Skip to main content

Biocommunication of Fungal Organisms

  • Chapter
  • First Online:
Book cover Biocommunication and Natural Genome Editing
  • 715 Accesses

Abstract

Fungal Organisms are the only eukaryotes which assemble unicellular and multicellular organisms which seems to be an indicator of their ancestral role in the evolution of multicellular eukaryotes such as animals and plants. Coordination and organisation processes occur in all organismic kingdoms, and in fungi these are seen during the formation of fruiting bodies (intraorganismic), between species of the same kind (interorganismic) and between non-fungal organisms (transorganismic). These involve rule-governed sign-mediated interactions, the signalling processes being nothing other than distinct biocommunicative processes. The semio-chemicals used are of biotic origin, in contrast to chemical indicators that trigger the fungal organism to react in a specific manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi K, Hamer JE (1998) Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell 10:1361–1374

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Monge R, Román E, Arana DM, Pla J, Nombela C (2009) Fungi sensing environmental stress. Clin Microbiol Infect 15:17–19

    Article  CAS  PubMed  Google Scholar 

  • Alspaugh JA, Cavallo LM, Perfect JR et al. (2000) Ras1 regulates filamenta-tion, mating and growth at high temperature of Cryptococcus neoformans. Mol Microbiol 36:352–365

    Article  CAS  PubMed  Google Scholar 

  • Banuett F (1998) Signalling in the yeasts: an informational cascade with links to the filamentous fungi. Microbiol Mol Biol Rev 62:249–274

    CAS  PubMed  Google Scholar 

  • Bardwell L (2004) A walk-through of the yeast mating pheromone response pathway. Peptides 25:1465–1476

    Article  CAS  PubMed  Google Scholar 

  • Bauer R, Oberwinkler F (2008) Cellular basidiomycete – fungus interactions. In: Varma A, Abbott L, Werner D et al. (eds) Plant Surface Microbiology. Springer, Berlin/Heidelberg

    Google Scholar 

  • Beck T, Hall MN (1999) The TOR signalling pathway controls nuclear localization of nu-trient-regulated transcription factors. Nature 402:689–692

    Article  CAS  PubMed  Google Scholar 

  • Bell-Pederson D, Dunlap JC, Loros JJ (1996) Distinct cis-acting elements mediate clock, light, and developmental regulation of the Neurospora crassa eas (ccg2)gene. Mol Cell Biol 16:513–521

    Google Scholar 

  • Belozerskaya TA (1998) Cell-to-cell commu-nication in differentiation of mycelial fungi. Membr Cell Biol 11:831–840

    CAS  PubMed  Google Scholar 

  • Bhabhra R, Zhao W, Rhodes JC et al. (2006) Nucleolar localization of asper-gillus fumigatus CgrA is temperature-dependent. Fungal Genet Biol 43:1–64

    Article  CAS  PubMed  Google Scholar 

  • Borges-Walmsley MI, Walmsley AR (2000) cAMP signalling in pathogenic fungi: control of dimorphic switching and pathogenicity. Trends Microbiol 8:133–141

    Article  CAS  PubMed  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Casadevall A (2006) Fungal virulence, ver-tebrate endothermy, and dinosaur extinction: is there a connection? Fungal Genet Biol 42:98–106

    Article  Google Scholar 

  • Cornelius ML, Bland JM, Daigle DJ et al. (2004) Effect of a lignin-degrading fungus on feeding preferences of Formosan sub-terranean Termite (Isoptera: Rhinotermitidae) for different commercial lumber. J Econ Entomol 97:1025–1035

    Article  PubMed  Google Scholar 

  • Cutler NS, Pan X, Heitman J et al. (2001) The TOR signal transduction cascade controls cellular differentiation in response to nutrients. Mol Biol Cell 12:4103–4113

    CAS  PubMed  Google Scholar 

  • De Paula RM, Lamb TM, Bennett L et al. (2008) A connection between MAPK pathways and circadian clocks. Cell Cycle 7:2630–2634

    PubMed  Google Scholar 

  • Dechant R, Peter M (2008) Nutrient signals driving cell growth. Curr Opin Cell Biol 20:678–687

    Article  CAS  PubMed  Google Scholar 

  • Dix NJ, Webster J (1995) Fungal Ecology. Chapman & Hall, London

    Google Scholar 

  • Dohlman HG (2002) G proteins and pheromone signalling. Ann Rev Physiol 64:129–152

    Article  CAS  Google Scholar 

  • Dohlman HG, Slessareva JE (2006) Pheromone signaling pathways in yeast. Sci Signal 364: cm6

    Google Scholar 

  • Dunlap JC, Loros JJ, Denault D et al. (2004) Genetics and molecular biology of circadian rhythms. In: Brambl R, Marzluf GA (eds) The Mycota III. Biochemistry and Molecular Biology. 2nd ed. Springer-Verlag, Berlin/Heidelberg

    Google Scholar 

  • D’Souza CA, Heitman J (2001) Conserved cAMP signaling cascades regulate fungal de-velopment and virulence. FEMS Microbiol Rev 25:349–364

    Article  PubMed  Google Scholar 

  • FGSC- Fungal Genetics Stock Center (2005). The Neurospora Homepage. http://www.fgsc.net/Neurospora/neurospora.html

  • Fernandes L, Araujo MAM, Amaral A et al. (2005) Cell signaling pathways in Paracoccidioides brasiliensis – inferred from comparism with other fungi. Genet Mol Res 4:216–231

    CAS  PubMed  Google Scholar 

  • Galagan JE, Selker EU (2004) RIP: the evolutionary cost of genome defense. Trends Genet 20:417–423

    Article  CAS  PubMed  Google Scholar 

  • Gessler NN, Aver’yanov AA, Belozerskaya TA (2007) Reactive oxygen species in regulation of fungal development. Biochemistry (Mosc) 72:1091–1109

    Article  CAS  Google Scholar 

  • Glass NL, Jacobson DJ, Shiu PKT (2000) The genetics of hyphal fusion and vege-tative incompatibility in filamentous ascomycete fungi. Ann Rev Genet 34:165–186

    Article  CAS  PubMed  Google Scholar 

  • Glass NL, Kaneko I (2003) Fatal attraction: nonself recognition and heterokaryon incompatibility in filamentous fungi. Eukaryot Cell 2:1–8

    Article  CAS  PubMed  Google Scholar 

  • Glass NL, Saupe SJ (2002) Vegetative incompatibility in filamentous ascomycetes. In: Osiewacz HD (ed) Molecular Biology of Fungal Development. Marcel Dekker, New York

    Google Scholar 

  • Griffin DH (1994) Fungal Physiology. 2nd ed. Wiley-Liss, New York

    Google Scholar 

  • Gross L (2006) A chemical facilitator of plant-fungus communication. PLoS Biology 4:e238–e242

    Article  Google Scholar 

  • Hamann A, Brust D, Osiewacz HD (2008) Apoptosis pathways in fungal growth, development and aging. Trends Microbiol doi:10.1016/j.tim.2008.03.003

    Google Scholar 

  • Hartmann HA, Kahmann R, Bölker M (1996) The pheromone response factor coordinates filamentous growth and pathogenicity in ustilago maydis. EMBO J 15:1632–1641

    CAS  PubMed  Google Scholar 

  • Hartmann HA, Krüger J, Lottspeich F et al. (1999) Environmental signals controlling sexual development of the corn Smut fungus Ustilago maydis through the tran-scriptional regulator Prf1. Plant Cell 11:1293–1305

    Article  CAS  PubMed  Google Scholar 

  • Hemenway CS, Heitman J (1999) Calcineurin: structure, function, and inhibition. Cell Biochem Biophys 30:115–151

    Article  CAS  PubMed  Google Scholar 

  • Herranz S, Rodriguez JM, Bussink HJ et al. (2005) Arrestin-related proteins mediate pH signalling in fungi. Proc Natl Acad Sci U S A 102:12141–12146

    Article  CAS  PubMed  Google Scholar 

  • Hoffman CS (2005) Except in every detail: comparing and contrasting G-Protein signaling in Saccharomyces cerevisiae ans Schizosaccharomyces pombe. Eukaryot Cell 4:495–503

    Article  CAS  PubMed  Google Scholar 

  • Hogan DA (2006) Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryot Cell 584:613–619

    Article  Google Scholar 

  • Hohmann S (2002) Osmotic stress signalling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  CAS  PubMed  Google Scholar 

  • Humber RA (2008) Evolution of entomopathogenicity in fungi. J Invertebr Pathol 98:262–266

    Article  PubMed  Google Scholar 

  • Jakupovic M, Heintz M, Reichmann P et al. (2006) Microarray analysis of expressed sequence tags from haustoria of the rust fungus Uromyces fabae. Fungal Genet Biol 43:8–19

    Article  CAS  PubMed  Google Scholar 

  • Kays AM, Borkovich KA (2004) Signal transduction pathways mediated bxy heterotrimeric G proteins. In: Brambl R, Marzluf GA (eds) The Mycota III. Springer, Berlin

    Google Scholar 

  • Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428:617–624

    Article  CAS  PubMed  Google Scholar 

  • Kellis M, Patterson N, Endrizzi M et al. (2003) Sequencing and comparism of yeast species to identify genes and regulatory elements. Nature 423:241–254

    Article  CAS  PubMed  Google Scholar 

  • Kopper BJ, Klepzig KD, Raffa KF (2004) Components of antagonism and mutualism in Ips pini – fungal interactions: relationship to a life history of colonizing highly stressed and dead trees. Environ Entomol 33:28–34

    Article  Google Scholar 

  • Krantz M, Becit E, Hohmann S (2006) Comparative genomics of the HOG-signalling system in fungi. Curr Genet 49:137–151

    Article  CAS  PubMed  Google Scholar 

  • Krüger J, Loubradou G, Regenfelder E et al. (1998) Crosstalk be-tween cAMP and pheromone signalling pathways in Ustilago Maydis. Mol Gen Genet 260:193–198

    Article  PubMed  Google Scholar 

  • Lammers PJ (2004) Symbiotic signaling: new functions for familiar proteins. New Phytol 161:324–326

    Article  Google Scholar 

  • Lang BF, O’Kelly C, Nerad T et al. (2002) The closest unicellular relatives of animals. Curr Biol 12: 1773–1778

    Article  CAS  PubMed  Google Scholar 

  • Lee N, D’Souza CA, Kronstad JW (2003) Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi. Ann Rev Phytopathol 41:399–427

    Article  CAS  Google Scholar 

  • Lengeler KB, Davidson RC, D’Souza C et al. (2000) Signal Transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64:746–785

    Article  CAS  PubMed  Google Scholar 

  • Levin D (2005) Cell wall integrity signalling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69:262–291

    Article  CAS  PubMed  Google Scholar 

  • Levina NN, Lew RR (2006) The role of tipp-localized mitochondria in hyphal growth. Fungal Genet Biol 43:65–134

    Article  CAS  PubMed  Google Scholar 

  • Lott TJ, Fundyga RE, Kuykendall RJ et al. (2006) The human commensal yeast, Candida albicans, has an ancient origin. Fungal Genet Biol 42:444–451

    Article  Google Scholar 

  • Margulis L, Schwartz KV (1988) Five Kingdoms. W. H. Freeman and Company, New York

    Google Scholar 

  • McAlester G, O’Gara F, Morrissey JP (2008) Signal-mediated interactions between Pseudomonas aerugiunosa and Candida albicans. J Med Microbiol 57:563–569

    Google Scholar 

  • Mitchell TK, Dean RA (1995) The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell 7:1869–1878

    Article  CAS  PubMed  Google Scholar 

  • Moradas-Ferreira P, Costa V (2000) Adaptive response of the yeast Saccharomyces cerevisiae to reactive oxygen species: defenses, damage and death. Redox Report 2000 5:277–285

    Google Scholar 

  • Muirhead CA, Glass NL, Slatkin M (2002) Multilocus self-recognition systems in fungi as a cause of trans-species polymorphism. Genetics 161:633–641

    CAS  PubMed  Google Scholar 

  • National Institute of Allergy and Infectious Diseases (NIAID) (1993) Molecular Medical Mycology SECRETION. Proceedings of the NIAID Workshop in Medical Mycology. University of Minnesota, Minneapolis, June 24–26, 1993 http://www.niaid.nih.gov/dmid/meetings/mycology/secretion.htm

  • Poulsen M, Boomsma JJ (2005) Mutualistic fungi control crop diversity in fungus-growing ants. Science 307:741–744

    Article  CAS  PubMed  Google Scholar 

  • Prusty R, Grisafi P, Fink GR (2004) The plant hormone indoleacetic acid induces inva-sive growth in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 101:4153–4157

    Article  CAS  PubMed  Google Scholar 

  • Raven JA (2001) Selection pressures on stomatal evolution. New Phytol 153:371–386

    Article  Google Scholar 

  • Reynolds TB, Fink GR (2001) Bakers’ yeast, a model for fungal biofilm formation. Science 291:806–807

    Article  Google Scholar 

  • Rooney AP, Ward TJ (2005) Evolution of a large ribosomal RNA multigene family in filamentous fungi: birth and dead of a concerted evolution paradigm. Proc Natl Acad Sci U S A 102:5084–5089

    Article  CAS  PubMed  Google Scholar 

  • Sanders WB (2001) Lichens: interface between mycology and plant morphology. Bioscience 51:1025–1035

    Article  Google Scholar 

  • Sanders WB (2006) A feeling for the superorganism: expression of plant form in the lichen thallus. Bot J Linn Soc 150:89–99

    Article  Google Scholar 

  • Santos JL, Shiozaki K (2004) Phosphorelay signaling in yeast in response to changes in osmolarity. Sci Signal 262 DOI: 10.1126/stke.2622004tr12

    Google Scholar 

  • Schultze K, Schimek C, Wostemeyer J et al. (2005) Sexuality and parasitism share common regulatory pathways in the fungus Parasitella parasitica. Gene 348:33–44

    Article  CAS  PubMed  Google Scholar 

  • Schwarze FWMR, Engels J, Mattheck C (2004) Fungal Strategies of Wood Decay in Trees. 2nd ed. Springer, Heidelberg

    Google Scholar 

  • Selker EU, Tountas NA, Cross SH et al. (2003) The me-thylated component of the Neurospora crassa genome. Nature 422:893–897

    Article  CAS  PubMed  Google Scholar 

  • Sullivan BT, Berisford CW (2004) Semio-chemicals from fungal associates of bark beetles may mediate host location behavior of parasitoids. J Chem Ecol 30:703–717

    Article  CAS  PubMed  Google Scholar 

  • Tan Y, Merrow M, Roenneberg T (2004) Photoperiodism in Neurospora Crassa. J Biol Rhyth 19:135–143

    Article  Google Scholar 

  • Van Diepeningen AD, Debets AJM, Hoekstra RF (2006) Dynamics of dsRNA mycoviruses in black aspergillus populations. Fungal Genet Biol doi:10.1016/j.fgb.2006.01.014

    Google Scholar 

  • Villarreal LP (2005) Viruses and the Evo-lution of Life. ASM Press, Washington

    Google Scholar 

  • Villarreal LP (2009) Origin of Group Identity. Viruses, Addiction and Cooperation. Springer, New York

    Google Scholar 

  • Volk T (2002) The humongous fungus–ten years later. Inoculum 53:4–8

    Google Scholar 

  • Wang P, Heitman J (1999) Signal transduction cascades regulating mating, filamentation and virulence in Cryptococcus neoformans. Curr Opin Microbiol 2:358–362

    Article  CAS  PubMed  Google Scholar 

  • Weld RJ, Plummer KM, Carpenter MA et al. (2006) Approaches to functional genomics in filamentous fungi. Cell Res 16:31–44

    Article  CAS  PubMed  Google Scholar 

  • Whisson SC, Avrova AO, Lavrova O et al. (2005) Families of short interspersed elements in the genome of the oomycete plant pathogen, Phytophtora infestans. Fungal Genet Biol 42:351–365

    Article  CAS  PubMed  Google Scholar 

  • Witzany G (2006) Plant Communication from biosemiotic perspective. Plant Sign Behav 1:169–178

    Google Scholar 

  • Witzany G (2007) The Logos of the Bios 2. Biocommunication. Umweb, Helsinki

    Google Scholar 

  • Wu J, Glass NL (2001) Identification of specificity determinants and generation of alleles with novel specificity at the het-c heterokaryon incompatibility locus of Neurospora crassa. Mol Cell Biol 21:1045–1057

    Article  CAS  PubMed  Google Scholar 

  • Xue C, Hsueh YP, Heitman J (2008) Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiol Rev 32:1010–1032

    Article  CAS  PubMed  Google Scholar 

  • Ingold CT, Hudson HJ (1993) The Biology of Fungi. Chapman & Hall, London

    Google Scholar 

  • Jennings DH (1995) Physiology of Fungal Nutrition. Cambridge University Press, New York

    Book  Google Scholar 

  • Yu RC, Pesce CG, Colman-Lerner A et al. (2008) Negative feedback that improves information transmission in yeast signalling. Nature 456:755–761

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Witzany, G. (2010). Biocommunication of Fungal Organisms. In: Biocommunication and Natural Genome Editing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3319-2_5

Download citation

Publish with us

Policies and ethics