Skip to main content

Enzymatic Synthesis of Heparin

  • Chapter
  • First Online:
Book cover Sustainable Biotechnology

Abstract

Heparin and low-molecular-weight heparin have been used as anticoagulant drugs for decades. Pharmaceutical grade heparin is derived from mucosal tissues of slaughtered domestic animals. However, heparin can have severe side effects, has a potential risk of contamination and unstable resources. Thus, synthetic heparin that can be manufactured in a controlled environment is desirable. Although traditional chemical synthesis has successfully reduced the structural complexity of heparin, chemical synthesis of the heparin oligosaccharide is tedious and costly. In this review, we summarize recent progress toward the enzymatic synthesis of heparin/heparan sulfate. We will emphasize the efforts to develop novel enzymatic approaches for the synthesis of heparan sulfate mimics from Escherichia coli heparosan and to produce polysaccharide and oligosaccharide end products with high specificity for the biological target. These advancements provide the foundation for the development of heparan sulfate/heparin-based therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howell, W. H., and Holt, E. (1918) Two new factors in blood coagulation-heparin and pro-antithrombin. Am J Physiol 47, 328–41.

    CAS  Google Scholar 

  2. Slaughter, T. F., and Greenberg, C. S. (1997) Heparin-associated thrombocytopenia and thrombosis: implications for perioperative management. Anesthesiology 83, 667–75.

    Article  Google Scholar 

  3. Kishimoto, T. K., Viswanathan, K., Ganguly, T., Elankumaran, S., Smith, S., Pelzer, K., Lansing, J. C., Sriranganathan, N., Zhao, G., Galcheva-Gargova, Z., Al-Hakim, A., Bailey, G. S., Fraser, B., Roy, S., Rogers-Cotrone, T., Buhse, L., Whary, M., Fox, J., Nasr, M., Dal Pan, G. J., Shriver, Z., Langer, R. S., Venkataraman, G., Austen, K. F., Woodcock, J., and Sasisekharan, R. (2008) Contaminated heparin associated with adverse clinical events and activation of the contact system. N Engl J Med 358, 2457–67.

    Article  CAS  PubMed  Google Scholar 

  4. Guerrini, M., Beccati, D., Shriver, Z., Naggi, A., Viswanathan, K., Bisio, A., Capila, I., Lansing, J. C., Guglieri, S., Fraser, B., Al-Hakim, A., Gunay, N. S., Zhang, Z., Robinson, L., Buhse, L., Nasr, M., Woodcock, J., Langer, R., Venkataraman, G., Linhardt, R. J., Casu, B., Torri, G., and Sasisekharan, R. (2008) Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat Biotechnol 26, 669–75.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, Z., Weïwer, M., Li, B., Kemp, M. M., Daman, T. H., and Linhardt, R. J. (2008) Oversulfated chondroitin sulfate: impact of a heparin impurity, associated with adverse clinical events, on low-molecular-weight heparin preparation. J Med Chem 51, 5498–501.

    Article  CAS  PubMed  Google Scholar 

  6. Herbert, J. M., Hérault, J. P., Bernat, A., Savi, P., Schaeffer, P., Driguez, P. A., Duchaussoy, P., and Petitou, M. (2001) SR123781A, a synthetic heparin mimetic. Thromb Haemost 85, 852–60.

    CAS  PubMed  Google Scholar 

  7. Petitou, M., and van Boeckel, C. A. A. (2004) A synthetic antithrombin III binding pentasaccharide is now a drug! what comes next?. Angew Chem Int Ed 43, 3118–33.

    Article  CAS  Google Scholar 

  8. Bauer, K. A., Hawkins, D. W., Peters, P. C., Petitou, M., Herbert, J. M., van Boeckel, C. A. A., and Meuleman, D. G. (2002) Fondaparinux, a synthetic pentasaccharide: the first in a new class of antithrombotic agents-the selective factor Xa inhibitors. Cardiovasc Drug Rev 20, 37–52.

    Article  CAS  PubMed  Google Scholar 

  9. Sinaÿ, P., Jacquinet, J. C., Petitou, M., Duchaussoy, P., Lederman, I., Choay, J., and Torri, G. (1984) Total synthesis of a heparin pentasaccharide fragment having high affinity for antithrombin III. Carbohydr Res 132, C5–9.

    Article  Google Scholar 

  10. Petitou, M., Herault, L. P., Bernat, A., Driguez, P. A., Duchaussoy, P., Lormeau, J. C., and Herbert, J. M. (1999) Synthesis of thrombin-inhibiting heparin mimetics without side effects. Nature 398, 417–22.

    Article  CAS  PubMed  Google Scholar 

  11. Fuster, M. M., and Esko, J. D. (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5, 526–42.

    Article  CAS  PubMed  Google Scholar 

  12. Parish, C. R. (2006) The role of heparan sulphate in inflammation. Nat Rev Immunol 6, 633–43.

    Article  CAS  PubMed  Google Scholar 

  13. Linhardt, R. J. (2003) 2003 Claude S. Hudson Award address in carbohydrate chemistry. Heparin: structure and activity. J Med Chem 46, 2551–64.

    Article  CAS  PubMed  Google Scholar 

  14. Bishop, J., Schuksz, M., and Esko, J. D. (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446, 1030–7.

    Article  CAS  PubMed  Google Scholar 

  15. Esko, J. D., and Lindahl, U. (2001) Molecular diversity of heparan sulfate. J Clin Invest 108, 169–73.

    CAS  PubMed  Google Scholar 

  16. Rosenberg, R. D., Showrak, N. W., Liu, J., Schwartz, J. J., and Zhang, L. (1997) Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated?. J Clin Invest 99, 2062–70.

    Article  CAS  PubMed  Google Scholar 

  17. Bernfield, M., Gotte, M., Park, P. W., Reizes, O., Fitzgerald, M. L., Lincecum, J., and Zako, M. (1999) Functions of cell surface heparan sulfate proteoglycans. Ann Rev Biochem 68, 729–77.

    Article  CAS  PubMed  Google Scholar 

  18. Liu, J., and Thorp, S. C. (2002) Cell surface heparan sulfate and its roles in assisting viral infections. Med Res Rev 22, 1–25.

    Article  PubMed  Google Scholar 

  19. Liu, D., Shriver, Z., Venkataraman, G., Shabrawi, Y. E., and Sasisekharan, R. (2002) Tumor cell surface heparan sulfate as cryptic promoters or inhibitors of tumor groth and metastasis. Proc Natl Acad Sci 99, 568–73.

    Article  CAS  PubMed  Google Scholar 

  20. Liu, J., and Pedersen, L. C. (2007) Anticoagulant heparan sulfate: structural specificity and biosynthesis. Appl Microbiol Biotechnol 74, 263–72.

    Article  CAS  PubMed  Google Scholar 

  21. Kelly, T., Miao, H. Q., Yang, Y., Navarro, E., Kussie, P., Huang, Y., MacLeod, V., Casciano, J., Joseph, L., Zhan, F., Zangari, M., Barlogie, B., Shaughnessy, J., and Sanderson, R. D. (2003) High heparanase activity in multiple myeloma is associated with elevated microvessel density. Cancer Res 63, 8749–56.

    CAS  PubMed  Google Scholar 

  22. Esko, J. D., and Selleck, S. B. (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71, 435–71.

    Article  CAS  PubMed  Google Scholar 

  23. Chapman, E., Best, M. D., Hanson, S. R., and Wong, C. -H. (2004) Sulfotransferases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angew Chemie Int Ed 42, 3526–48.

    Google Scholar 

  24. Gallagher, J. T. (2001) Heparan sulfate: growth control with a restricted sequence menu. J Clin Invest 108, 357–61.

    CAS  PubMed  Google Scholar 

  25. Toida, T., Yoshida, H., Toyoda, H., Koshiishi, T., Imanari, T., Hileman, R. E., Fromm, J. R., and Linhardt, R. J. (1997) Structural differences and the presence of unsubstituted amino groups in heparan sulfates from different tissues and species. Biochem J 322, 499–506.

    CAS  PubMed  Google Scholar 

  26. Liu, J., Shriver, Z., Pope, R. M., Thorp, S. C., Duncan, M. B., Copeland, R. J., Raska, C. S., Yoshida, K., Eisenberg, R. J., Cohen, G., Linhardt, R. J., and Sasisekharan, R. (2002) Characterization of a heparan sulfate octasaccharide that binds to herpes simplex viral type 1 glycoprotein D. J Biol Chem 277, 33456–67.

    Article  CAS  PubMed  Google Scholar 

  27. Powell, A. K., Fernig, D. G., and Turnbull, J. E. (2002) Fibroblast growth factor receptors 1 and 2 interact differently with heparin/heparan sulfate: implications for dynamic assembly of a ternary signaling complex. J Biol Chem 277, 28554–63.

    Article  CAS  PubMed  Google Scholar 

  28. Mikhailov, D., Young, H. C., Linhardt, R. J., and Mayo, K. H. (1999) Heparin dodecasaccharide binding to platelet factor-4 and growth-related protein-alpha: induction of a partially folded state and implications for heparin-induced thrombocytopenia. J Biol Chem 274, 25317–29.

    Article  CAS  PubMed  Google Scholar 

  29. Shukla, D., Liu, J., Blaiklock, P., Shworak, N. W., Bai, X., Esko, J. D., Cohen, G. H., Eisenberg, R. J., Rosenberg, R. D., and Spear, P. G. (1999) A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99, 13–22.

    Article  CAS  PubMed  Google Scholar 

  30. Aikawa, J.-I., Grobe, K., Tsujimoto, M., and Esko, J. D. (2001) Multiple isozymes of heparan sulfates/heparin GlcNAc N-deacetylase/GlcN N-sulfotransferase: structure and activity of the fourth member, NDST4. J Biol Chem 276, 5876–82.

    Article  CAS  PubMed  Google Scholar 

  31. Fan, G., Xiao, L., Cheng, L., Wang, X., Sun, B., and Hu, G. (2000) Targeted disruption of NDST-1 gene leads to pulmonary hypoplasia and neonatal respiratory distress in mice. FEBS Lett 467, 7–11.

    Article  CAS  PubMed  Google Scholar 

  32. Wang, L., Fuster, M., Sriramarao, P., and Esko, J. D. (2005) Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol 6, 902–10.

    Article  CAS  PubMed  Google Scholar 

  33. Forsberg, E., Pejler, G., Ringvall, M., Lunderius, C., Tomasini-Johansson, B., Kusche-Gullberg, M., Eriksson, I., Ledin, J., Hellman, L., and Kjellen, L. (1999) Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 400, 773–6.

    Article  CAS  PubMed  Google Scholar 

  34. Habuchi, H., Tanaka, M., Habuchi, O., Yoshida, K., Suzuki, H., Ban, K., and Kimata, K. (2000) The occurance of three isoforms of heparan sulfate 6-O-sulfotransferase having different specificities for hexuronic acid adjacent to the targeted N-sulfoglucosamine. J Biol Chem 275, 2859–68.

    Article  CAS  PubMed  Google Scholar 

  35. Martel, N., Lee, J., and Wells, P. S. (2005) Risk for heparin-induced thrombocytopenia with unfractionated and low-molecular-weight heparin thromboprophylaxis: a meta-analysis. Blood 106, 2710–5.

    Article  CAS  PubMed  Google Scholar 

  36. Kuberan, B., Lech, M. Z., Beeler, D. L., Wu, Z. L., and Rosenberg, R. D. (2003) Enzymatic synthesis of antithrombin III−binding heparan sulfate pentasaccharide. Nature Biotech 21, 1343–6.

    Article  CAS  Google Scholar 

  37. Lindahl, U., Li, J., Kusche-Gullberg, M., Salmivirta, M., Alaranta, S., Veromaa, T., Emies, J., Roberts, I., Taylor, C., Oreste, P., Zoppetti, G., Naggi, A., Torri, G., and Casu, B. (2005) Generation of “neoheparin” from E. Coli K5 capsular polysaccharide. J Med Chem 48, 349–52.

    Article  CAS  PubMed  Google Scholar 

  38. Balagurunathan, K., Beeler, D. L., Lech, M., Wu, Z. L., and Rosenberg, R. D. (2003) Chemoenzymatic synthesis of classical and non-classical anticoagulant heparan sulfate polysaccharides. J Biol Chem 278, 52613–21.

    Article  Google Scholar 

  39. Kuberan, B., Beeler, D. L., Lawrence, R., Lech, M., and Rosenberg, R. D. (2003) Rapid two-step synthesis of mitrin from heparosan: a replacement for heparin. J Am Chem Soc 125, 12424–5.

    Article  CAS  PubMed  Google Scholar 

  40. Chen, J., Avci, F. Y., Muñoz, E. M., McDowell, L. M., Chen, M., Pedersen, L. C., Zhang, L., Linhardt, R. J., and Liu, J. (2005) Enzymatic redesigning of biological active heparan sulfate. J Biol Chem 280, 42817–25.

    Article  CAS  PubMed  Google Scholar 

  41. Chen, J., Jones, C. L., and Liu, J. (2007) Using an enzymatic combinatorial approach to identify anticoagulant heparan sulfate structures. Chem Biol 14, 986–93.

    Article  CAS  PubMed  Google Scholar 

  42. Copeland, R. J., Balasubramaniam, A., Tiwari, V., Zhang, F., Bridges, A., Linhardt, R. J., Shukla, D., and Liu, J. (2008) Using a 3-O-sulfated heparan sulfate octasaccharide to inhibit the entry of herpes simplex virus type 1. Biochemistry 47, 5774–83.

    Article  CAS  PubMed  Google Scholar 

  43. Edavettal, S. C., Lee, K. A., Negishi, M., Linhardt, R. J., Liu, J., and Pedersen, L. C. (2004) Crystal structure and mutational analysis of heparan sulfate 3-O-sulfotransferase isoform 1. J Biol Chem 279, 25789–97.

    Article  CAS  PubMed  Google Scholar 

  44. Moon, A., Edavettal, S. C., Krahn, J. X., Munoz, E. M., Negishi, M., Linhardt, R. J., Liu, J., and Pedersen, L. C. (2004) Structural analysis of the sulfotransferase (3-OST-3) involved in the biosynthesis of an entry receptor of herpes simplex virus 1. J Biol Chem 279, 45185–93.

    Article  CAS  PubMed  Google Scholar 

  45. Xu, D., Moon, A., Song, D., Pedersen, L. C., and Liu, J. (2008) Engineering sulfotransferases to modify heparan sulfate. Nat Chem Biol 4, 200–2.

    Article  CAS  PubMed  Google Scholar 

  46. Duncan, M. B., Liu, M., Fox, C., and Liu, J. (2006) Characterization of the N-deacetylase domain from the heparan sulfate N-deacetylase/N-sulfotransferase 2. Biochem Biophys Res Commun 339, 1232–7.

    Article  CAS  PubMed  Google Scholar 

  47. Kakuta, Y., Sueyoshi, T., Negishi, M., and Pedersen, L. C. (1999) Crystal structure of the sulfotransferase domain of human heparan sulfate N-deacetylase/N-sulfotransferase 1. J Biol Chem 274, 10673–6.

    Article  CAS  PubMed  Google Scholar 

  48. Hodson, N., Griffiths, G., Cook, N., Pourhossein, M., Gottfridson, E., Lind, T., Lidholt, K., and Roberts, I. S. (2000) Identification that KfiA, a protein essential for the biosynthesis of the Escherichia coli K5 capsular polysaccharise, is an alpha-UDP-GlcNAc glycosyltransferase: the formation of a membrane-assocaited K5 biosynthetic complex requires KfiA, KfiB, and KfiC. J Biol Chem 275, 27311–5.

    CAS  PubMed  Google Scholar 

  49. Chen, M., Bridges, A., and Liu, J. (2006) Determination of the substrate specificities of N-acetyl-D-glucosaminyl transferase. Biochemistry 45, 12358–65.

    Article  CAS  PubMed  Google Scholar 

  50. Deangelis, P. L., and White, C. L. (2002) Identification and molecular cloning of a heparosan synthase from pasteurella multocida types D. J Biol Chem 277, 6852–7.

    Article  Google Scholar 

  51. Deangelis, P. L., and White, C. L. (2004) Identification of a distinct, cryptic heparosan synthase from pasteurella multocida types A, D, and F. J Bacteriol 186, 8529–32.

    Article  CAS  PubMed  Google Scholar 

  52. Muñoz, E., Xu, D., Avci, F., Kemp, M., Liu, J., and Linhardt, R. J. (2006) Enzymatic synthesis of heparin related polysaccharides on sensor chips: rapid screening of heparin-protein interactions. Biochem Biophys Res Commun 339, 597–602.

    Article  PubMed  Google Scholar 

  53. Xu, D., Tiwari, V., Xia, G., Clement, C., Shukla, D., and Liu, J. (2005) Characterization of heparan sulphate 3-O-sulphotransferase isoform 6 and its role in assisting the entry of herpes simplex virus type 1. Biochem J 385, 451–9.

    Article  CAS  PubMed  Google Scholar 

  54. Burkart, M. D., Izumi, M., Chapman, E., Lin, C., and Wong, C. -H. (2000) Regeneration of PAPS for the enzymatic synthesis of sulfated oligosaccharides. J Org Chem 65, 5565–74.

    Article  CAS  PubMed  Google Scholar 

  55. Das, S. K., Mallet, J. M., Esnault, J., Driguez, P. A., Duchaussoy, P., Sizun, P., Herault, J. P., Herbert, J. M., Petitou, M., and Sinaÿ, P. (2001) Synthesis of conformationally locked L-iduronic acid derivatives: direct evidence for a critical role of the skew-boat 2S0 conformer in the activation of antithrombin by heparin. Chemistry 7, 4821–34.

    Article  CAS  PubMed  Google Scholar 

  56. Montgomery, R. I., Warner, M. S., Lum, B. J., and Spear, P. G. (1996) Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 87, 427–36.

    Article  CAS  PubMed  Google Scholar 

  57. Pertel, P. E., Fridberg, A., Parish, M. L., and Spear, P. G. (2001) Cell fusion induced by herpes simplex virus glycoproteins gB, gD, and gH-gL requires a gD receptor but not necessarily heparan sulfate. Virology 279, 313–24.

    Article  CAS  PubMed  Google Scholar 

  58. Sismey-Ragatz, A. E., Dixy, E. G., Otto, N. J., Rejzek, M., Field, R. A., and Deangelis, P. L. (2007) Chemoenzymatic synthesis with distinct pasteurella heparosan synthases: monodisperse polymers and unnatural structures. J Biol Chem 282, 28321–7.

    Article  CAS  PubMed  Google Scholar 

  59. Weïwer, M., Sherwood, T., Green, D. E., Chen, M., DeAngelis, P. L., Liu, J., and Linhardt, R. J. (2008) Synthesis of uridine 5'-diphosphoiduronic acid: a potential substrate for the chemoenzymatic synthesis of heparin. J Org Chem 73, 7631–7.

    Article  PubMed  Google Scholar 

  60. Linhardt, R. J., Dordick, J. S., Deangelis, P. L., and Liu, J. (2007) Enzymatic synthesis of glycosaminoglycan heparin. Semin Thromb Hemost 33, 453–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our research is supported in part by grants from National Institute of Health (AI050050) and from American Heart Association, MidAtlantic (0855424E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renpeng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Liu, R., Liu, J. (2010). Enzymatic Synthesis of Heparin. In: Singh, O., Harvey, S. (eds) Sustainable Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3295-9_14

Download citation

Publish with us

Policies and ethics