of Sclerotium rolfsii, soil microbiota, and the incidence of southern blight in tomato. Phytopathology 81:1117–1124

    Google Scholar 

  • Ristaino JB, Perry KB, Lumsden RD (1996) Soil solarization and Gliocladium virens reduce the incidence of southern blight (Sclerotium rolfsii) in bell pepper in the field. Biocon Sci Technol 6:583–594. doi:10.1080/09583159631226

    Google Scholar 

  • Rodríguez Pérez A, Díaz Hernández S, Gallo Llobet L (2004) Eradication of Phytophthora nicotianae and Rhizoctonia solani by double layer solarization in tomato seedbeds. Acta Hortic (ISHS) 698:207–211

    Google Scholar 

  • Rodriguez-Kabana R (1986) Organic and inorganic nitrogen amendments to soil as nematode suppressants. J Nematol 18:129–135

    CAS  PubMed  Google Scholar 

  • Roe N, Ozores-Hampton M, Stansly PA (2004) Solarization effects on weed populations in warm climates. Acta Hort 638:197–200

    Google Scholar 

  • Rosskopf E, Chellemi DO, Kokalis-Burelle N (1999) Alternative soil disinfestations treatments for weed control. In: Proceedings of the annual international research conference on methyl bromide alternatives and emissions reductions, San Diego, CA, 1–4 November 1999

    Google Scholar 

  • Rubin B, Benjamin A (1983) Solar heating of the soil: effect on weed control and on soil incorporated herbicides. Weed Sci 31:819–825

    Google Scholar 

  • Rubin B, Benjamin J (1984) Solar heating of the soil: involvement of environmental factors in the weed control process. Weed Sci 32:138–142

    Google Scholar 

  • Ruiz TS, Stapleton JJ, McKenry MV (2003) Lethal temperature-time dosages for Meloidogyne incognita. In: Proceedings of the 2003 annual international research conference on methyl bromide alternatives and emissions reductions. San Diego, CA, USA, 3–6 November 2003, pp 137/1–137/2

    Google Scholar 

  • Ruocco G (2000) Soil and water: a transient-spectral thermal model of soil under radiative-interfering cover. J Agric Eng Res 77:93–102. doi:10.1006/jaer.2000.0565

    Google Scholar 

  • Rupela OP, Sudarshana MR (1990) Displacement of native rhizobia nodulating chickpea (Cicer arietinum L.) by an inoculant strain through soil solarization. Biol Fertil Soils 10:207–212. doi:10.1007/BF00336138

    Google Scholar 

  • Russo G, Candura A, Scarascia-Mugnozza G (2005) Soil solarization with biodegradable plastic film: two years of experimental tests. Acta Hort (ISHS) 691:717–724

    Google Scholar 

  • Ruzo LO (2006) Physical, chemical and environmental properties of selected chemical alternatives for the pre-plant use of methyl bromide as soil fumigant. Pest Manage Sci 62:99–113. doi:10.1002/ps.1135

    CAS  Google Scholar 

  • Saghir AR (1997) Soil solarization: an alternative technique for weed management in hot climates. In: Stapleton JJ, DeVay JE, Elmore CL (eds) Proceedings of the second international conference on soil solarization and integrated management of soil-borne pests, Aleppo, Syrian Arab Republic, 16–21 March 1997. FAO Plant Protection and Production Paper 147, FAO, Rome, Italy, pp 206–211

    Google Scholar 

  • Salerno MI, Lori GA, Giménez DO, Giménez JE, Beltrano J (2000) Use of soil solarization to improve growth of eucalyptus forest nursery seedlings in Argentina. New For 20:235–248. doi:10.1023/A:1006779308611

    Google Scholar 

  • Sales Beuno SC, De Holanda Maia A, Blat SF, Christoffoleti PJ (2003) Resting time of moist substrate to solarization as method for weed control. Acta Hort (ISHS) 607:221–226

    Google Scholar 

  • Satour MM, Abdel-Rahim MF, El-Yamani T, Radwan A, Rabinowitch HD, Katan J, Grinstein A (1989) Soil solarization in onion fields in Egypt and Israel: short- and long-term effects. Acta Hort (ISHS) 255:151–160

    Google Scholar 

  • Satour MM, El-Sherif EM, El-Ghareeb L, El-Hada SA, El-Wakil HR (1991) Achievements of soil solarization in Egypt. In: DeVay JE, Stapleton JJ, Elmore CL (eds) Proceedings of the first international conference on soil solarization, Amman, Jordan, 19–25 February 1990. FAO Plant Protection and Production Paper 109, FAO, Rome, Italy, pp 200–212

    Google Scholar 

  • Sauerborn J, Linke KH, Saxena MC, Koch W (1989) Solarization; a physical control method for weeds and parasitic plants (Orobanche spp.) in Mediterranean agriculture. Weed Res 29:391–397

    Google Scholar 

  • Scarascia-Mugnozza G, Schettini E, Vox G (2004) Effects of solar radiation on the radiometric properties of biodegradable films for agricultural applications. Biosys Eng 87:479–487. doi:10.1016/j.biosystemseng.2004.01.008

    Google Scholar 

  • Schippers B, Bakker AW, Bakker PA (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping systems. Annu Rev Phytopathol 25:339–358. doi:10.1146/annurev.py.25.090187.002011

    Google Scholar 

  • Schoenfeld J, Gelsomino A, Van Overbeek LS, Gorissen A, Smalla K, Van Elsas JD (2003) Effects of compost addition and simulated solarisation on the fate of Ralstonia solanacearum biovar 2 and indigenous bacteria in soil. FEMS Microbiol Ecol 43:63–74. doi:10.1111/j.1574-6941.2003.tb01046.x

    Google Scholar 

  • Schonbeck MW, Evanylo GK (1998) Effects of mulches on soil properties and tomato production, soil temperature, soil moisture and marketable yield. J Sustain Agric 13:55–81. doi:10.1300/J064v13n01_06

    Google Scholar 

  • Schreiner PR, Ivors KL, Pinkerton JN (2001) Soil solarization reduces arbuscular mycorrhizal fungi as a consequence of weed suppression. Mycorrhiza 11:273–277. doi:10.1007/s005720100131

    CAS  Google Scholar 

  • Scopa A, Dumontet S (2007) Soil solarization: effects on soil microbiological parameters. J Plant Nutr 30:537–547. doi:10.1080/01904160701209212

    CAS  Google Scholar 

  • Sesveren S, Kaman H, Kirda C (2006) Effect of tillage and soil water content on thermal properties of solarized soils. In: Proceedings of the international symposium on water and land management for sustainable irrigated agriculture. Adana, Turkey 4–8 April, 2006, pp 1–10

    Google Scholar 

  • Sharma SB, Nene YL (1990) Effects of soil solarization on nematodes parasitic to chickpea and pigeonpea. J Nematol 22(4S):658–664

    Google Scholar 

  • Sharma M, Sharma SK, Sharma M (2002) Effect of soil solarization on soil microflora with special reference to Dematophora necatrix in apple nurseries. Indian Phytopathol 55:158–162

    Google Scholar 

  • Sheikh AH, Ghaffar A (1987) Time-temperature relationships for the inactivation of sclerotia of Macrophomina phaseolina. Soil Biol Biochem 19:313–315

    Google Scholar 

  • Shlevin E, Sagui IS, Mahrer Y, Katan J (2003) Modeling the survival of two soilborne pathogens under dry structural solarization. Phytopathology 93:1247–1257. doi:10.1094/PHYTO.2003.93.10.1247

    PubMed  Google Scholar 

  • Shlevin E, Mahrer Y, Kritzman G, Katan J (2004) Survival of plant pathogens under structural solarization. Phytoparasitica 32:470–478

    Google Scholar 

  • Shogren RL (2000) Biodegradable mulches from renewable resources. J Sustain Agric 16:33–47. doi:10.1300/J064v16n04_05

    Google Scholar 

  • Shukla L, Singh DK, Yaduraju NT, Das TK, Magu SP (2000) Effect of soil solarization on soil microflora and soil enzymatic activity. Ann Plant Prot Sci 8:218–222

    Google Scholar 

  • Sikora RA, Bridge J, Starr JL (2005) Management practices: an overview of integrated nematode management technologies. In: Luc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture. CABI, Wallingford, UK, pp 793–825

    Google Scholar 

  • Singla SL, Pareek A, Grover A (1997) High temperature. In: Prasad MNV (ed) Plant ecophysiology. Wiley, New York, USA, pp 101–127

    Google Scholar 

  • Sinigaglia C, Patrıcio FRA, Ghini R, Malavolta VMA, Tessarioli Neto J, Freitas SS (2001) Controle de Sclerotinia minor, Rhizoctonia solani e plantas daninhas em alface pela solarizacao do solo e sua integracao com controle quımico. Summa Phytopathol 27:229–235

    CAS  Google Scholar 

  • Siti E, Cohn E, Katan J, Mordechai M (1982) Control of Ditilenchus dipsaci in garlic by bulb and soil treatments. Phytoparasitica 10:93–100

    Google Scholar 

  • Sivakumar CV, Marimuthu T (1987) Preliminary studies on the effect of solarization on phytonematodes of betelvine. Indian J Nematol 17:54–58

    Google Scholar 

  • Sivan A, Chet I (1993) Integrated control of fusarium crown and root rot of tomato with Trichoderma harzianum in combination with methyl bromide or soil solarization. Crop Prot 12:380–386. doi:10.1016/0261-2194(93)90082-T

    CAS  Google Scholar 

  • Sotomayor D, Allen LH Jr, Chen Z, Dickson DW, Hewlett T (1999) Anaerobic soil management practices and solarization for nematode control in Florida. Nematropica 29:153–170

    Google Scholar 

  • Soulas ML, Le Bihan B, Camporota P, Jarosz C, Salerno MI, Perrin R (1997) Solarization in a forest nursery: effect on ectomycorrhizal soil infectivity and soil receptiveness to inoculation with Laccaria bicolor. Mycorrhiza 7:95–100. doi:10.1007/s005720050168

    Google Scholar 

  • Souza NL (1994) Solarização do solo. Summa Phytopathol 20:3–15

    Google Scholar 

  • Spreich H, Sauerborn J, Koch W (1990) The solarizing effect of sprayable films. Z Pflanzenkr Pflanzenschutz 12:455–461

    Google Scholar 

  • Standifer LC, Wilson W, Porche-Sorbet R (1984) Effects of solarization on soil weed populations. Weed Sci 32:569–573

    Google Scholar 

  • Stapleton JJ (1981) Population dynamics of soil-borne bacteria and fungi as influenced by soil solarization with emphasis on (UY) Agrobacterium spp. MS Thesis, University of California, Davis, USA, pp 54

    Google Scholar 

  • Stapleton JJ (1991) Physical effects of soil solarization-thermal inactivation of crop pests and pathogens and other soil changes caused by solarization. In: DeVay JE, Stapleton JJ, Elmore CL (eds) Proceedings of the first international conference on soil solarization, Amman, Jordan, 19–25 February 1990. FAO Plant Protection and Production Paper 109, FAO, Rome, Italy

    Google Scholar 

  • Stapleton JJ (1997) Solarization: an implementable alternative for soil disinfestation. In: Canaday C (ed) Biological and cultural tests for control of plant diseases, vol 12. APS, St. Paul, MN, USA, pp 1–6

    Google Scholar 

  • Stapleton JJ (1998) Modes of action of solarization and biofumigation. In: Stapleton JJ, DeVay JE, Elmore CL (eds) Proceedings of the second international conference on soil solarization and integrated management of soil-borne pests, Aleppo, Syrian Arab Republic, 16–21 March 1997. FAO Plant Protection and Production Paper 147, FAO, Rome, Italy, pp 78–88

    Google Scholar 

  • Stapleton JJ (2000) Soil solarization in various agricultural production systems. Crop Prot 19:837–841. doi:10.1016/S0261-2194(00)00111-3

    Google Scholar 

  • Stapleton JJ, DeVay JE (1982) Effect of soil solarization on populations of selected soilborne microorganisms and growth of deciduous fruit tree seedlings. Phytopathology 72:323–326

    Google Scholar 

  • Stapleton JJ, DeVay JE (1983) Response of phytoparasitic and free-living nematodes to soil solarization and 1, 3-dichloropropene in California. Phytopathology 73:1429–1436

    Google Scholar 

  • Stapleton JJ, DeVay JE (1984) Thermal components of soil solarization as related to changes in soil and root microflora and increased plant growth response. Phytopathology 74:255–259

    Google Scholar 

  • Stapleton JJ, DeVay JE (1986) Soil solarization: a non-chemical approach for management of plant pathogens and pests. Crop Prot 5:190–198

    Google Scholar 

  • Stapleton JJ, DeVay JE (1995) Soil solarization: a natural mechanism of integrated pest management. In: Reuveni R (ed) Novel approaches to integrated pest management. Lewis, Boca Raton, FL, USA, pp 309–322

    Google Scholar 

  • Stapleton JJ, Ferguson L (1996) Solarization to disinfest soil for containerized plants in the inland valleys of California. In: Proceedings of the annual international research conference on methyl bromide alternatives and emissions reduction. Orlando, FL, 4–6 November 1996, p 6

    Google Scholar 

  • Stapleton JJ, Garza-Lopez JG (1988) Mulching of soils with transparent (solarization) and black polyethylene films to increase growth of annual and perennial crops in southwestern Mexico. Trop Agric 65:29–33

    Google Scholar 

  • Stapleton JJ, Heald CM (1991) Management of phytoparasitic nematodes by soil solarization. In: Katan J, DeVay JE (eds) Soil solarization. CRC, Boca Raton, FL, USA, pp 51–60

    Google Scholar 

  • Stapleton JJ, Quick J, DeVay JE (1985) Soil solarization: effect on soil properties, fertilization, and plant growth. Soil Biol Biochem 17:369–373

    CAS  Google Scholar 

  • Stapleton JJ, Lear B, DeVay JE (1987) Effect of combining soil solarization with certain nematicides on target and nontarget organisms and plant growth. Ann Appl Nematol 1:107–112

    Google Scholar 

  • Stapleton JJ, Asai WK, DeVay JE (1989) Use of polymer mulches in integrated pest management programs for establishment of perennial fruit crops. Acta Hort (ISHS) 255:161–168

    Google Scholar 

  • Stapleton JJ, DeVay JE, Lear B (1990) Simulated and field effects of ammonia-based fertilizers and soil solarization on pathogens control, soil fertility and crop growth. In: DeVay JE, Stapleton JJ, Elmore CL (eds) Proceedings of the first international conference on soil solarization, Amman, Jordan, 19–25 February 1990. FAO Plant Protection and Production Paper 109, FAO, Rome, Italy, pp 331–342

    Google Scholar 

  • Stapleton JJ, Paplomatas EJ, Wakeman RJ, DeVay JE (1993) Establishment of apricot and almond trees using soil mulching with transparent (solarization) and black polyethylene film: effects on Verticillium wilt and tree health. Plant Pathol 42:333–338

    Google Scholar 

  • Stapleton JJ, Duncan RA, Thomassian C (1995) Antifungal activity of certain cruciferous amendments when combined with soil heating for biofumigation. Phytopathology 85:1042

    Google Scholar 

  • Stapleton JJ, DeVay JE, Elmore CL (eds) (1997) Proceedings of the second international conference on soil solarization and integrated management of soil-borne pests, Aleppo, Syrian Arab Republic, 16–21 March 1997. FAO Plant Protection and Production Paper 147, FAO Rome, Italy, 1998

    Google Scholar 

  • Stapleton JJ, Ferguson L, McKenry MV, Dougherty DS, Stapleton SC (1999) Using solarization to disinfest soil for olive nursery production. Acta Hort (ISHS) 474:589–594

    Google Scholar 

  • Stapleton JJ, Prather TS, Mallek SB, Ruiz TS, Elmore CL (2002) High temperature solarization for production of weed-free container soils and potting mixes. HortTechnol 12:541–740

    Google Scholar 

  • Stapleton JJ, Molinar RH, Lynn-Patterson K, Mc Feeters SK, Shrestha A (2005) Soil solarization provides weed control for limited-resource and organic growers in warmer climates. Calif Agric 59:84–89

    Google Scholar 

  • Stevens C, Khan VA, Okoronkwo T, Tang AY, Wilson MA, Lu J, Brown JE (1990a) Soil solarization and Dacthal: influence on weed, growth and root microflora of collards. HortScience 25:1260–1262

    Google Scholar 

  • Stevens C, Khan VA, Wilson MA, Brown JE, Tang AY (1990b) Control of southern blight in bell peppers by soil solarization. Nat Agric Plastics Congr 22:155–158

    Google Scholar 

  • Stevens C, Khan VA, Brown JE, Hochmuth GJ, Splittstoesser WE, Granberry DM (1991a) Plastic chemistry and technology as related to plasticulture and solar heating of soil. In: Katan J, DeVay JE (eds) Soil solarization. CRC, Boca Raton, FL, USA, pp 141–158

    Google Scholar 

  • Stevens C, Khan VA, Cody RM, Lu JY, Haung Z, Tang AY, Brown JE, Wilson MA (1991b) Soil solarization: the effects of organic amendments on microflora of soil rhizosphere of cole crops. In: Proceedings of the 23rd national agricultural plastics congress, vol 23. American Society of Plasticulture, pp 281–287

    Google Scholar 

  • Stevens C, Khan VA, Wilson MA, Brown JE, Collins DJ (1999) Use of Thermofilm – IR single layer and double layer soil solarization to improve solar heating in a cloudy climate. Plasticulture 118:20–34

    Google Scholar 

  • Stevens C, Khan VA, Rodriguez-Kabana R, Ploper LD, Backman PA, Collins DJ, Brown JE, Wilson MA, Igwegbe ECK (2003) Integration of soil solarization with chemical, biological and cultural control for the management of soilborne diseases of vegetables. Plant Soil 253:493–506. doi:10.1023/A:1024895131775

    CAS  Google Scholar 

  • Stirling GR (1988) Biological control of plant-parasitic nematodes. In: Poinar GO Jr, Jansson HB (eds) Diseases of nematodes, vol II. CRC, Boca Raton, FL, USA, pp 93–139

    Google Scholar 

  • Streck NA, Schneider FM, Buriol GA, Heldwein AB (1995) Effect of polyethylene mulches on soil temperature and tomato yield in plastic greenhouse. Sci Agric 52:587–593

    CAS  Google Scholar 

  • Suarez B, Rey M, Castillo P, Monte M, Llobell A (2004) Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. Appl Microbiol Biotechnol 65:46–55

    CAS  PubMed  Google Scholar 

  • Sui H, Zeng D, Chen F (1992) A numerical model for simulating the temperature and moisture regimes of soil under various mulches. Agric For Meteorol 61:281–299

    Google Scholar 

  • Sundarum TK (1986) Physiology and growth of thermophylic bacteria. In: Brock TD (ed) Thermophiles: general. molecular, and applied microbiology. Wiley, New York, USA, p 75

    Google Scholar 

  • Swaminathan J, McLean KL, Pay JM, Stewart A (1999) Soil solarisation: a cultural practice to reduce viability of sclerotia of Sclerotinia sclerotiorum in New Zealand soils. N Z J Crop Hort Sci 27:331–335. doi:0014-0671/99/2704-0331

    Google Scholar 

  • Sztejnberg A, Freeman S, Chet L, Katan J (1987) Control of Rosellinia necatrix in soil and in apple orchard by solarization and Trichoderma harzianum. Plant Dis 71:365–369

    Google Scholar 

  • Tamietti G, Valentino D (2000) Effectiveness of soil solarization against soil-borne plant pathogens and weeds in Piedmont (northern Italy). In: Gullino ML, Katan J, Matta A (eds) Proceedings of the fifth international symposium on chemical and non-chemical soil and substrate disinfestation. Torino, Italy. Acta Horticulturae 532:151–156

    Google Scholar 

  • Tamietti G, Valentino D (2001) Soil solarization: A useful tool for control of verticillium wilt and weeds in eggplant crops under plastic in the Po valley. J. Plant Pathol. 83, 173-180, avaible online at http--www.sipav.org-main-jpp-volumes-0301-030102.pdf.

  • Tamietti G, Valentino D (2006) Soil solarization as an ecological method for the control of Fusarium wilt of melon in Italy. Crop Prot 25:389–397. doi:10.1016/j.cropro.2005.07.002

    Google Scholar 

  • Ten Berge HFM (1990) Heat and water transfer in bare topsoil and the lower atmosphere. Center Agric. Publ. Doc. (Pudoc), Wageningen

    Google Scholar 

  • Theron JM, Donald DGM, Broembsen SL, Van der Merwe JA (1982) The effect of warm water treatment of Pinus radiata seedlings on mycorrhizae survival, root growth capacity and Phytophthora eradication. S Afr For J 123:31–35

    Google Scholar 

  • Thomashow LS, Weller DM (1990) Application of fluorescent pseudomonads to control root diseases of wheat and some mechanisms of disease suppression. In: Hornby D (ed) Biological control of plant pathogens. CABI, Wallingford, UK, pp 109–122

    Google Scholar 

  • Thomson SV (1996) Solarization of pear and apple trees to eradicate bacteria in fire blight cankers. Acta Hort (ISHS) 411:337–340

    Google Scholar 

  • Tjamos EC (1984) Control of Pyrenochaeta Iycopersici by combined soil solarization and low dose of methyl bromide in Greece. Acta Hort (ISHS) 152:253–258

    Google Scholar 

  • Tjamos EC, Fravel DR (1995) Detrimental effects of sublethal heating and Talaromyces flavus on microsclerotia of Verticillium dahliae. Phytopathology 85:388–392

    Google Scholar 

  • Tjamos EC, Paplomatas EJ (1987) Effect of soil solarization on the survival of fungal antagonist of V. dahliae. Bull OEPP 17:645–653

    Google Scholar 

  • Tjamos EC, Paplomatas EJ (1988) Long term effect of soil solarization in controlling Verticillium wilt of globe artichokes in Greece. Plant Pathol 37:507–515. doi:10.1111/j.1365-3059.1988.tb02108.x

    Google Scholar 

  • Tjamos EC, Biris DA, Paplomatas EJ (1991) Recovery of olive trees with Verticillium wilt after individual application of soil solarization in established olive orchards. Plant Dis 75:557–562

    Google Scholar 

  • Tjamos EC, Antoniou PP, Tjamos SE (2000) Implementation of soil solarization in Greece: conclusions and suggestions. Crop Prot 19:843–846. doi:10.1016/S0261-2194(00)00132-0

    Google Scholar 

  • Tjamos EC, Tsitsigiannis DI, Tjamos SE, Antoniou PP, Katinakis P (2004) Selection and screening of endorhizosphere bacteria from solarized soils as biocontrol agents against Verticillium dahliae of solanaceous hosts. Eur J Plant Pathol 110:35–44. doi:10.1023/B:EJPP.0000010132.91241.cb

    CAS  Google Scholar 

  • Tjosvold S (2000) Regional reports on MeBr alternatives. CORF News 4:6

    Google Scholar 

  • Triki MA, Priou S, El Mahjoub M (2001) Effects of soil solarization on soil-borne populations of Pythium aphanidermatum and Fusarium solani and on the potato crop in Tunisia. Potato Res 44:271–279. doi:10.1007/BF02357905

    Google Scholar 

  • Triolo E, Materazzi A (1992) Rate of tobacco mosaic virus degradation in solarized soil. J Plant Pathol 2:23–32

    Google Scholar 

  • Tzortzakakis EA, Gowen SR (1994) Evaluation of Pasteuria penetrans alone in combination with oxamyl, plant resistance and solarization for control of Meloidogyne spp. on vegetables grown in greenhouses in Crete. Crop Prot 13:455–462. doi:10.1016/0261-2194(94)90095-7

    Google Scholar 

  • Usmani SMH, Ghaffar A (1982) Polyethylene mulching of soil to reduce viability of sclerotia of Sclerotium oryzae. Soil Biol Biochem 14:203–206

    Google Scholar 

  • Vannacci G, Triolo E, Materazzi A (1988) Survival of Sclerotinia minor Jagger sclerotia in solarized soil. Plant Soil 109:49–55

    Google Scholar 

  • Verdu AMC, Mas MT (2004) Modeling the effects of thermal shocks varying in temperature and duration on cumulative germination of Portulaca oleracea L. Seed Sci Technol 32:297–308

    Google Scholar 

  • Vox G, Schettini E, Scarascia-Mugnozza G (2005) Radiometric properties of biodegradable films for horticultural protected cultivation. Acta Hort (ISHS) 691:575–582

    Google Scholar 

  • Wadi JA (1999) Effect of soil solarization on some soil microorganisms and tomato growth. Egypt J Hort 26:167–176

    Google Scholar 

  • Waggoner PE, Miller PM, De Roo HC (1960) Plastic mulching: principles and benefits. Conn Agric Exp Stn Bull 643

    Google Scholar 

  • Walker JT (1962) The sensitivity of larvae and eggs of Meloidogyne species to hot-water treatments. Nematologica 7:19–24

    Google Scholar 

  • Walker GE, Wachtel MF (1988) The influence of soil solarization and nonfumigant nematicides on infection of Meloidogyne javanica by Pasteuria penetrans. Nematologica 34:477–483

    CAS  Google Scholar 

  • Wang K, McSorley R, Kokalis-Burelle N (2006) Effects of cover cropping, solarization, and soil fumigation on nematode communities. Plant Soil 286:229–243. doi:10.1007/s11104-006-9040-4

    CAS  Google Scholar 

  • Webster TM (2005) Patch expansion of purple nutsedge (Cyperus rotundus) and yellow nutsedge (Cyperus esculentus) with and without polyethylene mulch. Weed Sci 53:839–845

    CAS  Google Scholar 

  • White GJ, Buczacki ST (1979) Observations on suppression on clubroot by artificial or natural heating of soil. Trans Br Mycol Soc 73:271–275

    Google Scholar 

  • Wicks TJ (1988) Effect of solarisation on the control of Phytophthora cambivora in almond and cherry. Aus J Exp Agric 28:539–545. doi:10.1071/EA9880539

    Google Scholar 

  • Yaduraju NT, Mishra JS (2004) Soil solarization: an ecofriendly approach for weed management. In: Inderjit (ed) Weed biology and management. Springer, Berlin, pp 345–362

    Google Scholar 

  • Yaron D, Regev A, Spector R (1991) Economic evaluation of soil solarization and disinfestations. In: Katan J, DeVay JE (eds) Soil solarization. CRC, Boca Raton, FL, USA, pp 171–190

    Google Scholar 

  • Yihua W, Perry KB, Ristaino JB (1996) Estimating temperature of mulched and bare soil form meteorological data. Agric For Meteorol 81:299–323

    Google Scholar 

  • Yucel S (1995) A study on soil solarization and combined with fumigant application to control Phytophthora crown blight (Phytophthora capsici Leonian) on peppers in the East Mediterranean region of Turkey. Crop Prot 14:653–655. doi:10.1016/0261-2194(95)00057-7

    Google Scholar 

  • Yücel S, Çınar A (1989) Studies on the effects of soil antagonists and application of soil solarization against to Fusarium wilt disease (Fusarium oxysporum Schlecht f. sp. iycopersici (Sacc.) Synd. and Hans.) of tomatoes. Turk J Agric For 13:1372–1393

    Google Scholar 

  • Yucel S, Ozarslandan A, Colak A, Ay T, Can C (2007) Effect of solarization and fumigant applications on soilborne pathogens and root-knot nematodes in greenhouse-grown tomato in Turkey. Phytoparasitica 35:450–456

    Google Scholar 

  • Zheng Y, Yanful EK, Bassi AS (2005) A review of plastic waste biodegradation. Crit Rev Biotechnol 25:243–250. doi:10.1080/07388550500346359

    CAS  PubMed  Google Scholar 

  • Zinati GM, Bryan HH, Codallo MM (2002) Solarization as a potential approach for recycling wastes of potting media and as an alternative to methyl bromide for field-grown bedding plants. Proc Fla State Hort Soc 115:123–127

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trifone D’Addabbo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

D’Addabbo, T., Miccolis, V., Basile, M., Candido, V. (2010). Soil Solarization and Sustainable Agriculture. In: Lichtfouse, E. (eds) Sociology, Organic Farming, Climate Change and Soil Science. Sustainable Agriculture Reviews, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3333-8_9

Download citation

Publish with us

Policies and ethics