Skip to main content

Biotechnological Applications of Hemicellulosic Derived Sugars: State-of-the-Art

  • Chapter
  • First Online:
Sustainable Biotechnology

Abstract

Hemicellulose is the second most abundant polysaccharide in nature, after cellulose. As a substrate, it is readily available for the production of value-added products with industrial significance, such as ethanol, xylitol, and 2, 3-butanediol. Hemicellulose is a heterogeneous carbohydrate polymer with a xylose-linked backbone connecting to glucose, galactose, mannose, and sugar acids. In general, it represents about 35% of lignocellulosic biomass. It is estimated that the annual production of plant biomass in nature, of which over 90% is lignocellulose, amounts to about 200 × 109 tons per year, where about 8–20 × 109 tons of the primary biomass remains potentially accessible. Hemicellulose, which is generally 20–35% of lignocellulose amounts to nearly ~70 × 109 tons per year. Continuous efforts by researchers in the last two decades have led the way for the successful conversion of hemicellulose into fermentable constituents by developed candidate pretreatment technologies and engineered hemicellulase enzymes. A major challenge is the isolation of microbes with the ability to ferment a broad range of sugars and withstand fermentative inhibitors that are usually present in hemicellulosic sugar syrup. This chapter aims to explore and review the potential sources of hemicellulose and their degradation into fermentable sugars, as well as advocating their conversion into value-added products like ethanol, xylitol, and 2, 3-butanediol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lynd, L. R., Laser, M. S., Bransby, D., Dale, B. E., Davison, B., Hamilton, R., Himmel, M., Keller, M., McMillan, J. D., Sheehan, J., Wyman, C. E. (2008) How biotech can transform biofuels. Nat Biotechnol 26, 169–72.

    Article  CAS  PubMed  Google Scholar 

  2. Wyman, C. E. (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25, 153–7.

    Article  CAS  PubMed  Google Scholar 

  3. Chandel, A. K., Chan, E. C., Rudravaram, R., Narasu, M. L., Rao, L. V., Ravindra, P. (2007a) Economics and environmental impact of bioethanol production technologies: An appraisal. Biotechnol Mol Biol Rev 2, 14–32.

    Google Scholar 

  4. Saha, B. C. (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30, 279–91.

    Article  CAS  PubMed  Google Scholar 

  5. Salisbury, F. B., Ross, C. W. (1992) Plant physiology and plant cells. In: Plant Physiology, Wadsworth, Inc., Belmont, CA, pp. 3–26.

    Google Scholar 

  6. Neureiter, M., Danner, H., Thomasser, C., Saidi, B., Braun, R. (2002) Dilute-acid hydrolysis of sugarcane bagasse at varying conditions. Appl Biochem Biotechnol 98, 49–58.

    Article  PubMed  Google Scholar 

  7. Mani, S., Tabil, L. G., Sokhansanj, S. (2006) Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenergy 30, 648–4.

    Article  Google Scholar 

  8. Ohgren, K., Rudolf, A., Galbe, M., Zacchi, G. (2006) Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass Bioenergy 30, 863–9.

    Article  Google Scholar 

  9. Wayman, M., Parekh, S. R. (1990) Biotechnology of Biomass Conversion; Fuel and Chemicals from Renewable Resources. Open University Press, Milton Keynes, pp. 181–232.

    Google Scholar 

  10. Hayn, M., Steiner, W., Klinger, R., Steinmuller, H., Sinner, M., Esterbauer, H. (1993) Basic research and pilot studies on the enzymatic conversion of lignocellulosics. In: Bioconversion of Forest and Agricultural Plant Residues. Saddler, J. N., (Ed.) CAB International, Wallingford, pp. 33–72.

    Google Scholar 

  11. Robinson, J., Keating, J., Boussaid, A., Mansfield, S. D., Saddler, J. N. (2002) The influence of bark on the fermenation of douglas-fir whitewood pre-hydrolysates. Appl Microbiol Biotechnol 59, 443–8.

    Article  CAS  PubMed  Google Scholar 

  12. Gray, K. A., Zhao, L., Emptage, M. (2006) Bioethanol. Curr Opin Chem Biol 10, 1–6.

    Article  Google Scholar 

  13. Sjöström, E. (1993) Wood chemistry Fundamentals and applications, 2nd (ed.), Academic Press Inc., London.

    Google Scholar 

  14. Bevan, M. W., Franssen, M. C. R. (2006) Investing in green and white biotech. Nat Biotechnol 24, 765–7.

    Article  CAS  PubMed  Google Scholar 

  15. Herrera, S. (2006) Bonkers about biofuels. Nat Biotechnol 24, 755–60.

    Article  CAS  PubMed  Google Scholar 

  16. Hatti-Kaul, R., Torrnvall, U., Gustafsson, L., Borjesson, P. (2007) Industrial biotechnology for the production of bio-based chemicals – a cradle-to-grave perspective. Trends Biotechnol 25, 119–24.

    Article  CAS  PubMed  Google Scholar 

  17. Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O‘Hare, M., Kammen, D. M. (2006) Ethanol can contribute to energy and environmental goals. Science 311, 506–08.

    Article  CAS  PubMed  Google Scholar 

  18. Sun, Y., Cheng, J. (2002) Hydrolysis of lignocellulosic materials for ethanol production: A review. Biores Technol 83, 1–11.

    Article  CAS  Google Scholar 

  19. Henrissat, B., Davies, G. J. (2000) Glycoside hydrolases and glycosyltransferases. Families, modules and implications for genomics. Plant Physiol 124, 1515–19.

    Article  CAS  PubMed  Google Scholar 

  20. Dien, B. S., Li, X. L., Iten, L. B., Jordan, D. B., Nichols, N. N., O’Bryan, P. J., Cotta, M. A. (2006) Enzymatic saccharification of hot-water pretreated corn fiber for production of monosaccharides. Enz Microb Technol 39, 1137–44.

    Article  CAS  Google Scholar 

  21. Chandel, A. K., Kapoor, R. K., Narasu, M. L., Viswadevan, V., Kumaran, S. S. G., Ravinder, R., Rao, L. V., Tripathi, K. K., Lal, B., Kuhad, R. C. (2007b) Economic evaluation and environmental benefits of biofuel: An Indian perspective. Int J Global Energy Issues 28, 357–81.

    Article  Google Scholar 

  22. Saha, B. C., Iten, L. B., Cotta, M. A., Wu, Y. V. (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Proc Biochem 40, 3693–700.

    Article  CAS  Google Scholar 

  23. Hopkins, W. G. (1999) Introduction to Plant Physiology, 2nd (ed.), John Wiley and Sons Inc., New York, 12.

    Google Scholar 

  24. Chandel, A. K., Kapoor, R. K., Singh, A. K., Kuhad, R. C. (2007c) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Biores Technol 98, 1947–50.

    Article  CAS  Google Scholar 

  25. Palmqvist, E., Hahn-Hagerdal, B. (2000) Fermentation of lignocellulosic hydrolysates. I. inhibition and detoxification. Biores Technol 74, 17–24.

    Article  CAS  Google Scholar 

  26. Larsson, S., Reimann, A., Nilvebrant, N. O., Jönsson, L. J. (1999) Comparison of different methods for the detoxification of lignocellulosic hydrolysates of spruce. Appl Biochem Biotechnol 79, 91–103.

    Article  Google Scholar 

  27. Prates, J. A. M., Tarbouriech, N., Charnock, S. J., Fontes, C. M., Ferreira, L., Davies, G. J. (2001) The structure of the feruloyl esterase module of xylanases 10B from Clostridium thermocellum provides insight into substrate recognition. Structure 9, 1183–90.

    Article  CAS  PubMed  Google Scholar 

  28. Shallom, D., Shoham, Y. (2003) Microbial hemicellulases. Curr Opin Microbiol 6, 219–28.

    Article  CAS  PubMed  Google Scholar 

  29. Howard, R. L., Abotsi, E., Jansen van Rensburg, E. L., Howard, S. (2003) Lignocellulose biotechnology: Issues of bioconversion and enzyme production. Afr J Biotechnol 2, 602–09.

    CAS  Google Scholar 

  30. Singh, O. V., Kumar, R. (2007) Biotechnological production of gluconic acid: Future implications. Appl Microbiol Biotechnol 75, 713–22.

    Article  CAS  PubMed  Google Scholar 

  31. Maleszka, R., Schneider, H. (1982) Fermentation of D-xylose, xylitol and D-xylulose by yeasts. Can J Microbiol 28, 360–3.

    Article  CAS  PubMed  Google Scholar 

  32. Lin, Y., Tanaka, S. (2006) Ethanol fermentation from biomass resources: Current state and prospects. Appl Microbiol Biotechnol 69, 627–42.

    Article  CAS  PubMed  Google Scholar 

  33. Olsson, L., Hahn-Hagerdal, B. (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enz Microb Technol 18, 312–31.

    Article  CAS  Google Scholar 

  34. Chandel, A. K., Rudravaram, R., Rao, L. V., Ravindra, P., Narasu, M. L. (2007d) Role of industrial enzymes in bio-industrial sector development: An Indian perspective. J Commun Biotechnol 13, 283–91.

    Article  Google Scholar 

  35. Karimi, K., Emtiazi, G., Taherzadeh, M. J. (2006) Production of ethanol and mycelial biomass from rice straw hemicellulose hydrolyzate by Mucor indicus. Proc Biochem 41, 653–8.

    Article  CAS  Google Scholar 

  36. Nigam, J. N. (2001) Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87, 17–27.

    Article  CAS  PubMed  Google Scholar 

  37. Saracoglu-Eken, N., Arslan, Y. (2000) Comparison of different pretreatments in ethanol fermentation using corn cob hemicellulosic hydrolysate with Pichia stipitis and Candida shehatae. Biotechnol Lett 22, 855–8.

    Article  Google Scholar 

  38. Nigam, J. N. (2002) Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose–fermenting yeast. J Biotechnol 97, 107–16.

    Article  CAS  PubMed  Google Scholar 

  39. Barbosa, M. F., Beck, M. J., Fein, J. E., Potts, D., Ingram, L. O. (1992) Efficient fermentation of Pinus sp. acid hydrolysates by an ethanologenic strain of Escherichia coli. Appl Environ Microbiol 58, 1382–4.

    CAS  PubMed  Google Scholar 

  40. Olsson, L., Hahn-Hagerdal, B., Zacchi, G. (1995) Kinetics of ethanol production by recombinant Escheichia coli K011. Biotechnol Bioeng 45, 356–65.

    Article  CAS  PubMed  Google Scholar 

  41. Sreenath, H. K., Jeffries, T. W. (2000) Production of ethanol from wood hydrolyzate by yeasts. Biores Technol 72, 253–60.

    Article  CAS  Google Scholar 

  42. Sanchez, G., Pilcher, L., Roslander, C., Modig, T., Galbe, M., Liden, G. (2004) Dilute-acid hydrolysis for fermentation of the Bolivian straw material Paja brava. Biores Technol 93, 249–56.

    Article  CAS  Google Scholar 

  43. Moss, S. J. (1999) Xylitol – an evaluation. Int Dental J 49, 00–00.

    Google Scholar 

  44. Izumori, K., Tuzaki, K. (1988) Production of xylitol from D-xylulose by Mycobacterium smegmatis. J Ferm Technol 66, 33–36.

    Article  CAS  Google Scholar 

  45. Saha, B. C., Bothast, R. J. (1997) Microbial production of xylitol. In: Fuels and Chemicals from Biomass. Saha B. C., Woodward J. (Eds.) American Chemical Society, Washington, D.C., pp. 307–09.

    Chapter  Google Scholar 

  46. Horitsu, H., Yahashi, Y., Takamizawa, K., Kawai, K., Suzuki, T., Watanable, N. (1992) Production of xylitol from D-xylose by Candida tropicalis: Optimization of production rate. Biotechnol Bioeng 40, 1085–91.

    Article  CAS  PubMed  Google Scholar 

  47. Rao, R. S., Jyothi, C. P., Prakasham, R. S., Sarma, P. N., Rao, L. V. (2006) Xylitol production from corn fiber and sugar cane bagasse hydrolysates by Candida tropicalis. Biores Technol 97, 1974–8.

    Article  CAS  Google Scholar 

  48. Winkelhausen, E., Kuzmanova, S. (1998) Microbial conversion of D-xylose to xylitol. J Ferment Bioeng 86, 1–14.

    Article  CAS  Google Scholar 

  49. Liaw, W. C., Chen, C. S., Chan, W. S., Chen, K. P. (2008) Xylitol production from rice straw hemicellulose hydrolyzate by polyacrylic hydrogel thin films with immobilized Candida subtropicalis WF79. J Biosc Bioeng 105(2), 97–105.

    Article  CAS  Google Scholar 

  50. Canilha, L., Carvalho, W., Batista, J., Silva, A. (2006) Xylitol bioproduction from wheat straw: Hemicellulose hydrolysis and hydrolyzate fermentation. J Sci Food Agric 86, 1371–6.

    Article  CAS  Google Scholar 

  51. Mussatto, S. I., Roberto, I. C. (2008) Establishment of the optimum initial xylose concentration and nutritional supplementation of brewer’s spent grain hydrolysate for xylitol production by Candida guilliermondi. Process Biochem 43, 540–6.

    Article  CAS  Google Scholar 

  52. Carvalheiro, F., Duarte, L. C., Lopes, S., Parajó, J. C., Pereira, H., Gírio, F. M. (2005) Evaluation of the detoxification of brewery’s spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941. Process Biochem 40, 1215–23.

    Article  CAS  Google Scholar 

  53. Silva, S. S., Felipe, G. A., Mancilha, I. M. (1998) Factors that affect the biosynthesis of xylitol by xylose-fermenting yeasts. A review. Appl Biochem Biotechnol 70–72, 331–9.

    Google Scholar 

  54. Parajo, J. C., Dominguez, H., Dominguez, J. M. (1996) Production of xylitol from concentrated wood hydrolyzates by Debaryomyces hansenii: Effect of the initial cell concentration. Biotechnol Lett 18, 593–8.

    Article  CAS  Google Scholar 

  55. Garg, S. K., Jain, A. (1995) Fermentative production of 2, 3-butanediol. Biores Technol 51, 103–09.

    Article  CAS  Google Scholar 

  56. Tran, A. V., Chambers, R. P. (1987) The dehydration of fermentative 2, 3-butanediol into methyl ethyl ketone. Biotechnol Bioeng 29, 343–51.

    Article  CAS  PubMed  Google Scholar 

  57. Maddox, I. S. (1996) Microbial production of 2, 3-butanediol. In: Biotechnology, Vol. 6. Products of Primary Metabolism. Roehr M. (Ed.) VCH, Weinheim, pp 269–91.

    Google Scholar 

  58. Jansen, N. B., Flickinger, M. C., Tsao, G. T. (1984) Production of 2, 3-butanediol from xylose by Klebsiella oxytoca ATCC 8724. Biotechnol Bioeng 26, 362–8.

    Article  CAS  PubMed  Google Scholar 

  59. Garde, A., Jonsson, G., Schmidt, A. S., Ahring, B. K. (2002) Lactic acid production from wheat straw hemicellulose hydrolyzate by Lactobacillus pentosus and Lactobacillus brevis. Biores Technol 81, 217–23.

    Article  CAS  Google Scholar 

  60. Patel, M., Ou, M., Ingram, L. O., Shanmugam, K. T. (2004) Fermentation of sugar cane bagasse hemicellulose hydrolysate to L(+)-lactic acid by thermotolerant acidophilic Bacillus sp. Biotechnol Lett 26, 865–8.

    Article  CAS  PubMed  Google Scholar 

  61. Meyer, P. S., Du Preez, J. C., Kilian, S. G. (1992) Chemostat cultivation of Candida blankii on sugar cane bagasse hemicellulose hydrolysate. Biotechnol Bioeng 40, 353–8.

    Article  CAS  PubMed  Google Scholar 

  62. Pessoa, A. J. R., Mancilha, I. M., Sato, S. (1996) Cultivation of Candida tropicalis in sugar cane hemicellulosic hydrolyzate for microbial protein production. J Biotechnol 51, 83–8.

    Article  CAS  Google Scholar 

  63. KiranSree, N., Sridhar, M., Suresh, K., Rao, L. V. (1999) High alcohol production by solid substrate fermentation from starchy substrates using thermotolerant S. cerevisiae. Bioproc Eng 20, 561–3.

    Google Scholar 

  64. KiranSree, N., Sridhar, M., Suresh, K., Banat, I. M., Rao, L. V. (2000) Isolation of thermotolerant, osmotolerant, flocculating Saccharomyces cerevisiae for ethanol production. Biores Technol 72, 43–6.

    Article  Google Scholar 

  65. Sridhar, M., KiranSree, N., Rao, L. V. (1999) Utilization of damaged sorghum and rice grains for ethanol production by simultaneous saccharification and fermentation. Biores Technol 68, 301–4.

    Article  Google Scholar 

  66. Rao, S. R., Prakasham, R. S., Prasad, K. K., Rajesham, S., Sharma, P. N., Rao, L. V. (2004) Xylitol production by Candida sp.: Parameter optimization using Taguchi approach. Proc Biochem 39, 951–6.

    Article  CAS  Google Scholar 

  67. Rao, S. R., Jyothi, C. P., Prakasham, R. S., Rao, C. S., Sarma, P. N., Rao, L. V. (2006) Strain improvement of Candida tropicalis for the production of xylitol: Biochemical and physiological characterization of wild and mutant strain CT-OMV5. J Microbiol 44, 113–20.

    CAS  PubMed  Google Scholar 

  68. Pasha, C., Valli, N., Rao, L. V. (2007a) Lantana camara for fuel ethanol production using thermotolerant yeast. Lett Appl Microbiol 44, 666–72.

    Article  CAS  PubMed  Google Scholar 

  69. Pasha, C., Kuhad, R. C., Rao, L. V. (2007b) Strain improvement of thermotolerant Saccharomyces cerevisiae VS3 strain for better utilization of lignocellulosic substrates. J Appl Microbiol 103, 1480–9.

    Article  CAS  PubMed  Google Scholar 

  70. Chen, F., Dixon, R. A. (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25, 759–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chandel, A.K., Singh, O.V., Venkateswar Rao, L. (2010). Biotechnological Applications of Hemicellulosic Derived Sugars: State-of-the-Art. In: Singh, O., Harvey, S. (eds) Sustainable Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3295-9_4

Download citation

Publish with us

Policies and ethics