Skip to main content

Hybrid Single Walled Carbon Nanotube FETs for High Fidelity DNA Detection

  • Chapter
  • First Online:
New Trends in Nanotechnology and Fractional Calculus Applications

Abstract

A novel application for detecting specific biomolecules using SWNT-ssDNA nanohybrid is described. SWNT-ssDNA hybrid is formed by conjugating amino-ended single strand of DNA (ssDNA) with carboxylic group modified SWNTs through a straightforward EDC coupling reaction. ssDNA functionalized SWNT hybrids could be used as high fidelity sensors for biomolecules. The sensing capability is demonstrated by the change in the electronic properties of SWNT. Employing DNA functionalized SWNT FETs could lead to dramatically increased sensitivity in biochemical sensing and medical diagnostics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jimenez D, Cartoixa X, Miranda E et al (2007) A simple drain current model for Schottky-barrier carbon nanotube field effect transistors. Nanotechnology 18(2):Article No. 025201

    Google Scholar 

  2. Li H, Zhang Q, Li JQ (2006) Carbon-nanotube-based single-electron/hole transistors. Appl Phys Lett 88(1):Article No. 013508

    Google Scholar 

  3. Kim BK, Kim JJ, So HM et al (2006) Carbon nanotube diode fabricated by contact engineering with self-assembled molecules. Appl Phys Lett 89(24):Article No. 243115

    Google Scholar 

  4. Raychowdhury A, Roy K (2007) Carbon nanotube electronics: Design of high-performance and low-power digital circuits. IEEE Trans Circ Syst I–Reg Pap 54:2391–2401

    Google Scholar 

  5. Kelly KF, Chiang IW, Mickelson ET et al (1999) Insight into the mechanism of sidewall functionalization of single-walled nanotubes: an STM study. Chem Phys Lett 313(3–4):445–450

    Article  Google Scholar 

  6. Fagan SB, da Silva AJR, Mota R et al (2003) Functionalization of carbon nanotubes through the chemical binding of atoms and molecules. Phys Rev B 67(3):Article No. 033405, 4 pages

    Google Scholar 

  7. Liu J, Rinzler AG, Dai HJ et al (1998) Fullerene pipes. Science 280(5367):1253–1256

    Article  Google Scholar 

  8. Qu LW, Martin RB, Huang WJ et al (2002) Interactions of functionalized carbon nanotubes with tethered pyrenes in solution. Jf Chem Phys 117(17):8089–8094

    Article  Google Scholar 

  9. Dwyer C, Johri V, Cheung M et al (2004) Design tools for a DNA-guided self-assembling carbon nanotube technology. Nanotechnology 15(9):1240–1245

    Article  Google Scholar 

  10. Zhang JP, Liu Y, Ke YG et al (2006) Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface. Nano Lett 6(2):248–251

    Article  Google Scholar 

  11. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440(7082):297–302

    Article  Google Scholar 

  12. Guo ZJ, Sadler PJ, Tsang SC (1998) Immobilization and visualization of DNA and proteins on carbon nanotubes. Adv Mat 10(9):701–703

    Article  Google Scholar 

  13. Ito T, Sun L, Crooks RM (2003) Observation of DNA transport through a single carbon nanotube channel using fluorescence microscopy. Chem Commun (13):1482–1483

    Article  Google Scholar 

  14. Gao HJ, Kong Y, Cui DX et al (2003) Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett 3(4):471–473

    Article  Google Scholar 

  15. X. Wang, Liu F, Andavan GTS et al (2006) Carbon Nanotube-DNA nanoarchitectures and electronic functionality. Small 2:1356–1365

    Article  Google Scholar 

  16. Star A, Tu E, Niemann J et al (2006) Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proceedings of the National Academy of Sciences of the United States of America 103(4):921–926

    Article  Google Scholar 

  17. Hu CG, Zhang YY, Bao G et al (2005) DNA functionalized single-walled carbon nanotubes for electrochemical detection. J Phys Chem B 109(43):20072–20076

    Article  Google Scholar 

  18. Kim DS, Nepal D, Geckeler KE (2005) Individualization of single-walled carbon nanotubes: is the solvent important? Small 1(11):1117–1124

    Article  Google Scholar 

  19. Cengiz Ozkan, Xu Wang (2008) Multisegment Nanowire Sensors for the Detection of DNA Molecules. Nano Lett 8(2):398–404

    Google Scholar 

  20. Star A, Gabriel JCP, Bradley K et al (2003) Electronic detection of specific protein binding using nanotube FET devices. Nano Lett 3(4):459–463

    Article  Google Scholar 

  21. Lee Otsuka Y, Gu H-Y, Lee J.-H, Yoo J-O, Tanaka K-H, Kawai H, Tabata T (2002) Jpn J Appl Phys 41:891; Ha DH, Nham H, Yoo KH et al (2002) Humidity effects on the conductance of the assembly of DNA molecules. Chem Phys Lett 355(5–6):405–409

    Google Scholar 

  22. Otto P, Clementi E, Ladik J (1983) The electronic-structure of DNA related periodic polymers. J Chem Phys 78(7):4547–4551; Lewis JP, Ordejon P, Sankey OF (1997) Electronic-structure-based molecular-dynamics method for large biological systems: application to the 10 basepair poly(dG)center dot poly(dC) DNA double helix. Phys Rev B 55(11):6880–6887; York DM, Lee TS, Yang WT (1998) Quantum mechanical treatment of biological macromolecules in solution using linear-scaling electronic structure methods. Phys Rev Lett 80(22):5011–5014; Ye YJ, Jiang Y (2000) Electronic structures and long-range electron transfer through DNA molecules. Int J Quant Chem 78(2):112–130

    Google Scholar 

  23. Jo YS, Lee Y, Roh Y (2003) Effects of humidity on the electrical conduction of lambda-DNA trapped on a nano-gap Au electrode. J Korean Phys Soc 43:909–913

    Google Scholar 

  24. Kleine-Ostmann T, Jordens C, Baaske K et al (2006) Conductivity of single-stranded and double-stranded deoxyribose nucleic acid under ambient conditions: the dominance of water. Appl Phys Lett 88(10):Article No. 102102

    Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge financial support of this work by the Center for Nanotechnology for the Treatment, Understanding and Monitoring of Cancer (NanoTumor) funded by the National Cancer Institute, and the Center for Hierarchical Manufacturing (CHM) funded by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cengiz S. Ozkan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wang, X., Ozkan, M., Budak, G., Güvenç, Z.B., Ozkan, C.S. (2010). Hybrid Single Walled Carbon Nanotube FETs for High Fidelity DNA Detection. In: Baleanu, D., Guvenc, Z., Machado, J. (eds) New Trends in Nanotechnology and Fractional Calculus Applications. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3293-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3293-5_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3292-8

  • Online ISBN: 978-90-481-3293-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics