Skip to main content

Real Life-World of Noncoding RNA-Species

  • Chapter
  • First Online:
Biocommunication and Natural Genome Editing
  • 695 Accesses

Abstract

In the last decade it was found that the number of genes of some nematodes and humans was similar but their regulation was completely different. Today we know that the higher-order regulation of protein-coding datasets depends on complex interconnected networks of a great variety of non-coding RNAs that are read and transcribed in the developmental and growth processes of every cell within multicellular organisms. The evolutionary origins of these non-coding RNAs are not randomly-derived mixtures of nucleotide acids but formerly intact viral agents which infected all cellular host genomes in a non-lytic but persistent way. Although some of these viral agents still fulfill vital functions, e.g., endogenous retroviruses which are active in placentation of mammals, in most cases they split up (‘defectives’) into several functional parts which now serve as ‘effectives’, i.e. symbiogenetic integrated functional tools for cellular needs of host organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amaral PP, Dinger ME, Mercer TR et al. (2008) The eukaryotic genome as an RNA machine. Science 319:1787–1789

    Article  CAS  PubMed  Google Scholar 

  • Ambros V, Chen X (2007) The regulation of genes and genomes by small RNAs. Development 134:1635–1641

    Article  CAS  PubMed  Google Scholar 

  • Bapteste E, Charlebois RL, MacLeod D et al. (2005) The two tempos of nuclear pore complex evolution: highly adapting proteins in an ancient frozen structure. Genome Biol 6:R85

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Basyuk E, Galli T, Mougel M et al. (2003) Retroviral genomic RNAs are transported to the plasma membrane by endosomal vesicles. Dev Cell 5:161–174

    Article  CAS  PubMed  Google Scholar 

  • Bell PJL (2001) Viral eukaryogenesis: was the ancestor of the nucleus a complex DNAVirus? J Mol Evol 53:251–256

    Article  CAS  PubMed  Google Scholar 

  • Bell PJL (2006). Sex and the eukaryotioc cell cycle is consistent with a viral ancestry for the eukaryotic nucleus. J Theor Biol 243:54–63

    Article  CAS  PubMed  Google Scholar 

  • Bird CP, Stranger BE, Dermitzakis ET (2006) Functional variation and evolution of non-coding DNA. Curr Opin Genet Dev 16:559–564

    Article  CAS  PubMed  Google Scholar 

  • Brosius J (2005) Echoes from the past - are we still in an RNP world? Cytogenet Genome Res 110:1–4

    Article  Google Scholar 

  • Butsch M, Boris-Lawrie K (2000) Translation is not required to generate virion precursor RNA in human immunodeficiency virus type 1-infected T-cells. J Virol 74:11531–11537

    Article  CAS  PubMed  Google Scholar 

  • Butsch M, Boris-Lawrie K (2002) Destiny of unspliced retroviral RNA: ribosome and/or virion? J Virol 76:3089–3094

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    Article  CAS  PubMed  Google Scholar 

  • Carlton J.G. & J. Martin-Serrano (2007) Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316:1908–1912

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Rajewsky N (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8:93–103

    Article  CAS  PubMed  Google Scholar 

  • Chu CY, Rana TM (2007) Small RNAs: regulators and guardians of the genome. J Cell Physiol 213:412–419

    Article  CAS  PubMed  Google Scholar 

  • Claverie JM (2005) Fewer genes, more noncoding RNA. Science 309:1529–1530

    Article  CAS  PubMed  Google Scholar 

  • Clouet d’Orval B, Bortolin ML, Gaspin C et al. (2001) Box C/D RNA guides for the ribose methylation of archaeal tRNAs. The tRNATrp intron guides the formation of two ribose-methylated nucleosides in the mature tRNATrp. Nucleic Acids Res 29:4518–4529

    Article  PubMed  Google Scholar 

  • Cochrane AW, McNally MT, Mouland AJ (2006) The retrovirus RNA trafficking granule: from birth to maturity. Retrovirology 3:18

    Article  PubMed  CAS  Google Scholar 

  • Cottingham FR, Hoyt MA (1997) Mitotic spindle positioning in saccharomyces cerevisiae is accomplished by antagonistically acting microtubule motor proteins. J Cell Biol 138: 1041–1053

    Article  CAS  PubMed  Google Scholar 

  • Cullen BR (2006) Viruses and microRNAs. Nat Genet 38:25–30

    Article  CAS  Google Scholar 

  • Cullen BR (2009).Viral and cellular messenger RNA targets of viral microRNAs. Nature 457:421–425

    Article  CAS  PubMed  Google Scholar 

  • Darzacq X, Jady BE, Verheggen C et al. (2002) Cajal body-specific small nuclear RNAs: a novel class of 2’-O-methylation and pseudouridylation guide RNAs. EMBO J 21:2746–2756

    Article  CAS  PubMed  Google Scholar 

  • Defeu-Soufo JH, Graumann PL (2004) Dynamic movement of actin-like proteins within bacterial cells. EMBO Rep 5:789–794

    Article  CAS  PubMed  Google Scholar 

  • Doench JG, Petersen CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17:438–442

    Article  CAS  PubMed  Google Scholar 

  • Dustin ML, Colman DR (2002) Neural and immunological synaptic relations. Science 298:785

    Article  CAS  PubMed  Google Scholar 

  • Eickbush TH, Eickbush DG (2007) Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175:477–485

    Article  CAS  PubMed  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22- nucleotide RNAs. Genes Dev 15:188–200

    Article  CAS  PubMed  Google Scholar 

  • Farazi TA, Juranek SA, Tuschl T (2008) The growing catalogue of small RNAs. Exiqon. The 2008 Collection Booklet

    Google Scholar 

  • Filipowicz W (2000) Imprinted expression of small nucleolar RNAs in brain: time for RNomics. Proc Natl Acad Sci U S A 97:14035–14037

    Article  CAS  PubMed  Google Scholar 

  • Fire A (2005) Nucleic acid structure and intracellular immunity: some recent ideas from the world of RNAi. Q Rev Biophys 38:303–309

    Article  CAS  PubMed  Google Scholar 

  • Forterre P (2001) Genomics and early cellular evolution. The origin of the DNA world. Comptes rendus de l’Académie des sciences. Série 3, Sciences de la vie 324:1067–1076

    CAS  PubMed  Google Scholar 

  • Forterre P (2002) The origin of DNA genomes and DNA replication proteins. Curr Opin Microbiol 5:525–532

    Article  CAS  PubMed  Google Scholar 

  • Forterre P (2005) The two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells. Biochimie 87:793–803

    Article  CAS  PubMed  Google Scholar 

  • Forterre P (2006a) The origin of viruses and their possible roles in major evolutionary transitions. Virus Res 117:5–16

    Article  CAS  PubMed  Google Scholar 

  • Forterre P (2006b) Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. Proc Natl Acad Sci U S A 103:3669–3674

    Article  CAS  PubMed  Google Scholar 

  • Fu D, Collins K (2006) Genes Dev 20:531–536

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Havecker ER, Baranov PV et al. (2003) Translational recoding signals between gag and pol in diverse LTR retrotransposons. RNA 9:1422–1430

    Article  CAS  PubMed  Google Scholar 

  • Gerdes K (2000) Toxin-antitoxin modules may regulate synthesis of macromolecules during nutritional stress. J Bacteriol 182:561–572

    Article  CAS  PubMed  Google Scholar 

  • Gorinsek B, Gubensek F, Kordis D (2004) Evolutionary genomics of chromovirus in eukaryotes. Mol Biol Evol 21:781–798

    Article  CAS  PubMed  Google Scholar 

  • Graumann PL (2004) Cytoskeletal elements in bacteria. Curr Opin Microbiol 7:565–571

    Article  CAS  PubMed  Google Scholar 

  • Graumann PL, Defeu-Soufo HJ (2004) An intracellular actin motor in bacteria? Bioessays 26:1209–1216

    Article  CAS  PubMed  Google Scholar 

  • Greber UF (2002) Signalling in viral entry. Cell Mol Life Sci 59:608–626

    Article  CAS  PubMed  Google Scholar 

  • Greber UF (2005) Viral trafficking violations in axons: the herpesvirus case. Proc Natl Acad Sci 102:5639–5640

    Article  CAS  PubMed  Google Scholar 

  • Haraguchi K, Hayashi T, Jimbo T et al. (2006) Role of the kinesin 2 family protein, KIF3, during mitosis. J Biol Chem 281:4094–4099

    Article  CAS  PubMed  Google Scholar 

  • He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  CAS  PubMed  Google Scholar 

  • Hiscox JA (2002) The nucleolus – a gateway to viral infection. Arch Virol 147:1077–1089

    Article  CAS  PubMed  Google Scholar 

  • Hoyt MA, He L, Loo KK, Saunders WS (1992) Two Saccharomyces cerevisieae kinesin-related gene products required for mitotic spindle assembly. J Cell Biol 118:109–120

    Article  CAS  PubMed  Google Scholar 

  • Hoyt MA, Hyman AA, Bähler M (1997) Motor proteins of the eukaryotic cytoskeleton. Proc Natl Acad Sci U S A 94:12747–12748

    Article  CAS  PubMed  Google Scholar 

  • Ivanyi-Nagy R, Darlix JL (2008) Ancient retrotransposons as possible remnants of the primitive RNP world. In: Gage FH, Christen Y (eds) Retrotransposition, Diversity and the Brain. Springer, Berlin/Heidelberg

    Google Scholar 

  • Jady BE, Bertrand E, Kiss T (2004) Human telomerase RNA and box H/ACA scaRNAs share a common Cajal body-specific localization signal. J Cell Biol 164:647–652

    Article  CAS  PubMed  Google Scholar 

  • Jeffares DC, Poole AM, Penny D (1998) Relics from the RNA world. J Mol Evol 46:18–36

    Article  CAS  PubMed  Google Scholar 

  • Jinek M, Doudna A (2009) A three-dimensional view of the molecular machinery of RNA interference. Nature 457:405–412

    Article  CAS  PubMed  Google Scholar 

  • Jurka J, Kapitonov VV, Kohany O et al. (2007) Repetitive sequences in complex genomes: structure and evolution. Annu Rev Genom Human Genet 8:241–259

    Article  CAS  Google Scholar 

  • Kaye JF, Lever AM (1999) Human immunodeficiency virus types 1 and 2 differe in the predominant mechanism used for selection of genomic RNA for encapsidation. J Virol 73:3023–3031

    CAS  PubMed  Google Scholar 

  • Kenzelmann M, Rippe K, Mattick JS (2006) RNA: networks & imaging. Mol Syst Biol 2:44

    Article  PubMed  Google Scholar 

  • Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385

    Article  CAS  PubMed  Google Scholar 

  • Kiss T (2002) Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 109:145–148

    Article  CAS  PubMed  Google Scholar 

  • Kiss AM, Jády BE, Darzacq X et al. (2002) A Cajal body-specific pseudouridylation guide RNA is composed of two box H/ACA snoRNA-like domains. Nucleic Acids Res 30:4643–4649

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV, Senkevich TG, Dolja VV (2006) The ancient virus world and evolution of cells. Biol Dir 1:29

    Article  CAS  Google Scholar 

  • Levine MT, Jones CD, Kern AD et al. (2006) Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently x-linked and exhibit testis-biased expression. Proc Natl Acad Sci U S A 103:9935–9939

    Article  CAS  PubMed  Google Scholar 

  • Li J, Tang H, Mullen TM et al. (1999) A role for RNA helicase A in post-transcriptional regulation of HIV type 1. Proc Natl Acad Sci U S A 96:709–714

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Lee YRJL, Pan R et al. (2005) An internal motor kinesin is aassociated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol Biol cell 16:811–823

    Article  CAS  PubMed  Google Scholar 

  • Maizels A, Weiner AM (1999) The genomic tag hypothesis: modern viruses as molecular fossils of ancient stretegies for genomic replication. Biol Bull 196:327–330

    Article  PubMed  Google Scholar 

  • Maizels N, Weiner AM, Yue D et al. (1999) New evidence for the genomic tag hypothesis: archaeal CCA-adding enzymes and tRNA substrates. Biol Bull 196:331–334

    Article  CAS  PubMed  Google Scholar 

  • Makarova KS, Grishin NV, Koonin EV (2006) The HicAB cassette, a putative novel, RNA-targeting toxin-antitoxin system in archaea and bacteria. Bioinform 22:2581–2584

    Article  CAS  Google Scholar 

  • Matera AG, Terns RM, Terns MP (2007) Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol 8:209–220

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS (2001) Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep 2:986–991

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS (2003) Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. Bioessays 25:930–939

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS (2006) The underworld of RNA. Nat Genet 38:393

    Article  CAS  Google Scholar 

  • Mattick JS (2007) A new paradigm for developmental biology. J Exp Biol 210:1526–1547

    Article  PubMed  Google Scholar 

  • Mattick JS, Gagen MJ (2001) The Evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. Mol Biol Evol 18:1611–1630

    CAS  PubMed  Google Scholar 

  • Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15:17–29

    Article  CAS  Google Scholar 

  • Mattick J, Mehler MF (2008) RNA editing, DNA recoding and the evolution of human cognition. Trends Neurosci 31:227–233

    Article  CAS  PubMed  Google Scholar 

  • Mehler MF, Mattick JS (2007) Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease. Physiol Rev 87:799–823

    Article  CAS  PubMed  Google Scholar 

  • Miller RK, Heller KK, Frisen L et al. (1998) The kinesin-related proteins Kip2p and Kip3p, function differently in nuclear migration in yeast. Mol Biol Cell 9:2051–2068

    CAS  PubMed  Google Scholar 

  • Miller S, Krijnse-Locker J (2008) Modification of intracellular membrane structures for virus replication. Nat Rev Microbiol 6:363–374

    Article  CAS  PubMed  Google Scholar 

  • Mingle LA, Okuhama NN, Shi J et al. (2005) Localization of all seven messenger RNAs for the actin-polymerazitation nucleator arp2/3 complex in the protrusions of fibroblasts. J Cell Sci 118:2425–2433

    Article  CAS  PubMed  Google Scholar 

  • Moazed D (2009) Small RNAs in transcriptional gene silencing and genome defence. Nature 457:413–420

    Article  CAS  PubMed  Google Scholar 

  • Narayanan A, Lukowiak A, Jády BE et al. (1999) Nucleolar localization signals of box H/ACA small nucleolar RNAs. EMBO J 18:5120–5130

    Article  CAS  PubMed  Google Scholar 

  • Nisole S, Saib A (2004) Early steps of retrovirus replicative cycle. Retrovirol 1:9

    Article  Google Scholar 

  • Nosek J, Kosa P, Tomaska L (2006) On the origin of telomeres: a glimpse at the pre-telomerase world. Bioessays 28:182–190

    Article  CAS  PubMed  Google Scholar 

  • Obbard DJ, Gordon KHJ, Buck AH et al. (2009) The evolution of RNAi as a defence against viruses and transposable elements. Phil Trans R Soc B 364:99–115

    Article  CAS  PubMed  Google Scholar 

  • Peterson-Burch BD, Voytas DF (2002) Genes of the pseudoviridae (Ty1/copia Retrotransposons). Mol Biol Evol 19:1832–1845

    CAS  PubMed  Google Scholar 

  • Piguet V, Sattenaut Q (2004) Dangerous liaisons at the virological synapse. J Clin Invest 114:605

    CAS  PubMed  Google Scholar 

  • Piriyapongsa J, Jordan IK (2008) Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 14:1–8

    Article  CAS  Google Scholar 

  • Platini M, Goldberg I, Lamond AI et al. (2002) Cajal body dynamics and association with chromatin are ATP dependent. Nat Cell Biol 4:502–508

    Article  CAS  Google Scholar 

  • Poole AM, Jeffares DC, Penny D (1998) The path from the RNA world. J Mol Evol 46:1–17

    Article  CAS  PubMed  Google Scholar 

  • Poole AM, Logan DT (2005) Modern mRNA proofreading and repair: proof that the last universal common ancestor (LUCA) had an RNA genome? Mol Biol Evol 22:1444–1455

    Article  CAS  PubMed  Google Scholar 

  • Poon DT, Chertova EN, Ott DE (2002) Human immunodeficiency virus type 1 preferentially encapsidates genomic RNAs that encode Pr55(Gag): functional linkage between translation and RNA packaging. Virol 293:368–378

    Article  CAS  Google Scholar 

  • Presutti C, Rosati J, Vincenti S et al. (2006) Non coding RNA and brain. BMC Neurosci 7:5

    Article  CAS  Google Scholar 

  • Preuss ML, Kovar DR, Lee YRJ et al. (2004) A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers. Plant Physiol 136:3945–3955

    Article  CAS  PubMed  Google Scholar 

  • Quellet DL, Perron MP, Gobeil LA et al. (2006) Micro RNAs in gene regulation: when the smallest govern it all. J Biomed Biotech 69616:1–20

    Google Scholar 

  • Rashkova S, Karam SE, Kellum R et al. (2002) Gag proteins of the two Drosophila telomeric retrotransposons are targeted to chromosome ends. J Cell Biol 159:397–402

    Article  CAS  PubMed  Google Scholar 

  • Reddy TR, Xu W, Wong-Staal F (2000) General effect of Sam68 on rev/Rex regulated expression of complex retroviruses. Oncogene 19:4071–4074

    Article  CAS  PubMed  Google Scholar 

  • Richard P, Darzacq X, Bertrand E et al. (2003) A common sequence motif determines the Cajal body-specific localization of box H/ACA scaRNAs. EMBO J 22:4283–4293

    Article  CAS  PubMed  Google Scholar 

  • Richard P, Kiss AM, Darzacq X et al. (2006) Cotranscriptional recognition of human intronic box H/ACA snoRNAs occurs in a splicing-independent manner. Mol Cell Biol 26:2540–2549

    Article  CAS  PubMed  Google Scholar 

  • Rustom A, Saffrich R, Markovic I et al. (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Ryan FP (2004) Human endogenous retroviruses in health and disease: a symbiotic perspective. J R Soc Med 97:560–565

    Article  PubMed  Google Scholar 

  • Ryan FP (2006). Genomic creativity and natural selection: a modern synthesis. Biol J Linn Soc 88:655–672

    Article  Google Scholar 

  • Ryan FP (2007) Viruses as symbionts. Symbiosis 44:11–21

    CAS  Google Scholar 

  • Saunders WS, Koshland D, Eshel D et al. (1995) Saccharomyces cerevisieae kinesin- and dynein-related proteins required for anaphase chromosome segregation. J Cell Biol 128:617–624

    Article  CAS  PubMed  Google Scholar 

  • Sfakianos JN, Hunter E (2003) M-PMV capsid transport is mediated by Env/Gag interactions at the pericentriolar recycling endosome. Traffic 4:671–680

    Article  CAS  PubMed  Google Scholar 

  • Shadan FF, Villarreal LP (1996) The evolution of small DNA viruses of eukaryotes: past and present considerations. Viral Genes 11:239–257

    Article  Google Scholar 

  • Shav-Tal Y, Singer RH (2005) RNA localisation. J Cell Sci 118:4077–4081

    Article  CAS  PubMed  Google Scholar 

  • Siomi H, Siomi MC (2009) On the road to reading the RNA-interference code. Nature 457:396–404

    Article  CAS  PubMed  Google Scholar 

  • Sontheimer EJ, Carthew RW (2005) Silence from within: endogenous siRNAs and miRNAs. Cell 122:9–12

    Article  CAS  PubMed  Google Scholar 

  • St.Laurent G III, Wahlestedt C (2007) Noncoding RNAs: couplers of analog and digital information in nervous system function. Trends Neurosci 30:612–621

    Article  CAS  Google Scholar 

  • Sugiyama T, Cam H, Verdel A et al. (2005) RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc Natl Acad Sci 102:152–157

    Article  CAS  PubMed  Google Scholar 

  • Takemura M (2001) Poxviruses and the origin of the eukaryotic nucleus. J Mol Evol 52:419–425

    CAS  PubMed  Google Scholar 

  • Tang Y, Winkler U, Fredd EO et al. (1999a) Cellular motor protein KIF-4 associates with retroviral Gag. J Virol 73:10508–10513

    CAS  PubMed  Google Scholar 

  • Tang PZ, Tsai-Morris CH, Dufau ML (1999b) A novel gonadotropin-regulated testicular RNA helicase. A new member of the dead-box family. J Biol Chem 274:37932–37940

    Article  CAS  PubMed  Google Scholar 

  • Temin HM (1985) Reverse transcription in the eukaryotic genome: retroviruses, pararetroviruses, retrotransposons and retrotranscripts. Mol Biol Evol 2:455–468

    CAS  PubMed  Google Scholar 

  • Terada S, Hirokawa N (2000) Moving on to the cargo problem of microtubule-dependent motors in neurons. Curr Opin Neurobiol 10:566–573

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson RL, Ziegler TA, Supakorndej T et al. (2006) Cell cycle-regulated trafficking of human telomerase to telomeres. Mol Biol Cell 17:955–965

    Article  CAS  PubMed  Google Scholar 

  • Tran E, Brown J, Maxwell ES (2004) Evolutionary origins of the RNA-guided nucleotide modification complexes: from the primitive translation apparatus? Trends Biochem Sci 29:343–350

    Article  CAS  PubMed  Google Scholar 

  • Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480

    Article  CAS  PubMed  Google Scholar 

  • Van Lent JWM, Schmitt-Keichinger C (2006) Viral movement proteins induce tubule formation in plant and insect cells. In: Baluska F, Volmann D, Barlow P (eds) Cell-Cell Channels. Eurekah.com

    Google Scholar 

  • Vetsigian K, Woese C, Goldenfeld N (2006) Collective evolution and the genetic code. Proc Natl Acad Sci U S A 103:10696–10701

    Article  CAS  PubMed  Google Scholar 

  • Villarreal LP (2005) Viruses and the Evolution of Life. ASM Press, Washington

    Google Scholar 

  • Villarreal LP (2009) Origin of Group Identity: Viruses, Addiction and Cooperation. Springer, New York

    Google Scholar 

  • Villasante A, Abad JP, Planello R et al. (2007) Drosophila telomeric retrotransposons derived from an ancestral element that was recruited to replace telomerase. Gen Res 17:1909–1918

    Article  CAS  Google Scholar 

  • Wang C, Meier UT (2004) Architecture and assembly of mammalian H/ACA small nucleolar and telomerase ribonucleoproteins. EMBO J 23:1857–1867

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Totoki Y, Toyoda A et al. (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453:539–543

    Article  CAS  PubMed  Google Scholar 

  • Weber MJ (2006) Mammalian small nucleolar RNAs are mobile genetic elements. PLoS Genet 2: e205

    Article  PubMed  Google Scholar 

  • Witzany G (2006) Natural genome editing competences of viruses. Acta Biotheor 54:235–253

    Article  PubMed  Google Scholar 

  • Witzany G (2007a) The agents of genomic creativity. In: Witzany G (ed) Biosemiotics in Transdisciplinary Contexts. Proceedings of the Gathering 6 in Biosemiotics. Umweb, Helsinki

    Google Scholar 

  • Witzany G (2007b) The Logos of the Bios 2. Bio-Copmmunication. Umweb, Helsinki

    Google Scholar 

  • Witzany G (2008a) Bio-Communication of bacteria and their evolutionary roots in natural genome editing competences of viruses. Open Evol J 2:44–54

    Article  CAS  Google Scholar 

  • Witzany G (2008b) The viral origins of telomeres, telomerases and their important role in eukaryogenesis and genome maintenance. Biosemiotics 2:191–206

    Article  Google Scholar 

  • Yazgan O, Krebs JE (2007) Noncoding but nonexpendable: transcriptional regulation by large noncoding RNA in eukaryotes. Biochem Cell Biol 85:484–496

    Article  CAS  PubMed  Google Scholar 

  • Yedavalli VS, Neuveut C, Chi YH et al. (2004) Requirement of DDX3 dead box RNA helicase for HIV – I Rev-RRE export function. Cell 119:381–392

    Article  CAS  PubMed  Google Scholar 

  • Zemann A, Beckke A, Kiefmann M et al. (2006) Evolution of small nucleolar RNAs in nematodes. Nucleic Acids Res 34:2676–2685

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Witzany, G. (2010). Real Life-World of Noncoding RNA-Species. In: Biocommunication and Natural Genome Editing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3319-2_10

Download citation

Publish with us

Policies and ethics