Skip to main content

Non-isotopic and 13C Isotopic Approaches to Calculate Soil Organic Carbon Maintenance Requirement

  • Chapter
  • First Online:
Sociology, Organic Farming, Climate Change and Soil Science

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 3))

Abstract

To meet long-term food, energy, and fiber security requirements, production systems must be sustainable. A critical component in sustainable agricultural systems is the maintenance of soil organic carbon (SOC). SOC maintenance requires, over time, the amount of carbon added to soil to be equal to the amount of relic carbon mineralized. Obtaining the information required for maintenance calculations is difficult and, therefore, many projects assume that: (1) above- and below-ground biomass have similar impacts on SOC turnover; (2) root to shoot ratios can be used to estimate below-ground biomass; and (3) 13C enrichment during SOC mineralization is insignificant. This chapter reviews non-isotopic and 13C isotopic approaches used to develop carbon budgets, and it investigates the implications of simplifying assumptions on SOC turnover calculations. Sensitivity analysis of carbon-budget equations showed that: (1) if the root to shoot ratio is underestimated, then the above-ground biomass needed for maintenance is overestimated, whereas the reverse is true if the root to shoot ratio is overestimated; and (2) in systems where C4 residue is applied to soil derived from C4 and C3 plants, the calculated half-life was higher when 13C fractionation during relic carbon mineralization was considered. For C3 plants, the reverse was true. For 13C natural abundance calculation these errors can be minimized by testing the assumptions that 13C isotopic discrimination during mineralization of relic carbon and fresh biomass does not occur. Correction values for 13C isotopic discrimination of relic carbon can be calculated from data collected from control areas where plant growth is prevented. Temporal changes in relic SOC 13C isotopic discrimination can be measured in this zone. A mathematical approach for using 13C isotopic discrimination during relic carbon mineralization in SOC budget calculations is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

SOC:

Soil organic carbon

NHC:

Non-harvested crop residues

NHCa :

Amount of non-harvested carbon applied

NHCm :

Non-harvested carbon maintenance requirement

SOCinitial :

Soil organic carbon at the beginning of the experiment

SOCfinal :

Soil organic carbon contained in soil at the end of the Experiment

SOCe :

Amount of SOC at equilibrium

MRT:

Mean residence time

RPC:

Plant-derived-respired

DPM:

Decomposable plant material

RPM:

Resistant plant material

δ13Cplant+soil CO2 :

δ13C value of the CO2 containing both soil and plant carbon

δ13Cplant :

δ13C value of plant

δ13Csoil CO2 :

δ13C value of CO2 in an area not containing plants

CO2 plant+soil :

Total amount of CO2 trapped in the soil plus plant system

δ13Csoil final :

δ13C value of SOC when the experiment was completed

PCRincorp :

New plant carbon incorporated into SOC

δ13CPCR :

δ13C value of the plant material retained in the soil after mineralization

SOCretained :

Amount of relic carbon (SOCinitial) retained in the soil at the end of the study

δ13CSOC retained :

Associated δ13C value

SOClost :

Amount of organic carbon lost

εSOC :

Rayleigh fractionation constant of the SOC

sSOC:

Soil organic carbon derived from corn stover

SOCr :

Total corn-derived carbon in the residue returned treatment

SOCh :

Corn derived from unharvested material in the stover harvested treatment

References

  • Accoe F, Boeckx P, Van-Cleemput O, Hofman G, Zhang Y, Li R, Guanxiong C (2002) Evolution of the delta 13C signature related to total carbon content and carbon decomposition rate constants in a soil profile under grassland. Rapid Comm Mass Spectrom 16:2184–2189

    Article  CAS  Google Scholar 

  • Ågren GI, Bosatta E, Balesden J (1996) Isotope discrimination during decomposition of organic matter: a theoretical analysis. Soil Sci Soc Am J 60:1121–1126

    Article  Google Scholar 

  • Allmaras RR, Linden DR, Clapp CE (2004) Corn-residue transformation into root and soil carbon as related to nitrogen, tillage, and stover management. Soil Sci Am J 68:1366–1375

    Article  CAS  Google Scholar 

  • Amos B, Walters DT (2006) Maize root biomass and net rhizodeposited carbon: An analysis of the literature. Soil Sci Soc Am J 70:1489–1503

    Article  CAS  Google Scholar 

  • Anderson JPE (1982) Soil respiration. In: Page AL, Miniller R, Kenny DR (eds) Methods of soil analysis, chemical and microbiological properties, Part II. 2nd edn. Agronomy Monograph #9. Soil Science Society of America, Madison WI, pp 831–871

    Google Scholar 

  • Arrouays D, Pelissier P (1994) Changes in carbon storage in temperate humic loamy soils after forest clearing and continuous cropping in France. Plant Soil 160:215–223

    Article  CAS  Google Scholar 

  • Badeck FW, Tcherkez G, Nogués S, Piel C, Ghashghaie J (2005) Post-photosynthetic fractionation of stable carbon isotopes between plant organs: a widespread phenomenon. Rapid Commun Mass Spectrom 19:1381–1391

    Article  CAS  PubMed  Google Scholar 

  • Baisden WT, Amundson R, Brenner DL, Cook AC, Kendall C, Harden JW (2002) A multi-isotope C and N modeling analysis of soil organic matter turnover and transport as a function of soil depth in a California annual grassland soil chronosequence. Global Biogeochem Cycles 16:1135. doi:10.1029/2001GB001823

    Article  Google Scholar 

  • Balesdent J, Mariotti A (1996) Measurement of soil organic matter turnover using 13C natural abundance. In: Boutton TW, Yamasaki S (eds) Mass spectrometry of soils. Marcel Dekker Inc., New York, pp 83–112

    Google Scholar 

  • Balesdent J, Wagner GH, Mariotti A (1988) Soil organic matter turnover in long-term experiments as revealed by carbon-13 natural abundance. Soil Sci Soc Am J 52:118–124

    Article  CAS  Google Scholar 

  • Barber SA (1978) Corn residue management and soil organic matter. Agron J 71:625–627

    Article  Google Scholar 

  • Barber SA, Martin JK (1976) The release of organic substance by cereal roots in the soil. New Phytol 76:69–80

    Article  CAS  Google Scholar 

  • Bolinder MA, Janzen HH, Gregorich EG, Angers DA, Vanden Bygaart AJ (2007) An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agri Ecosys Environ 118:29–42

    Article  Google Scholar 

  • Böstrom B, Comstedt D, Ekblad A (2007) Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153:89–98

    Article  PubMed  Google Scholar 

  • Böstrom B, Comstedt D, Ekblad A (2008) Can isotopic fractionation during respiration explain the 13C enriched sporocarps of ectomycorrhizal and saprotrophic fungi? New Phytol 177:1012–1019

    Article  PubMed  Google Scholar 

  • Boutton TW (1996) Stable carbon isotopes ratios of soil organic matter and their use as indicators of vegetation and climate change. In: Boutton TW, Yamasaki S (eds) Mass spectrometry of soils. Marcel Dekker Inc., New York, pp 47–82

    Google Scholar 

  • Bowling DR, Pataki DE, Randerson JT (2008) Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytol 178:24–40

    Article  CAS  PubMed  Google Scholar 

  • Bradford JB, Lauenroth WK, Burke IC (2005) The impact of cropping on net primary production in the U.S. Great Plains. Ecology 86:1863–1872

    Article  Google Scholar 

  • Campbell CA, Janzen HH, Paultian K, Gregorich EG, Sherrod L, Liang BC, Zentner RP (2005) Carbon storage in soil of the North American Great Plains: effect of cropping frequency. Agron J 97:349–363

    Article  CAS  Google Scholar 

  • Causarano HJ, Franzluebbers AJ, Reeves DW, Shaw JN (2006) Soil organic carbon sequestration in cotton production systems of southeastern United States: a review. J Environ Qual 35:1374–1383

    Article  CAS  PubMed  Google Scholar 

  • Cheng W, Fu S, Susfalk RB, Mitchell RJ (2005) Measuring tree root respiration using 13C natural abundance: rooting medium matters. New Phytol 167:297–307

    Article  CAS  PubMed  Google Scholar 

  • Clapp CE, Allmaras RR, Layese MF, Linden DR, Dowdy RH (2000) Soil organic carbon and 13C abundance as related to tillage, crop residue, and nitrogen fertilizer under continuous corn management in Minnesota. Soil Till Res 55:127–142

    Article  Google Scholar 

  • Clay DE, Clay SA, Lui Z, Reese C (2001) Spatial variability of C-13 isotopic discrimination in corn (Zea mays). Commun Soil Sci Plant Anal 32:1813–1828

    Article  CAS  Google Scholar 

  • Clay DE, Carlson CG, Clay SA, Chang J, Malo DD (2005) Soil organic C maintenance in a corn (Zea mays L.) and soybean (Glycine max L.) as influenced by elevation zone. J Soil Water Conser 60:342–348

    Google Scholar 

  • Clay DE, Carlson CG, Clay SA, Reese C, Liu Z, Ellsbury MM (2006) Theoretical derivation of new stable and non-isotopic approaches for assessing soil organic C turnover. Agron J 98:443–450

    Article  CAS  Google Scholar 

  • Clay DE, Clapp CE, Reese C, Liu Z, Carlson CG, Woodard H, Bly A (2007) 13C fractionation of relic soil organic C during mineralization effects calculated half-lives. Soil Sci Soc Am J 71:1003–1009

    Article  CAS  Google Scholar 

  • Clay DE, Carlson CG, Clay SA (2008) Calculating site-specific carbon budgets: Carbon footprints and implications of different assumptions. Proceedings of 9th international conference of precision farming. Denver CO. 20–23 July

    Google Scholar 

  • Cleveland CL, Neff JC, Townsend AR, Hood E (2004) Composition, dynamics, and fate of leached dissolved organic matter in terrestrial ecosystems. Results from decomposition experiment. Ecosystems 7:275–285

    Article  CAS  Google Scholar 

  • Coleman K, Jenkinson DS (1996) RothC-26.3: a model for the turnover of carbon in soil. In: Powlson DS, Smith P, smith PJU (eds) Evaluation of soil organic matter models using existing long-term datasets, vol 38. NATO ASI Series I, pp 237–246

    Google Scholar 

  • Collins HP, Blevins RL, Bundy LG, Christenson DR, Dick WA, Huggins DR, Paul EA (1999) Soil carbon dynamics in corn-based agroecosystems: results from carbon-13 natural abundance. Soil Sci Soc Am J 63:584–591

    Article  CAS  Google Scholar 

  • Conte MH, Weber JC, Carlson PJ, Flanagan LB (2003) Molecular and carbon isotope composition of leaf waste in vegetation and aerosols in northern prairie ecosystem. Oecologia 135:67–77

    PubMed  Google Scholar 

  • Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149

    Article  CAS  Google Scholar 

  • DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506

    Article  CAS  Google Scholar 

  • Ehleringer JR (1991) 13C/12C fractionation and its utility in terrestrial plant studies. In: Coleman DC, Fry B (eds) Carbon isotopic techniques. Academic, New York, pp 187–200

    Google Scholar 

  • Ehleringer JR, Buchmann RN, Flanagan LB (2000) Carbon isotope ratios in belowground carbon cycle processes. Ecol Appl 10:412–422

    Article  Google Scholar 

  • Ekblad A, Nyberg G, Högberg P (2002) 13C-discrimination during microbial respiration of added C3-, C4- and 13C-labelled sugars to a C3-forest soil. Oecologia 131:245–249

    Article  Google Scholar 

  • Fernandez I, Cadisch G (2003) Discrimination against 13C during degradation of simple and complex substrates of two white rot fungi. Rapid Commun Mass Spectrom 17:2614–2620

    Article  CAS  PubMed  Google Scholar 

  • Follett FF, Paul EA, Leavitt SW, Halvorson AD, Lyon D, Peterson GA (1997) Carbon isotope ratios of Great Plains soils in wheat-fallow systems. Soil Sci Soc Am J 61:1068–1077

    Article  CAS  Google Scholar 

  • Frye WW, Blevins RL (1997) Soil organic matter under long-term no-tillage and conventional tillage corn production in Kentucky. In: Paul EA, Paustian K, Elliott ET, Cole CV (eds) Soil organic matter in temperate agroecosystems. CRC, Boca Raton, FL, USA, pp 227–234

    Google Scholar 

  • Fukada TKM, Hiscock KM, Dennis PF, Grischek T (2003) A dual isotope approach to identify denitrification at a river-band infiltration site. Water Res 37:3070–3078

    Article  CAS  PubMed  Google Scholar 

  • Gale WJ, Cambardella CA (2000) Carbon dynamics of surface residue- and root-derived organic matter under simulated no-till. Soil Sci Soc Am J 64:190–195

    Article  CAS  Google Scholar 

  • Gilmanov TG, Parton WJ, Ojima DS (1997) Testing the CENTURY ecosystem level model on data sets from eight grassland sites in the former USSR representing a wide climatic/soil gradient. Ecol Model 96:191–210

    Article  Google Scholar 

  • Gleixner G, Bol R, Balesdent J (1999) Molecular insight into soil carbon turnover. Rapid Commun Mass Spectrom 13:1278–1283

    Article  CAS  PubMed  Google Scholar 

  • Gleixner G, Poirier N, Bol R, Balesdent J (2002) Molecular dynamics of organic matter in a cultivated soil. Org Geochem 33:357–366

    Article  CAS  Google Scholar 

  • Goh KM, Molloy BPJ (1979) Radiocarbon dating of paleosols using soil organic matter components. J Soil Sci 29:340–349

    Google Scholar 

  • Goy KM (1991) Carbon dating. In: Coleman DC, Fry B (eds) Carbon isotope techniques. Academic, New York, pp 125–145

    Google Scholar 

  • Griebler C, Adrian L, Meekenstock RV, Richnow HH (2004) Stable carbon isotope fractionation during aerobic and anaerobic transformation of trichlorbenzene. Micro Ecol 48:313–321

    Article  CAS  Google Scholar 

  • Guo L, Falloon P, Coleman K, Zhou B, Li Y, Lin E, Zhang F (2007) Application of the RothC model to the results of long-term experiments on typical upland soils in northern China. Soil use and management 23:63–70

    Article  CAS  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochem 48:115–146

    Article  CAS  Google Scholar 

  • Hérbert Y, Guigo E, Loulet O (2001) The response of root/shoot partitioning and root morphology to light reductions in maize. Crop Sci 41:363–371

    Article  Google Scholar 

  • Huang Y, Eglinton G, Ineson P, Bol R, Harkness DD (1999) The effects of nitrogen fertilization and elevated CO2 on the lipid biosynthesis and carbon isotopic discrimination in birch seedlings (Betula pendula). Plant Soil 216:35–45

    Article  CAS  Google Scholar 

  • Huggins DR, Clapp CE, Allmaras RR, Lamb JA, Layese MF (1998) Carbon dynamics in corn-soybean sequences as estimated from natural carbon-13 abundance. Soil Sci Soc Am J 62:195–203

    Article  CAS  Google Scholar 

  • Huggins DR, Allmaras RR, Clapp CE, Lamb JA, Randell G (2007) Corn-soybean sequence and tillage effect on soil carbon dynamics and storage. Soil Sci Soc Am J 71:145–154

    Article  CAS  Google Scholar 

  • Johnson JMF, Allmaras RR, Reicosky DC (2006) Estimating source carbon from crop residues, roots, and rhizodeposits using the national grain-yield data-base. Agron J 98:622–636

    Article  CAS  Google Scholar 

  • Kuzyakov YV (2001) Tracer studies of carbon translocation by plants from the atmosphere into the soil. Eurasian Soil Sci 34:28–42

    Google Scholar 

  • Kuzyakov Y, Cheng W (2001) Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biol Biochem 33:1915–1925

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon inputs by plants into the soil. Rev J Plant Nutr Soil Sci 163:421–431

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Larionova AA (2005) Root and rhizomicrobial respiration: a review of approaches to estimate respiration by autotrophic and heterotrophic organisms in soil. J Plant Nutr Soil Sci 168:503–520

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Larionova AA (2006) Contribution of rhizomicrobial and root respiration to CO2 emission from soil (a review). Eurasian Soil Sci 39:753–764

    Article  Google Scholar 

  • Larson WE, Clapp CE, Pierre WH, Morachan YB (1972) Effect of increasing amounts of organic residues on continuous corn: organic carbon, nitrogen, phosphorous, and sulfur. Agron J 64:204–208

    Article  Google Scholar 

  • Lichtfouse E, Dou S, Girardin C, Grably M, Balesdent J, Behar F, Vandenbroucke M (1995) Unexpected 13C-enrichment of organic components from wheat crop soils: evidence for the in situ origin of soil organic matter. Org Geochem 23:865–868

    Article  CAS  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323

    Article  Google Scholar 

  • Martel YA, Paul EA (1974) The use of radiocarbon dating of organic matter in the study of soil genesis. Soil Sci Soc Am J 38:501–506

    Article  CAS  Google Scholar 

  • McVay KA, Budde JA, Fabrizzi K, Mikha MM, Rice CW, Schlegel AJ, Peterson DE, Sweebey DW, Thompson C (2006) Management effects on soil physical properties in long-term tillage studies in Kansas. Soil Sci Soc Am J 70:434–438

    Article  CAS  Google Scholar 

  • Melnitchouck A, Leinweber P, Eckhardt KU, Beese R (2005) Qualitative differences between day- and night-time rhizodeposition in maize (Zea mays L.) as investigated by pyrolysis-field ionization mass spectrometry. Soil Biol Biochem 37:155–162

    Article  CAS  Google Scholar 

  • Mikha MM, Rice CW, Benjamin JG (2006) Estimating soil mineralizable nitrogen under different management practices. Soil Sci Soc Am J 70:1522–1531

    Article  CAS  Google Scholar 

  • Molina JAE, Clapp CE, Linden DR, Allmaras RR, Layese MF, Dowdy RH, Cheng HH (2001) Modeling of incorporation of corn (Zea mays) carbon from roots and rhizodeposition into soil organic matter. Soil Biol Biochem 33:83–92

    Article  CAS  Google Scholar 

  • Morachan YB, Modenhauer WC, Larson WE (1972) Effects of increasing amount of organic residues on continuous corn: 1. Yields and soil physical properties. Agron J 64:199–203

    Article  Google Scholar 

  • Nadelhoffer KJ, Fry B (1988) Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Sci Soc Am J 52:1633–1640

    Article  Google Scholar 

  • Olk DC (2006) A chemical fractionation for chemical structure-function relations of soil organic matter in nutrient cycling. Soil Sci Soc Am J 70:1013–1022

    Article  CAS  Google Scholar 

  • Olk DC, Gregorich EG (2006) Overview of the symposium proceedingsof the meaningful pools in determining soil carbon and nitrogen dynamics. Soil Sci Soc Am J 70:967–974

    Article  CAS  Google Scholar 

  • Ortega R, Peterson GA, Westfall DG (2002) Residue accumulation and changes in soil organic matter as affected by cropping intensity in no-till dryland agroecosystems. Agron J 94:944–954

    Article  Google Scholar 

  • Parton WJ, Scurlock JMO, Ojima DS, Gilmanov TG, Scholes RJ et al (1993) Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochem Cycles 7:785–810

    Article  CAS  Google Scholar 

  • Paul EA, Clark FE (1989) Soil microbiology and biochemistry. Academic, New York

    Google Scholar 

  • Paul EA, Follet RF, Leavitt SW, Halvorson A, Peterson GA, Lyon DJ (1997) Radiocarbon dating for determination of soil organic matter pool sizes and dynamics. Soil Sci Soc Am J 61:1058–1067

    Article  CAS  Google Scholar 

  • Peterson GA, Westfall DG (1997) Management of dryland agroecosystems in the central Great Plains of Colorado. In: Paul EA et al (eds) Soil organic matter in temperate agroecosystems. CRC, New York, pp 371–380

    Google Scholar 

  • Pikul JL, Johnson JMF, Schumacher TE, Vigil M, Riedell WE (2008) Change in surface soil carbon under rotated corn in Eastern South Dakota. Soil Sci Soc Am J 72:1738–1744

    Article  CAS  Google Scholar 

  • Prakash V, Kundu S, Ghosh BN, Singh RD, Gupta HS (2002) Annual carbon input to soil through rainfed soybean (Glycine max) - wheat (Triticum aestivum). Indian J Agric Sci 72:14–17

    Google Scholar 

  • Puget P, Drinkwater LE (2001) Short-term dynamics of root- and shoot-derived carbon from a leguminous green manure. Soil Sci Soc Am J 65:771–779

    Article  CAS  Google Scholar 

  • Richter DD, Hofmockel M, Callaham MA, Powlson DS, Smith P (2007) Long-term soil experiments: keys to manage Earth’s rapidly changing ecosystem. Soil Sci Soc Am J 71:266–279

    Article  CAS  Google Scholar 

  • Rochette P, Flanagan LB (1997) Quantifying rhizosphere respiration in a corn crop under field conditions. Soil Sci Soc Am J 61:466–474

    Article  CAS  Google Scholar 

  • Rochette P, Angers DA, Flanagan LB (1999) Maize residue decomposition measurements using soil surface carbon dioxide fluxes and natural abundance of carbon-13. Soil Sci Am J 63:1385–1396

    Article  CAS  Google Scholar 

  • Russell AE, Laird DA, Parkin TB, Mallarino AP (2005) Impact of nitrogen fertilization and cropping systems on carbon sequestration in Midwestern Mollisols. Soil Sci Soc Am J 69:413–422

    Article  CAS  Google Scholar 

  • Šantru˚čková H, Bird MI, Lloyd J (2000) Microbial processes and carbon-isotope fractionation in tropical and temperate grassland soils. Funct Ecol 14:108–114

    Article  Google Scholar 

  • Sisti CPJ, Dos Santos HP, Kohhann R, Alves BJR, Urquiaga S, Boddey RM (2004) Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in Southern Brazil. Soil Till Res 76:39–58

    Article  Google Scholar 

  • Six J, Jastrow JD (2002) Organic matter turnover. In: Lal R (ed) Encyclopedia of soil science. Marcel Dekker, New York, pp 936–942

    Google Scholar 

  • Skjemstad JO, Spouncer LR, Cowie B, Swift RS (2004) Calibration of the Rathamsted organic carbon turnover model using measurable soil organic carbon pools. Aus J Soil Res 42:79–88

    Article  CAS  Google Scholar 

  • Soon YK, Malhi SS (2005) Soil nitrogen dynamics as affected by landscape position and nitrogen fertilizer. Can J Soil Sci 85:579–587

    Google Scholar 

  • Spence MJ, Bottrell SH, Thornton SI, Richnow HH, Spence KH (2005) Hydrochemical and isotopic effects associated with petroleum fuel biodegradation pathways in a chalk aquifer. J Con Hydrol 79:67–88

    Article  CAS  Google Scholar 

  • Stout JD, Goh KM, Rafter TA (1981) Chemistry and turnover of naturally occurring resistant organic compounds in soil. In: Paul EA, Ladd JN (eds). Soil Biochemestry (vol 5). Marcel Dekker inc., New York, pp 1–73

    Google Scholar 

  • Torbert HA, Prior SA, Rogers HH, Wood CW (2000) Review of elevated atmospheric CO2 effects on agro-ecosystem: Residue decomposition processes and soil C storage. Plant Soil 224:59–73

    Article  CAS  Google Scholar 

  • Ueda S, Go CSU, Ishizuka S, Tsuruta H, Iswandi A, Murdiyarso D (2005) Isotopic assessment of CO2 production through organic matter decomposition in the tropics. Nutr Cycling Agroecosys 71:109–116

    Article  CAS  Google Scholar 

  • VandenBygaart AJ, Gregorich EG, Angers DA (2003) Influence of agricultural management on soil organic carbon: a compendium and assessment of Canadian studies. Can J Soil Sci 83:363–380

    CAS  Google Scholar 

  • Varvel GE (2006) Soil organic carbon changes in diversified rotations of the western Corn Belt. Agron J 70:426–433

    CAS  Google Scholar 

  • West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Sci Soc Am J 66:1930–1946

    Article  CAS  Google Scholar 

  • Wichern F, Eberhardt E, Mayer J, Joergensen KE, Müller T (2008) Nitrogen rhizodeposition in agricultural crops methods, estimates and future prospects. Soil Biochem 40:30–48

    Article  CAS  Google Scholar 

  • Wilhelm WW, Johnson JMF, Hatfield JL, Voorhees WB, Linden DR (2004) Crop and soil productivity response to corn residue removal: a literature review. Agron J 96:1–17

    Article  Google Scholar 

  • Wilts AR, Reicosky DC, Allmaras RR, Clapp CE (2004) Long-term corn residue effects: harvest alternatives, soil carbon turnover, and root-derived carbon. Soil Sci Soc Am J 68:1342–1351

    Article  CAS  Google Scholar 

  • Wolf DC, Legg JO, Boutton TW (1994) Isotopic methods for the study of soil organic matter. In: Weaver RW et al (eds) Methods of soil analysis. Part 2: Microbial and biochemical properties. SSSA Book Ser. 5.. SSSA, Madison, WI, pp 865–908

    Google Scholar 

  • Wynn JG, Bird MI, Wong VNL (2005) Rayleigh distillation and the depth profile of 13C/12C ratios of soil organic carbon from soils of disparate texture in Iron range National Park, Far North Queensland. Aus Geochim Cosmochim Acta 69:1961–1973

    Article  CAS  Google Scholar 

  • Zach A, Tiessen H, Noellemeyer N (2006) Carbon turnover and carbon-13 abundance under land use change in semi-savanna soils of La Pampa. Argent Soil Sci Soc Am J 70:1541–1546

    Article  CAS  Google Scholar 

  • Zimmermann M, Leifeld J, Schmidt MWI, Smith P, Fuhrer J (2007) Measured soil organic matter fractions can be related to pools in the RothC model. Eur J Soil Sci 58:658–667

    Article  Google Scholar 

Download references

Acknowledgements

Support for this project was provided by the South Dakota Corn Utilization Council, South Dakota Soybean Research and Promotion Council, NRCS, USDA-CSREES-seed technology grant, South Dakota 2010 initiative, USDA-SARE (enc07-095, 2007-47001-03883), and NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Clay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pati, F.M., Clay, D.E., Carlson, G., Clay, S.A. (2010). Non-isotopic and 13C Isotopic Approaches to Calculate Soil Organic Carbon Maintenance Requirement. In: Lichtfouse, E. (eds) Sociology, Organic Farming, Climate Change and Soil Science. Sustainable Agriculture Reviews, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3333-8_8

Download citation

Publish with us

Policies and ethics