Skip to main content

Plant Communication

  • Chapter
  • First Online:
Biocommunication and Natural Genome Editing

Abstract

Plants are sessile, highly sensitive organisms that actively compete for environmental resources both above and below the ground. They assess their surroundings, estimate how much energy they need for particular goals, and then realise the optimum variant. They take measures to control certain environmental resources. They perceive themselves and can distinguish between ‘self’ and ‘non-self’. This capability allows them to protect their territory. They process and evaluate information and then modify their behaviour accordingly. These highly diverse competences show us that this is possible owing to parallel communication processes in the plant body (intraorganismic), between the same and different species (interorganismic), and between plants and non-plant organisms (transorganismic). Intraorganismic communication involves sign-mediated interactions in cells (intracellular) and between cells (intercellular). Intercellular communication processes are crucial in coordinating growth and development, shape and dynamics. Such communication must function both on the local level and between widely separated plant parts. This allows plants to react in a differentiated manner to their current developmental status and physiological influences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alpi A, Amrhein N, Bertl A et al. (2007) Plant neurobiology: no brain, no gain? Trends Plant Sci 12:135–136

    Article  CAS  PubMed  Google Scholar 

  • Amzallag GN (2002) Brassinosteroids as metahormones: evidences from specific influence during critical period in Sorghum develpoment. Plant Biol 4:656–663

    Article  CAS  Google Scholar 

  • Andersson J (2005) Lateral gene transfer in eukaryotes. Cell Mol Life Sci 62:1182–1197

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL et al. (2003) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Google Scholar 

  • Ballare CL (1999) Keeping up with the neighbours: phytochrome sensing and other signalling mechanisms. Trends Plant Sci 4:97–102

    Article  PubMed  Google Scholar 

  • Baluska F, Mancuso S, Volkmann D et al. (2004) Root apices as plant command centres: the unique, ‘brain-like’ status of the root apex transition zone. Biologia (Bratislava) 59:7–19

    CAS  Google Scholar 

  • Baluska F, Volkmann D, Menzel D (2005) Plant synapses: actin-based domains for cell-to-cell communication. Trends in Plant Sci 10:106–111

    CAS  Google Scholar 

  • Baluska F, Volkman D, Hlavacka A, Mancuso S et al. (2006) Neurobiological view of plants and their body plan. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in Plants. Springer, Berlin/Heidelberg

    Chapter  Google Scholar 

  • Baluska F, Barlow PW, Volkmann D et al. (2007) Gravity related paradoxes in plants: plant neurobiology provides the means for their resolution. In: Witzany G (ed) Biosemiotics in Transdisciplinary Contexts. Umweb, Helsinki

    Google Scholar 

  • Baluska F, Mancuso S (2007) Plant neurobiology as a paradigm shift not only in the plant sciences. Plant Sign Behav 2:205–207

    Google Scholar 

  • Barlow PW (2008) Reflections on ‘plant neurobiology’. Biosystems 92:132–147

    Article  PubMed  Google Scholar 

  • Bell P (2001) Viral eukaryogenesis: was the ancestor of the nucleus a complex DNA virus? J Mol Evol 53:251–256

    Article  CAS  PubMed  Google Scholar 

  • Bender J (2004) Chromatin-based silencing mechanisms. Curr Opin Plant Biol 7:521–526

    Article  CAS  PubMed  Google Scholar 

  • Ben Jacob E (2004) Bacterial linguistic communication and social intelligence. Trends Microbiol1 2:366–372

    Article  CAS  Google Scholar 

  • Bonke M, Tähtiharju S, Helariutta Y (2005) Lessons from the root apex. In: Fleming AJ (ed) Intercellular Communication in Plants. Ann Plant Rev, Blackwell Publishing, Oxford, 16: 199–223

    Google Scholar 

  • Braam J (2005) In touch: plant responses to mechanical stimuli. New Phytol 165:373–389

    Article  PubMed  Google Scholar 

  • Brenner ED, Stahlberg R, Mancuso S et al. (2006) Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci 11:413–419

    Article  CAS  PubMed  Google Scholar 

  • Brenner ED, Stahlberg R, Mancuso S et al. (2007) Response to Alpi et al.: Plant neurobiology: the gain is more than the name. Trends in Plant Sci 12:285–286

    Article  CAS  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Buckley TN (2005) The control of stomata by water balance. New Phytol 168:275–292

    Article  CAS  PubMed  Google Scholar 

  • Callaway RM (2002) The detection of neighbors by plants. Trends Ecol Evol 17:104–105

    Article  Google Scholar 

  • Campagnoni P, Blasius B, Nick P (2003) Auxin transport synchronizes the pattern of cell division in a tobacco cell line. Plant Physiol 133:1251–1260

    Article  CAS  Google Scholar 

  • Carol RJ, Dolan L (2006) The role of reactive oxygen species in cell growth: lessons from root hairs. J Exp Bot 57:1829–1834

    Article  CAS  PubMed  Google Scholar 

  • Casson SA, Lindsey K (2003) Genes and signalling in root development. New Phytol 158:11–38

    Google Scholar 

  • Coupland G (2005) Intercellular communication during floral initiation and development. In: Fleming AJ (ed) Intercellular Communication in Plants. Ann Plant Rev, Blackwell Publishing, Oxford, 16:178–197

    Google Scholar 

  • Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8:390–396

    Article  CAS  PubMed  Google Scholar 

  • Denison FR, Kiers TE (2004) Why are most rhizobia beneficial to their plants, rather than parasitic? Microb Infect 6:1235–1239

    Article  CAS  Google Scholar 

  • Dessaux Y (2004). Biological Communications and Interactions in the Rhizosphere. Presented at “Rhizosphere 2004”-congress, 12–17. September 2004, Munich/Germany

    Google Scholar 

  • De Vos M, Van Oosten VR, Jander G et al. (2007) Plants under attack. Plant Sign Behav 2:527–529

    Google Scholar 

  • Dugas DV, Bartel B (2004) MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol 7:512–520

    Article  CAS  PubMed  Google Scholar 

  • Dunn AK, Handelsman J (2002) Toward an understanding of microbial communities through analysis of communication networks. Antonie van Leeuwenhoeck 81:565–574

    Article  CAS  Google Scholar 

  • Dunoyer P, Voinnet O (2005a) The complex interplay between plant viruses and host RNA-silencing pathways. Curr Opin Plant Biol 8:415–423

    Article  CAS  PubMed  Google Scholar 

  • Dunoyer P, Voinnet O (2005b) RNA as a signalling molecule. In: Fleming AJ (ed) Intercellular Communication in Plants. Ann Plant Rev, Blackwell Publishing, Oxford, 16:49–83

    Google Scholar 

  • Eigen M, Winkler R (1975) Das Spiel. Naturgesetze steuern den Zufall. Pieper, München

    Google Scholar 

  • Engelberth J, Alborn HAT, Schmelz EY et al. (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci U S A 101:1781–1785

    Article  CAS  PubMed  Google Scholar 

  • Estabrock EM, Yoder JI (1998) Plant-plant communications: rhizosphere signalling between parasitic angiosperms and their hosts. Plant Physiol 116:1–7

    Article  Google Scholar 

  • Farmer E, Schulze-Lefert P (2005) Biotic interactions: from molecular networks to inter-organismal communities. Curr Opin Plant Biol 8:343–345

    Article  Google Scholar 

  • Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Invest 112:1291–1299

    CAS  PubMed  Google Scholar 

  • Fleming AJ (2005) The plant extracellular matrix and signalling. In: Fleming AJ (ed) Intercellular Communication in Plants. Ann Plant Rev, Blackwell Publishing, Oxford, 16:85–107

    Google Scholar 

  • Flores HE, Vivanco JM, Loyola-Vargas VM (1999) ‘Radicale’ biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:220–226

    Article  PubMed  Google Scholar 

  • Friml J, Wisniewsky J (2005) Auxin as an intercellular signal. In: Fleming AJ (ed) Intercellular Communication in Plants. Ann Plant Rev, Blackwell Publishing, Oxford, 16:1–26

    Google Scholar 

  • Gillespie T, Oparka KJ (2005) Plasmodesmata – gateways for intercellular communication in plants. In: Fleming AJ (ed) Intercellular Communication in Plants. Ann Plant Rev, Blackwell Publishing, Oxford, 16:109–146

    Google Scholar 

  • Goh CH, Nam HG, Park YS (2003) Stress memory in plants: a negative regulation of stomatal response and transient induction of rd22 gene to light in abscisic acid-entrained Arabidopsis plants. Plant J 36:240–255

    Article  CAS  PubMed  Google Scholar 

  • Golz JF (2005) Lessons from the vegetative shoot apex. In: Fleming AJ (ed) Intercellular Communication in Plants. Ann Plant Rev, Blackwell Publishing, Oxford, 16:147–177

    Google Scholar 

  • Guerts R, Fedorova E, Bisseling T (2005) Nod factor signalling genes and their function in the early stages of Rhizobium infection. Curr Opin Plant Biol 8:346–352

    Article  CAS  Google Scholar 

  • Han S, Green L, Schnell DJ (2009) The signal peptide peptidase is required for pollen function in Arabidopsis. Plant Physiol 149:1289–1301

    Article  CAS  PubMed  Google Scholar 

  • Hellmeier H, Erhard M, Schulze ED (1997) Biomass accumulation and water use under arid conditions. In: Bazzaz FA, Grace J (eds) Plant Resource Allocation. Academic Press, London

    Google Scholar 

  • Hirsch AM, Bauer DW, Bird DM et al. (2003) Molecular signals and receptors: controlling rhizosphere interacting between plants and other organisms. Ecol 84:858–868

    Article  Google Scholar 

  • Hiscock SJ, Bright J, McInnis SM et al. (2007) Signaling on the stigma. Plant Sign Behav 2:23–24

    Google Scholar 

  • Imaizumi-Anraku H, Takeda N, Carpentier M et al. (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433:527–531

    Article  CAS  PubMed  Google Scholar 

  • Jablonka E, Lamb MJ (2002) The changing concept of epigenetics. Ann NYAcad Sci U S A 981:82–96

    Google Scholar 

  • Jorgensen R (1993) The origin of land plants: a union of alga and fungus advanced by flavenoids. Biosystems 31:193–207

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen R (2004) Restructuring the genome in response to adaptive challenge: McClintock’s bold conjecture revisited. Cold Spring Harbor Symposia on Quantitative Biology 69: 349–354

    Article  CAS  PubMed  Google Scholar 

  • Kahmann R, Basse C (2001) Fungal gene expression during pathogenesis-related development and host plant colonization. Curr Opin Microbiol 4:374–380

    Article  CAS  PubMed  Google Scholar 

  • Kant MR, Ament K, Sabelis MW et al. (2004) Differential timing of spider mite-induced direct and indirect defenses in tomato plants. Plant Physiol 135:483–495

    Article  CAS  PubMed  Google Scholar 

  • Kempema LA, Cui Y, Holzer FM et al. (2007) Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiol 143:849–865

    Article  CAS  PubMed  Google Scholar 

  • Keyes J, O’Malley R, Kim D et al. (2000) Signaling organogenesis in parasitic angiosperms: xenognosin generation, perception and response. J Plant Growth Regul 19:217–231

    Google Scholar 

  • Kidner CA, Martienssen RA (2005) The developmental role of micro RNA in plants. Curr Opin Plant Biol 8:38–44

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Zambryski PC (2005) Cell to-cell communication via plasmodesmata during Arabidopsis embryogenesis. Curr Opin Plant Biol 8:593–599

    Article  CAS  PubMed  Google Scholar 

  • Kovalchuk I, Kovalchuk O, Kalck V et al. (2003) Pathogen-induced systemic plant signal triggers DNA rearrangements. Nature 423:760–762

    Article  CAS  PubMed  Google Scholar 

  • Kuhn T (1962) The Structure of Scientific Revolutions. The University of Chicago Press, Chicago

    Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  CAS  PubMed  Google Scholar 

  • Kurata T, Okada K, Wada T (2005) Intercellular movement of transcription factors. Curr Opin Plant Biol 8:619–624

    Article  CAS  Google Scholar 

  • La Cerra P, Bingham R (2002) The Origin of Minds. Harmony Books, New York

    Google Scholar 

  • Lammers PJ (2004) Symbiotic signalling: new functions for familiar proteins. New Phytol 16:324–326

    Article  Google Scholar 

  • Lee A, Hirsch AM (2006) Signals and responses. Plant Sign Behav 1:161–168

    Google Scholar 

  • Lolle SJ, Victor JL, Young JM et al. (2002) Genome-wide non-mendelian inheritance of extra-genomic information in Arabidopsis. Nature 434:505–509

    Article  CAS  Google Scholar 

  • Ma W, Smigel A, Tsai YC et al. (2008) Innate immunity signaling: cytosolic Ca2+ elevation is linked to downstream nitric oxide generation through the action of calmodulin or a calmodulin-like protein. Plant Physiol 148:818–828

    Article  CAS  PubMed  Google Scholar 

  • Martin KC (2004) Local protein synthesis during axon guidance and synaptic plasticity. Curr Opin Neurobiol 14:305–310

    Article  CAS  PubMed  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant pathogen interactions. Curr Opin Plant Biol 8:409–423

    Article  CAS  PubMed  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    Article  CAS  PubMed  Google Scholar 

  • McCubbin AG (2005) Lessons in signalling in plant self-incompatibility systems. In: Fleming AJ (ed) Intercellular Communication in Plants. Ann Plant Rev, Blackwell Publishing, Oxford, 16:240–275

    Google Scholar 

  • Meagher TR, Vassiliadis C (2005) Phenotypic impacts of repetitive DNA in flowering plants. New Phytol 168:71–80

    Article  CAS  PubMed  Google Scholar 

  • Mescher MC, Runyon JB, De Moraes CM (2006) Plant host finding by parasitic plants. Plant Sign Behav 1:284–286

    Google Scholar 

  • Mithöfer A, Wanner G, Boland W (2005) Effects of feeding spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol 137:1160–1168

    Article  PubMed  CAS  Google Scholar 

  • Moccia R, Chen D, Lyles V et al. (2003) An unbiased cDNA library prepared from isolated Aplysia sensory neuron processes is enriched for cytoskeletal and translational mRNAs. J Neurosci 23:9409–9417

    CAS  PubMed  Google Scholar 

  • Morita MT, Tasaka M (2004) Gravity sensing and signalling. Curr Opin Plant Biol 7:712–718

    Article  CAS  PubMed  Google Scholar 

  • Müller CB, Kraus J (2005) Symbiosis between grasses and asexual fungal endophytes. Curr Opin Plant Biol 8:450–456

    Article  PubMed  CAS  Google Scholar 

  • Nomura K, Melotto M, He SY (2005) Suppression of host defense in compatible plant-Pseudomonas syringae interactions. Curr Opin Plant Biol 8(4):361–368

    Article  CAS  PubMed  Google Scholar 

  • Nürnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249–266

    Article  PubMed  Google Scholar 

  • Pare PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–331

    Article  Google Scholar 

  • Peak D, West JD, Messinger SM et al. (2004) Evidence for complex collective dynamics and emergent-distributed computation in plants. Proc Natl Acad Sci U S A 101:918–922

    Article  CAS  PubMed  Google Scholar 

  • Pearce G, Ryan CA (2003) Systemic signalling in tomato plants for defense against herbivores: isolation and characterization of three novel defense-signalling glycopeptide hormones coded in a single precursor gene. J Biol Chem 278:30044–30050

    Article  CAS  PubMed  Google Scholar 

  • Pearce G, Bhattacharya R, Chen YC (2008) Peptide signals for plant defense display a more universal ole. Plant Sign Behav 3:1091–1092

    Google Scholar 

  • Pearson H (2005) Cress overturns textbook genetics. Nature 434:351–360

    Article  CAS  Google Scholar 

  • Press MC, Phoenix GK (2005) Impacts of parasitic plants on natural communities. New Phytol 166:737–751

    Article  PubMed  Google Scholar 

  • Rapp RA, Wendel JF (2005) Epigenetics and plant evolution. New Phytol 168:81–91

    Article  CAS  PubMed  Google Scholar 

  • Romero GQ, Benson WW (2005) Biotic interactions of mites, plants and leaf domatia. Curr Opin Plant Biol 8:436–440

    Article  CAS  PubMed  Google Scholar 

  • Ross JJ, Wolbang CM (2008) Auxin, gibberellins and the gravitropic response of grass leaf sheath pulvini. Plant Sign Behav 3:74–75

    Google Scholar 

  • Roossinck MJ (2005) Symbiosis versus competition in plant virus evolution. Nat Rev Microbiol 3:917–924

    Article  CAS  PubMed  Google Scholar 

  • Ryan F (2002) Darwin’s Blind Spot: Evolution Beyond Natural Selection. Houghton Mifflin Company, Boston

    Google Scholar 

  • Samaj J, Baluska F, Voigt B et al. (2004) Endocytosis, Actin Cytoskeleton and Signalling. Plant Physiol 135:1150–1161

    Article  CAS  PubMed  Google Scholar 

  • Samaj J, Read ND, Volkmann D et al. (2005) The endocytic network in plants. Trends Cell Biol 15:425–433

    Article  CAS  PubMed  Google Scholar 

  • Schilmiller AL, Howe GA (2005) Systemic signalling in the wound response. Curr Opin Plant Biol 8:369–377

    Article  CAS  PubMed  Google Scholar 

  • Schlicht M, Strnad M, Scanlon MJ et al. (2006) Auxin immunolocalization implicates vesicular neurotransmitter-like mode of polar auxin transport in root apices. Plant Sign Behav 1:122–133

    Google Scholar 

  • Schultz JC, Appel HM (2004) Cross-kingdom cross-talk: hormones shared by plants and their insect herbivores. Ecol 85:70–77

    Article  Google Scholar 

  • Shackelton LA, Holmes EC (2004) The evolution of large DNA viruses: combining genomic information of viruses and their hosts. Trends Microbiol 12:458–465

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Sahgal M, Johri BN (2003) Microbial communication in the rhizosphere: operation of quorum sensing. Curr Sci 85:1164–1172

    CAS  Google Scholar 

  • Srinivas BP, Hülskamp M (2005) Lessons from leaf epidermal patterning in plants. In: Fleming AJ (ed.) Intercellular Communication in Plants. Ann Plant Rev, Blackwell Publishing, Oxford, 16:225–239

    Google Scholar 

  • Strand A (2004) Plastid-to-nucleus signalling. Curr Opin Plant Biol 7:621–625

    Article  CAS  PubMed  Google Scholar 

  • Tassetto M, Maizel A, Osorio J et al. (2005) Plant and animal homeodomains use convergent mechanisms for intercellular transfer. EMBO Rep 6:885–890

    Article  CAS  PubMed  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N acylhomoserine lactone signal activities and affect population density dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13:637–648

    Article  CAS  PubMed  Google Scholar 

  • Thompson KR, Olofsdotter OK, Chen DY et al. (2004) Signaling from synapse to nucleus during long-term synaptic plasticity: a role for the classical active nuclear import pathway. Neuron 44:997–1009

    CAS  PubMed  Google Scholar 

  • Thummel CS, Chory J (2002) Steroid signaling in plants and insects – common themes different pathways. Genes Dev 16:3113–3129

    Article  CAS  PubMed  Google Scholar 

  • Tomilov AA, Tomilova NB, Abdallah I et al. (2005) Localized hormone fluxes and early haustorium development in the hemiparasitic plant Triphysaria versicolor. Plant Physiol 138:1469–1480

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  CAS  PubMed  Google Scholar 

  • Trewavas A (2003a) Aspects of plant intelligence. Ann Bot 92:1–20

    Article  CAS  PubMed  Google Scholar 

  • Trewavas A (2003b) Aspects of plant intelligence: an answer to firn. Ann Bot 93:353–357

    Article  Google Scholar 

  • Trewavas A (2005) Green plants as intelligent organisms. Trends Plant Sci 10:413–419

    Article  CAS  PubMed  Google Scholar 

  • Trewavas A (2007) Response to Alpi et al.: Plant neurobiology – all metaphors have value. Trends Plant Sci 12:231–233

    Article  CAS  PubMed  Google Scholar 

  • Tripathi SK, Tuteja N (2007) Integrated signaling in flower senescence. Plant Sign Behav 2:437–445

    Google Scholar 

  • Turkington R, Sackville Hamilton R et al. (1991) Within-population variation in localized and integrated responses of Trifolium repens to biotically patchy environments. Oecologia 86:183–192

    Article  Google Scholar 

  • Vandenkoornhuyse P, Baldauf S, Leyval C et al. (2002) Extensive fungal diversity in plant roots. Science 295:2051

    Article  PubMed  Google Scholar 

  • Van der Putten WH, Vet L, Harvey JA et al. (2001) Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol Evol 16:547–554

    Article  Google Scholar 

  • Van West P, Morris BM, Reid B et al. (2002) Oomycete plant pathogens use electric fields to target roots. Mol Plant Microbe Interact 15:790–798

    Article  PubMed  Google Scholar 

  • Villarreal LP (2005). Viruses and the Evolution of Life. American Society for Microbiology Press, Washington

    Google Scholar 

  • Walker TS, Bais HP, Grotewold E et al. (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  CAS  Google Scholar 

  • Wang MB, Metzlaff M (2005) RNA silencing and antiviral defense in plants. Curr Opin Plant Biol 8:216–222

    Article  PubMed  CAS  Google Scholar 

  • Weigl D, Jürgens G (2005) Genetics. Hotheaded healer. Nature 434:443

    Article  CAS  Google Scholar 

  • Wen F, VanEtten HD, Tsaprailis G et al. (2007) Extracellular proteins in pea root tip and border cell exudates. Plant Physiol 143:773–783

    Article  CAS  PubMed  Google Scholar 

  • Witzany G (1995) From the “logic of the molecular syntax” to molecular pragmatism. Ev Cog 1:148–168

    Google Scholar 

  • Witzany G (2005) Natural history of life: history of communication logics and dynamics. SEED J 5:27–55

    Google Scholar 

  • Witzany G (2006) The Logos of the Bios 1. Contributions to the Foundation of a three-leveled Biosemiotics. Umweb, Helsinki

    Google Scholar 

  • Xia Y (2005) Peptides as signals. In: Fleming AJ (ed) Intercellular Communication in Plants. Ann Plant Rev, Blackwell Publishing, Oxford, 16:27–47

    Google Scholar 

  • Xonocostele-Cazares B, Xiang Y, Ruiz-Medrano R et al. (1999) Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283:94–98

    Article  Google Scholar 

  • Yoder JI (1999) Parasitic plant responses to host plant signals: a model for subterranean plant-plant interactions. Curr Opin Plant Biol 2:65–70

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Cai Z, Wang X (2009) The primary signalling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc Natl Acad Sci U S A doi: 10.1073/pnas.0900349106

    Google Scholar 

  • Zimmermann U, Schneider H, Wegner LH et al. (2004) Water ascent in tall trees: does evolution of land plants rely on a highly metastable state? New Phytol 162:575–615

    Article  Google Scholar 

  • Zipfel C, Felix G (2005) Plants and animals: a different taste for microbes? Curr Opin Plant Biol 8:353–360

    Article  CAS  PubMed  Google Scholar 

  • Zyalalov AA (2004) Water flows in higher plants: physiology, evolution and system analysis. Russ J Plant Physiol 51:547–555

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Witzany, G. (2010). Plant Communication. In: Biocommunication and Natural Genome Editing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3319-2_2

Download citation

Publish with us

Policies and ethics