Skip to main content

Romp: The Method of Choice for Precise Macromolecular Engineering and Synthesis of Smart Materials

  • Conference paper
  • 1149 Accesses

Abstract

The recent advances in olefin metathesis highlight the impact of Ring Opening Metathesis Polymerisation (ROMP) as a powerful technique for macromolecular engineering and synthesis of smart materials with well-defined structures. ROMP has attracted a considerable research attention recently particularly by industry largely due to the development of well-defined metal complexes as initiators and also because of the award of the Noble Prize for Chemistry in 2005 to three scientists (Chauvin, Grubbs, Schrock) for their contributions in this area. This chapter discusses several interesting examples in order to demonstrate that ROMP is a power tool in macromolecular engineering and that it allows the design and synthesis of polymers with novel topologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. W.J. Feast, V.C. Gibson, A.F. Johnson, E. Khosravi, and M.A. Mohsin, Polymer, 1994, 35, 3542.

    Article  CAS  Google Scholar 

  2. W.J. Feast, V.C. Gibson, A.F. Johnson, E. Khosravi, and M.A. Mohsin, J. Mol. Catal. A: Chem., 1997, 115, 37.

    Article  CAS  Google Scholar 

  3. A.C.M. Rizmi, E. Khosravi, W.J. Feast, M.A. Mohsin, and A.F. Johnson, Polymer, 1998, 39, 6605.

    Article  CAS  Google Scholar 

  4. E. Khosravi, “Block Copolymers”, A chapter in Handbook of Metathesis, R.H. Grubbs (Ed.), Wiley-VCH, Weinheim, 2003, Vol. 3, pp. 72–117.

    Chapter  Google Scholar 

  5. E. Khosravi, L.R. Hutchings, and M. Kujawa-Welten, Designed Monomers Polym., 2004, 7, 619–632.

    Article  CAS  Google Scholar 

  6. L.R. Hutchings, E. Khosravi, and T.C. Castle, Macromolecules, 2004, 37, 2035–2040.

    Article  Google Scholar 

  7. K.J. Ivin and J.C. Mol, Olefin Metathesis and Metathesis Polymerization, Academic Press, San Diego, CA, 1997.

    Google Scholar 

  8. P.E. Schwab, R.H. Grubbs, and J.W. Ziller, J. Am. Chem. Soc., 1996, 118, 100–110.

    Article  CAS  Google Scholar 

  9. M. Ulman and R.H. Grubbs, Organometallics, 1998, 17, 2484–2489.

    Article  CAS  Google Scholar 

  10. M. Netopilík and P. Kratochvíl, Polymer, 2003, 44, 3431–3436.

    Article  Google Scholar 

  11. T.C. Castle, E. Khosravi, and L.R. Hutchings, Macromolecules 2006, 39, 5639–5645.

    Article  CAS  Google Scholar 

  12. R.P. Quirk and J.J. Ma, J. Polym. Sci., Part A: Polym. Chem., 1988, 26, 2031–2037.

    Article  CAS  Google Scholar 

  13. M.A. Hillmyer and F.S. Bates, Macromolecules, 1996, 29, 6994–7002.

    Article  CAS  Google Scholar 

  14. Y. Deng, R.N. Young, A.J. Ryan, J.P.A. Fairclough, A.I. Norman, and R.D. Tack, Polymer, 2002, 43, 7155–7160.

    Article  CAS  Google Scholar 

  15. R.P. Quirk, F. You, C. Wesdemiotis, and M.A. Arnould, Macromolecules, 2004, 37, 1234–1242.

    Article  CAS  Google Scholar 

  16. R.P. Quirk, R.T. Mathers, C. Wesdemiotis, and M.A. Arnould, Macromolecules, 2002, 35, 2912–2918.

    Article  CAS  Google Scholar 

  17. R.P. Quirk, Y. Guo, C. Wesdemiotis, and M.A. Arnould, Polymer, 2004, 45, 3423–3428.

    Article  CAS  Google Scholar 

  18. H.C. Aspinall, N. Greeves, W.-M. Lee, E.G. McIver, and P.M. Smith, Tetrahedron Lett., 1997, 38, 4679–4682.

    Article  CAS  Google Scholar 

  19. R.J. Minchak, US Patent 4,426,502, issued 17/01/1984.

    Google Scholar 

  20. L. Matejka, C. Houtman, and C.W. Macosko, J. Appl. Polym. Sci., 1985, 30, 2787.

    Article  CAS  Google Scholar 

  21. R.H. Grubbs, L.K. Johnson, and S.T. Nguyen, US Patent No. 5,312,940, issued 5/17/1994.

    Google Scholar 

  22. R.H. Grubbs, L.K. Johnson, and S.T. Nguyen, US Patent No. 5,342,909, issued 8/30/1994.

    Google Scholar 

  23. R.H. Grubbs, S.T. Nguyen, and L.K. Johnson, US Patent No. 5,710,298, issued 1/20/1998.

    Google Scholar 

  24. R.H. Grubbs and C.S. Woodson, Jr., US Patent No. 5,728,785, issued 3/17/1998.

    Google Scholar 

  25. C.S. Woodson, Jr. and R.H. Grubbs, US Patent No. 5,939,504, issued 8/17/1999.

    Google Scholar 

  26. D.S. Breslow, Chemtech, 1990, 20, 540.

    CAS  Google Scholar 

  27. J.A. Johnson and M.F. Farona, Polym. Bull., 1991, 25, 625–627.

    Article  Google Scholar 

  28. H. Ng, I. Manas-Zloczower, and M. Shmorhun, Polym. Eng. Sci., 1994, 34, 921–928.

    Article  CAS  Google Scholar 

  29. A. Bell, Polym. Preprints, 1994, 35, 694–695.

    CAS  Google Scholar 

  30. E. Khosravi and A.A. Al-Hajaji, Eur. Polym. J., 1998, 34, 153.

    Article  CAS  Google Scholar 

  31. E. Khosravi and A.A. Al-Hajaji, Polymer, 1998, 39, 5619.

    Article  CAS  Google Scholar 

  32. E. Khosravi, W.J. Feast, A.A. Al-Hajaji, and T. Leejarkpai, Mol. Catal. A: Chem., 2000,160, 1.

    Article  CAS  Google Scholar 

  33. T. Leejarkpai, Ph.D. thesis, University of Durham, UK, 2000.

    Google Scholar 

  34. P.J. Hine, T. Leejarkpai, E. Khosravi, R.A. Duckett, and W.J. Feast, Polymer, 2001, 42, 9413.

    Article  CAS  Google Scholar 

  35. L.R.G. Treloar, The Physics of Rubber Elasticity, Oxford, London, UK, 1958.

    Google Scholar 

  36. L.E. Nielsen, Journal of macromolecular science — Revs. Macromol. Chem., 1969, C3(1), 69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Khosravi, E., Castle, T.C., Kujawa, M., Leejarkpai, J., Hutchings, L.R., Hine, P.J. (2009). Romp: The Method of Choice for Precise Macromolecular Engineering and Synthesis of Smart Materials. In: Khosravi, E., Yagci, Y., Savelyev, Y. (eds) New Smart Materials via Metal Mediated Macromolecular Engineering. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3278-2_14

Download citation

Publish with us

Policies and ethics