Skip to main content

Novel Molecular Diodes Developed by Chemical Conjugation of Carbon Nanotubes with Peptide Nucleic Acid

  • Chapter
  • First Online:
New Trends in Nanotechnology and Fractional Calculus Applications

Abstract

In this work single walled carbon nanotube (SWNT)-peptide nucleic acid (PNA) conjugates are synthesized and their electrical properties are characterized. Metal contacts to SWNT-PNA-SWNT conjugates, used for current–voltage (IV ) measurements, are fabricated by two different methods: direct placement on pre-patterned gold electrodes and metal deposition using focused ion beam (FIB). Back-gated IV measurements are used to determine the electronic properties of these conjugates. Additionally, conductive atomic force microscopy (C-AFM) is used to characterize the intrinsic charge transport characteristics of individual PNA clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin BJ (2006) The ending of optical lithography and the prospects of its successors. Microelectronic Engineering 83(4–9):604–613

    Article  Google Scholar 

  2. Lin BJ (2006) Optical lithography—present and future challenges. Comptes Rendus Physique 7(8):858–874

    Article  Google Scholar 

  3. Huang Y, Duan XF, Cui Y, Lauhon LJ, Kim KH, Lieber CM (2001) Logic gates and computation from assembled nanowire building blocks. Science 294(5545): 1313–1317

    Article  Google Scholar 

  4. Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291(5505):851–853

    Article  Google Scholar 

  5. Lu W, Lieber CM (2007) Nanoelectronics from the bottom up. Nature Materials 6(11):841–850

    Article  Google Scholar 

  6. Fu L, Cao L, Liu Y, Zhu D (2004) Molecular and nanoscale materials and devices in electronics. Advances in Colloid and Interface Science 111(3):133–157

    Article  Google Scholar 

  7. Balzani V, Credi A, Venturi, M (2003) Molecular logic circuits. Chemphyschem 4(1):49–59

    Article  Google Scholar 

  8. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes – the route toward applications. Science 297(5582):787–792

    Article  Google Scholar 

  9. Wildoer JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C (1998) Electronic structure of atomically resolved carbon nanotubes. Nature 391(6662): 59–62

    Article  Google Scholar 

  10. Bashir R (2001) DNA-mediated artificial nanobiostructures: state of the art and future directions. Superlattices and Microstructures 29(1):1–16

    Article  Google Scholar 

  11. Chakrabarti R, Klibanov AM (2003) Nanocrystals modified with peptide nucleic acids (PNAs) for selective self-assembly and DNA detection. Journal of the American Chemical Society 125(41):12531–12540

    Article  Google Scholar 

  12. Vernille JP, Kovell LC, Schneider JW (2004) Peptide nucleic acid (PNA) amphiphiles: Synthesis, self-assembly, and duplex stability. Bioconjugate Chemistry 15(6):1314–1321

    Article  Google Scholar 

  13. Singh KV, Pandey RR, Wang X Lake R, Ozkan CS, Wang K, Ozkan M (2006) Covalent functionalization of single walled carbon nanotubes with peptide nucleic acid: Nanocomponents for molecular level electronics. Carbon 44(9):1730–1739

    Google Scholar 

  14. Star A, Han TR, Gabriel JCP, Bradley K, Gruner G (2003) Interaction of aromatic compounds with carbon nanotubes: Correlation to the Hammett parameter of the substituent and measured carbon nanotube FET response. Nano Letters 3(10):1421–1423

    Article  Google Scholar 

  15. Kong J, Chapline MG, Dai HJ (2001) Functionalized carbon nanotubes for molecular hydrogen sensors. Advanced Materials 13(18):1384–1386

    Article  Google Scholar 

  16. Lin Y, Taylor S, Li HP, Fernando KAS, Qu LW, Wang W, Gu LR, Zhou B, Sun YP (2004). Advances toward bioapplications of carbon nanotubes. J Mat Chem 14(4):527–541

    Article  Google Scholar 

  17. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chemical Reviews 106(3):1105–1136

    Article  Google Scholar 

  18. Kong J, Soh HT, Cassell AM, Quate CF, Dai HJ (1998) Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395(6705):878–881

    Article  Google Scholar 

  19. Sze SM, Ng KK (2006) Tunnel Devices. Physics of Semiconductor Devices. 3rd edn. Wiley, Hoboken p 417

    Google Scholar 

  20. Nikolaev P (2004) Gas-phase production of single-walled carbon nanotubes from carbon monoxide: A review of the HiPCO process. Journal of Nanoscience and Nanotechnology. 4(4):307–316

    Article  MathSciNet  Google Scholar 

  21. Odom TW, Huang JL, Kim P, Lieber CM (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391(6662):62–64

    Article  Google Scholar 

  22. Aviram A, Ratner MA (1974) Molecular Rectifiers. Chem Phys Lett 29(2):277–283

    Article  Google Scholar 

  23. Metzger RM (1999) Electrical rectification by a molecule: The advent of unimolecular electronic devices. Acc Chem Res. 32(11):950–957

    Article  Google Scholar 

  24. Metzger RM (2003) Unimolecular electrical rectifiers. Chem Rev. 103(9):3803–3834

    Article  Google Scholar 

  25. Metzger RM (2004) Electrical rectification by monolayers of three molecules. Macromolecular Symposia 212(1):63–72

    Article  Google Scholar 

  26. Metzger RM (2006) Unimolecular rectifiers: Methods and challenges. Analytica Chimica Acta 568(1–2):146–155

    Article  Google Scholar 

  27. Chen J, Reed MA, Rawlett AM, Tour JM (1999) Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286(5444):1550–1552

    Article  Google Scholar 

  28. James DK, Tour JM (2006) Organic synthesis and device testing for molecular electronics. Aldrichimica Acta 39(2):47–56

    Google Scholar 

  29. Wang X, Liu F, Andavan GTS, Jing XY, Singh K, Yazdanpanah VR, Bruque N, Pandey RR, Lake R, Ozkan M, Wang KL, Ozkan CS (2006) Carbon Nanotube-DNA nanoarchitectures and electronic functionality. Small 2(11):1356–1365

    Article  Google Scholar 

  30. Pandey RR, Bruque N, Alam K, Lake RK (2006) Carbon nanotube – molecular resonant tunneling diode. Physica Status Solidia – Applications and Materials Science 203(2):R5–R7

    Google Scholar 

  31. Bruque N, Pandey RR, Lake RK, Wang H, Lewis JP (2005) Electronic transport through a CNT-Pseudopeptide-CNT hybrid material. Molecular Simulation 31(12):859–864

    Article  Google Scholar 

  32. Hu H, Bhowmik P, Zhao B, Hamon MA, Itkis ME, Haddon RC (2001) End-group and defect analysis of soluble single-walled carbon nanotubes. Chem Phys Lett 345(1–2):25–28

    Article  Google Scholar 

  33. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273(5274):483–487

    Article  Google Scholar 

  34. Metzger RM, Panetta CA (1989) Langmuir-blodgett films of potential donor sigma acceptor organic rectifiers. J Mol Elect 5(1):1–17

    Google Scholar 

  35. Okazaki N, Sambles JR, Jory MJ, Ashwell GJ (2002) Molecular rectification at 8 K in an Au/C(16)H(33)Q-3CNQ LB film/Au structure. Applied Physics Letters 81(12): 2300–2302

    Article  Google Scholar 

  36. Kumar MJ (2007) Molecular Diodes and Applications. Recent Patents on Nanotechnology 1:51–57

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Nanomanufacturing Program of the National Science Foundation (NSF) (grant no: 0800680), the FCRP Center on Functional Engineered Nano Architectonics funded by the SRC and DARPA, and the Center for Hierarchical Manufacturing (CHM) funded by the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihri Ozkan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Singh, K.V., Penchev, M., Jing, X., Martinez–Morales, A.A., Ozkan, C.S., Ozkan, M. (2010). Novel Molecular Diodes Developed by Chemical Conjugation of Carbon Nanotubes with Peptide Nucleic Acid. In: Baleanu, D., Guvenc, Z., Machado, J. (eds) New Trends in Nanotechnology and Fractional Calculus Applications. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3293-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3293-5_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3292-8

  • Online ISBN: 978-90-481-3293-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics