Skip to main content

Nutrient Regulation of Insulin Secretion and β-Cell Functional Integrity

  • Chapter
  • First Online:
The Islets of Langerhans

Abstract

Pancreatic β-cells are often referred to as “fuel sensors” as they continually monitor and respond to dietary nutrients, under the modulation of additional neurohormonal signals, in order to secrete insulin to best meet the needs of the organism. β-cell nutrient sensing requires metabolic activation, resulting in production of stimulus-secretion coupling signals that promote insulin biosynthesis and release. The primary stimulus for insulin secretion is glucose, and islet β-cells are particularly responsive to this important nutrient secretagogue, It is important to consider individual effects of different classes of nutrient or other physiological or pharmacological agents on metabolism and insulin secretion. However, given that β-cells are continually exposed to a complex milieu of nutrients and other circulating factors, it is important to also acknowledge and examine the interplay between glucose metabolism and that of the two other primary nutrient classes, the amino acids and fatty acids. It is the mixed nutrient sensing and outputs of glucose, amino and fatty acid metabolism that generate the metabolic coupling factors (MCFs) involved in signaling for insulin exocytosis. Primary MCFs in the β-cell include ATP, NADPH, glutamate, long chain acyl-CoA and diacylglycerol and are discussed in detail in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACC:

acetyl-CoA carboxylase

CPT-1:

CarnitinePalmitoyl Transferase 1

DAG:

diacylglycerol

FFA:

free fatty acid

GLP-1:

glucagon-like peptide-1

GIP:

glucose-dependent insulinotropic polypeptide

GSIS:

glucose-stimulated insulin secretion

Gly3P:

glycerol-3-phosphate

LC-acylCoA:

long-chain acyl-CoA

MCF:

metabolic coupling factors

PKA:

protein kinase A

PKC:

protein kinase C

PLC:

phospholipase C

References

  1. Straub SG, Sharp GW. Glucose-stimulated signalling pathways in biphasic insulin secretion. Diabetes Metab Res Rev 2002;18:451–63.

    Article  PubMed  CAS  Google Scholar 

  2. Green BD, Flatt PR. Incretin hormone mimetics and analogues in diabetes therapeutics. Best Pract Res Clin Endocrinol Metab 2007;21:497–516.

    Article  PubMed  CAS  Google Scholar 

  3. Charles S, Henquin JC. Distinct effects of various amino acids on 45Ca2+ fluxes in rat pancreatic islets. Biochem J 1983;214:899–907.

    PubMed  CAS  Google Scholar 

  4. Newsholme P, Keane D, Welters HJ, Morgan NG. Life and death decisions of the pancreatic beta-cell: the role of fatty acids. Clin Sci (Lond) 2007;112:27–42.

    Article  CAS  Google Scholar 

  5. Tengholm A, Gylfe E. Oscillatory control of insulin secretion. Mol Cell Endocrinol 2009;297:58–72.

    Article  PubMed  CAS  Google Scholar 

  6. Nolan CJ, Prentki M. The islet beta-cell. fuel responsive and vulnerable. Trends Endocrinol Metab 2008;19:285–91.

    Article  PubMed  CAS  Google Scholar 

  7. Brennan L, Shine A, Hewage C, Malthouse JP, Brindle KM, McClenaghan N, Flatt PR, Newsholme P. A nuclear magnetic resonance-based demonstration of substantial oxidative L-alanine metabolism and L-alanine-enhanced glucose metabolism in a clonal pancreatic beta-cell line: metabolism of L-alanine is important to the regulation of insulin secretion. Diabetes 2002;51:1714–21.

    Article  PubMed  CAS  Google Scholar 

  8. Smith PA, Sakura H, Coles B, Gummerson N, Proks P, Ashcroft FM. Electrogenic arginine transport mediates stimulus-secretion coupling in mouse pancreatic beta-cells. J Physiol 499 1997; (Pt 3):625–35.

    PubMed  CAS  Google Scholar 

  9. Dixon G, Nolan J, McClenaghan N, Flatt PR, Newsholme P. A comparative study of amino acid consumption by rat islet cells and the clonal beta-cell line BRIN-BD11 - the functional significance of L-alanine. J Endocrinol 2003;179:447–54.

    Article  PubMed  CAS  Google Scholar 

  10. Sener A, Malaisse WJ. L-leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature 1980;288:187–89.

    Article  PubMed  CAS  Google Scholar 

  11. Keane D, Newsholme P. Saturated and unsaturated (including arachidonic acid) non-esterified fatty acid modulation of insulin secretion from pancreatic beta-cells. Biochem Soc Trans 2008;36:955–8.

    Article  PubMed  CAS  Google Scholar 

  12. Salehi A, Flodgren E, Nilsson NE, Jimenez-Feltstrom J, Miyazaki J, Owman C, Olde B. Free fatty acid receptor 1 (FFA(1)R/GPR40) and its involvement in fatty-acid-stimulated insulin secretion. Cell Tissue Res 2005;322:207–15.

    Article  PubMed  CAS  Google Scholar 

  13. Persaud SJ, Muller D, Belin VD, Kitsou-Mylona I, Asare-Anane H, Papadimitriou A, Burns CJ, Huang GC, Amiel SA, Jones PM. The role of arachidonic acid and its metabolites in insulin secretion from human islets of langerhans. Diabetes 2007a;56:197–203.

    Article  PubMed  CAS  Google Scholar 

  14. Kruman I, Guo Q, Mattson MP. Calcium and reactive oxygen species mediate staurosporine-induced mitochondrial dysfunction and apoptosis in PC12 cells. J Neurosci Res 1998;51:293–308.

    Article  PubMed  CAS  Google Scholar 

  15. Yu JH, Kim KH, Kim H. Role of NADPH oxidase and calcium in cerulein-induced apoptosis: involvement of apoptosis-inducing factor. Ann N Y Acad Sci 2006;1090:292–7.

    Article  PubMed  CAS  Google Scholar 

  16. Morgan D, Oliveira-Emilio HR, Keane D, Hirata AE, Santos da Rocha M, Bordin S, Curi R, Newsholme P, Carpinelli AR. Glucose, palmitate and pro-inflammatory cytokines modulate production and activity of a phagocyte-like NADPH oxidase in rat pancreatic islets and a clonal beta cell line. Diabetologia 2007;50:359–69.

    Article  PubMed  CAS  Google Scholar 

  17. Morgan D, Rebelato E, Abdulkader F, Graciano MF, Oliveira-Emilio HR, Hirata AE, Rocha MS, Bordin S, Curi R, Carpinelli AR. Association of Nad(P)H oxidase with glucose-induced insulin secretion by pancreatic beta cells. Endocrinology, 2009 Epub ahead of print] PMID: 19147679 [PubMed – as supplied by publisher]

    Google Scholar 

  18. Nakazaki M, Kakei M, Koriyama N, Tanaka H. Involvement of ATP-sensitive K+ channels in free radical-mediated inhibition of insulin secretion in rat pancreatic beta-cells. Diabetes 1995;44:878–83.

    Article  PubMed  CAS  Google Scholar 

  19. McClenaghan NH. Physiological regulation of the pancreatic {beta}-cell: functional insights for understanding and therapy of diabetes. Exp Physiol 2007;92:481–96.

    Article  PubMed  CAS  Google Scholar 

  20. McClenaghan NH, Barnett CR, Ah-Sing E, Abdel-Wahab YH, O’Harte FP, Yoon TW, Swanston-Flatt SK, Flatt PR. Characterization of a novel glucose-responsive insulin-secreting cell line, BRIN-BD11, produced by electrofusion. Diabetes 1996;45:1132–40.

    Article  PubMed  CAS  Google Scholar 

  21. Brennan L, Corless M, Hewage C, Malthouse JP, McClenaghan NH, Flatt PR, Newsholme P. 13C NMR analysis reveals a link between L-glutamine metabolism, D-glucose metabolism and gamma-glutamyl cycle activity in a clonal pancreatic beta-cell line. Diabetologia 2003;46:1512–21.

    Article  PubMed  CAS  Google Scholar 

  22. Nielsen K, Sorensen PG, Hynne F, Busse HG. Sustained oscillations in glycolysis: an experimental and theoretical study of chaotic and complex periodic behaviour and of quenching of simple oscillations. Biophys Chem 1998;72:49–62.

    Article  PubMed  CAS  Google Scholar 

  23. Nielsen K, Sorensen PG, Hynne F. Chaos in Glycolysis. J Theor Biol 1997;186:303–6.

    Article  PubMed  CAS  Google Scholar 

  24. Westermark PO, Lansner A. A model of phosphofructokinase and glycolytic oscillations in the pancreatic beta-cell. Biophys J 2003;85: 126–39.

    Article  PubMed  CAS  Google Scholar 

  25. MacDonald MJ. Influence of glucose on pyruvate carboxylase expression in pancreatic islets. Arch Biochem Biophys 1995;319:128–32.

    Article  PubMed  CAS  Google Scholar 

  26. MacDonald MJ. Feasibility of a mitochondrial pyruvate malate shuttle in pancreatic islets. Further implication of cytosolic NADPH in insulin secretion. J Biol Chem 1995;270: 20051–8.

    PubMed  CAS  Google Scholar 

  27. Xu J, Han J, Long YS, Epstein PN, Liu YQ. The role of pyruvate carboxylase in insulin secretion and proliferation in rat pancreatic beta cells. Diabetologia 2008;51:2022–30.

    Article  PubMed  CAS  Google Scholar 

  28. MacDonald MJ, Tang J, Polonsky KS. Low mitochondrial glycerol phosphate dehydrogenase and pyruvate carboxylase in pancreatic islets of Zucker diabetic fatty rats. Diabetes 1996;45:1626–30.

    Article  PubMed  CAS  Google Scholar 

  29. Cook DL, Hales CN. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 1984;311:271–3.

    Article  PubMed  CAS  Google Scholar 

  30. Tarasov A, Dusonchet J, Ashcroft F. Metabolic regulation of the pancreatic beta-cell ATP-sensitive K+ channel: a pas de deux. Diabetes 2004;53 Suppl 3:S113–22.

    Article  PubMed  CAS  Google Scholar 

  31. Wiederkehr A, Wollheim CB. Minireview: implication of mitochondria in insulin secretion and action. Endocrinology 2006;147:2643–9.

    Article  PubMed  CAS  Google Scholar 

  32. Maechler P, Kennedy ED, Pozzan T, Wollheim CB. Mitochondrial activation directly triggers the exocytosis of insulin in permeabilized pancreatic beta-cells. Embo J 1997;16: 3833–41.

    Article  PubMed  CAS  Google Scholar 

  33. Carpentier A, Mittelman SD, Bergman RN, Giacca A, Lewis GF. Prolonged elevation of plasma free fatty acids impairs pancreatic beta-cell function in obese nondiabetic humans but not in individuals with type 2 diabetes. Diabetes 2000;49:399–408.

    Article  PubMed  CAS  Google Scholar 

  34. Jensen MV, Joseph JW, Ronnebaum SM, Burgess SC, Sherry AD, Newgard CB. Metabolic cycling in control of glucose-stimulated insulin secretion. Am J Physiol Endocrinol Metab 2008;295:E1287–97.

    Article  PubMed  CAS  Google Scholar 

  35. Jensen MV, Joseph JW, Ilkayeva O, Burgess S, Lu D, Ronnebaum SM, Odegaard M, Becker TC, Sherry AD, Newgard CB. Compensatory responses to pyruvate carboxylase suppression in islet beta-cells. Preservation of glucose-stimulated insulin secretion. J Biol Chem 2006;281:22342–51.

    Article  PubMed  CAS  Google Scholar 

  36. Macdonald MJ. Export of metabolites from pancreatic islet mitochondria as a means to study anaplerosis in insulin secretion. Metabolism 2003;52:993–8.

    Article  PubMed  CAS  Google Scholar 

  37. Bender K, Newsholme P, Brennan L, Maechler P. The importance of redox shuttles to pancreatic beta-cell energy metabolism and function. Biochem Soc Trans 2006;34:811–4.

    Article  PubMed  CAS  Google Scholar 

  38. Eto K, Tsubamoto Y, Terauchi Y, Sugiyama T, Kishimoto T, Takahashi N, Yamauchi N, Kubota N, Murayama S, Aizawa T, Akanuma Y, Aizawa S, Kasai H, Yazaki Y, Kadowaki T. Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science 1999;283:981–5.

    Article  PubMed  CAS  Google Scholar 

  39. Marmol P, Pardo B, Wiederkehr A, del Arco A, Wollheim CB, Satrustegui J. Requirement for aralar and its Ca2+-binding sites in Ca2+ signal transduction in mitochondria from INS-1 clonal beta-cells. J Biol Chem 2009;284:515–24.

    Article  PubMed  CAS  Google Scholar 

  40. Rubi B, del Arco A, Bartley C, Satrustegui J, Maechler P. The malate-aspartate NADH shuttle member Aralar1 determines glucose metabolic fate, mitochondrial activity, and insulin secretion in beta cells. J Biol Chem 2004;279:55659–66.

    Article  PubMed  CAS  Google Scholar 

  41. del Arco A, Satrustegui J. Molecular cloning of Aralar, a new member of the mitochondrial carrier superfamily that binds calcium and is present in human muscle and brain. J Biol Chem 1998;273:23327–34.

    Article  PubMed  CAS  Google Scholar 

  42. Corkey BE, Glennon MC, Chen KS, Deeney JT, Matschinsky FM, Prentki M. A role for malonyl-CoA in glucose-stimulated insulin secretion from clonal pancreatic beta-cells. J Biol Chem 1989;264:21608–12.

    PubMed  CAS  Google Scholar 

  43. Deeney JT, Gromada J, Hoy M, Olsen HL, Rhodes CJ, Prentki M, Berggren PO, Corkey BE. Acute stimulation with long chain acyl-CoA enhances exocytosis in insulin-secreting cells (HIT T-15 and NMRI beta-cells). J Biol Chem 2000;275:9363–8.

    Article  PubMed  CAS  Google Scholar 

  44. Joseph JW, Odegaard ML, Ronnebaum SM, Burgess SC, Muehlbauer J, Sherry AD, Newgard CB. Normal flux through ATP-citrate lyase or fatty acid synthase is not required for glucose-stimulated insulin secretion. J Biol Chem 2007;282:31592–600.

    Article  PubMed  CAS  Google Scholar 

  45. Roche E, Farfari S, Witters LA, Assimacopoulos-Jeannet F, Thumelin S, Brun T, Corkey BE, Saha AK, Prentki M. Long-term exposure of beta-INS cells to high glucose concentrations increases anaplerosis, lipogenesis, and lipogenic gene expression. Diabetes 1998;47:1086–94.

    Article  PubMed  CAS  Google Scholar 

  46. Hamilton JA, Kamp F. How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids? Diabetes 1999;48:2255–69.

    Article  PubMed  CAS  Google Scholar 

  47. Prentki M, Joly E, El-Assaad W, Roduit R. Malonyl-CoA signalling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes 51 Suppl 2002;3:S405–13.

    Article  Google Scholar 

  48. Yaney GC, Corkey BE. Fatty acid metabolism and insulin secretion in pancreatic beta cells. Diabetologia 2003;46:1297–1312.

    Article  PubMed  CAS  Google Scholar 

  49. Haber EP, Procopio J, Carvalho CR, Carpinelli AR, Newsholme P, Curi R. New insights into fatty acid modulation of pancreatic beta-cell function. Int Rev Cytol 2006;248:1–41.

    Article  PubMed  CAS  Google Scholar 

  50. Moffitt JH, Fielding BA, Evershed R, Berstan R, Currie JM and Clark A. Adverse physiochemical properties of tripalmitin in beta cells lead to morphological changes and lipotoxicity in vitro. Diabetologia 2005; 48:1819–29.

    Article  PubMed  CAS  Google Scholar 

  51. Dixon G, Nolan J, McClenaghan NH, Flatt PR, Newsholme P. Arachidonic acid, palmitic acid and glucose are important for the modulation of clonal pancreatic beta-cell insulin secretion, growth and functional integrity. Clin Sci (Lond) 2004;106:191–9.

    Article  CAS  Google Scholar 

  52. Tomita T, Masuzaki H, Iwakura H, Fujikura J, Noguchi M, Tanaka T, Ebihara K, Kawamura J, Komoto I, Kawaguchi Y, Fujimoto K, Doi R, Shimada Y, Hosoda K, Imamura M, Nakao K. Expression of the gene for a membrane-bound fatty acid receptor in the pancreas and islet cell tumours in humans: evidence for GPR40 expression in pancreatic beta cells and implications for insulin secretion. Diabetologia 2006;49:962–8.

    Article  PubMed  CAS  Google Scholar 

  53. Itoh Y, Hinuma S. GPR40, a free fatty acid receptor on pancreatic beta cells, regulates insulin secretion. Hepatol Res 2005;33:171–3.

    PubMed  CAS  Google Scholar 

  54. Shapiro H, Shachar S, Sekler I, Hershfinkel M, Walker MD. Role of GPR40 in fatty acid action on the beta cell line INS-1E. Biochem Biophys Res Commun 2005;335:97–104.

    Article  PubMed  CAS  Google Scholar 

  55. Blau N, Duran M, Blaskovics M, Gibson K. In: Physician’s Guide to the Laboratory Diagnosis of Metabolic Diseases. 2nd ed. New York: SpringerVerlag; 2003. p. 11–26.

    Google Scholar 

  56. Fajans SS, Floyd JC, Jr, Knopf RF, Conn FW. Effect of amino acids and proteins on insulin secretion in man. Recent Prog Horm Res 1967;23:617–62.

    PubMed  CAS  Google Scholar 

  57. McClenaghan NH, Barnett CR, O'Harte FP, Flatt PR. Mechanisms of amino acid-induced insulin secretion from the glucose-responsive BRIN-BD11 pancreatic B-cell line. J Endocrinol 1996;151:349–57.

    Article  PubMed  CAS  Google Scholar 

  58. Dukes ID, McIntyre MS, Mertz RJ, Philipson LH, Roe MW, Spencer B, Worley JF, 3rd. Dependence on NADH produced during glycolysis for beta-cell glucose signalling. J Biol Chem 1994;269:10979–82.

    PubMed  CAS  Google Scholar 

  59. Malaisse-Lagae F, Sener A, Garcia-Morales P, Valverde I, Malaisse WJ. The stimulus-secretion coupling of amino acid-induced insulin release. Influence of a nonmetabolized analogue of leucine on the metabolism of glutamine in pancreatic islets. J Biol Chem 1982;257:3754–8.

    PubMed  CAS  Google Scholar 

  60. Maechler P. Mitochondria as the conductor of metabolic signals for insulin exocytosis in pancreatic beta-cells. Cell Mol Life Sci 2002;59:1803–18.

    Article  PubMed  CAS  Google Scholar 

  61. Kwon G, Marshall CA, Pappan KL, Remedi MS, McDaniel ML. signalling elements involved in the metabolic regulation of mTOR by nutrients, incretins, and growth factors in islets. Diabetes 2004;53 Suppl 3:S225–32.

    Article  PubMed  CAS  Google Scholar 

  62. McDaniel ML, Marshall CA, Pappan KL, Kwon G. Metabolic and autocrine regulation of the mammalian target of rapamycin by pancreatic beta-cells. Diabetes 2002;51:2877–85.

    Article  PubMed  CAS  Google Scholar 

  63. Briaud I, Lingohr MK, Dickson LM, Wrede CE, Rhodes CJ. Differential activation mechanisms of Erk-1/2 and p70(S6K) by glucose in pancreatic beta-cells. Diabetes 2003;52:974–83.

    Article  PubMed  CAS  Google Scholar 

  64. Sener A, Best LC, Yates AP, Kadiata MM, Olivares E, Louchami K, Jijakli H, Ladriere L, Malaisse WJ. Stimulus-secretion coupling of arginine-induced insulin release: comparison between the cationic amino acid and its methyl ester. Endocrine 2000;13:329–40.

    Article  PubMed  CAS  Google Scholar 

  65. Curi R, Lagranha CJ, Doi SQ, Sellitti DF, Procopio J, Pithon-Curi TC, Corless M, Newsholme P. Molecular mechanisms of glutamine action. J Cell Physiol 2005;204:392–401.

    Article  PubMed  CAS  Google Scholar 

  66. Li C, Buettger C, Kwagh J, Matter A, Daikhin Y, Nissim IB, Collins HW, Yudkoff M, Stanley CA, Matschinsky FM. A signalling role of glutamine in insulin secretion. J Biol Chem 2004;279:13393–401.

    Article  PubMed  CAS  Google Scholar 

  67. Maechler P, Wollheim CB. Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature 1999;402:685–9.

    Article  PubMed  CAS  Google Scholar 

  68. Broca C, Brennan L, Petit P, Newsholme P, Maechler P. Mitochondria-derived glutamate at the interplay between branched-chain amino acid and glucose-induced insulin secretion. FEBS Lett 2003;545:167–72.

    Article  PubMed  CAS  Google Scholar 

  69. Danielsson A, Hellman B, Idahl LA. Levels of alpha-ketoglutarate and glutamate in stimulated pancreatic beta-cells. Horm Metab Res 1970;2:28–31.

    Article  PubMed  CAS  Google Scholar 

  70. MacDonald MJ, Fahien LA. Glutamate is not a messenger in insulin secretion. J Biol Chem 2000;275:34025–7.

    Article  PubMed  CAS  Google Scholar 

  71. Hoy M, Maechler P, Efanov AM, Wollheim CB, Berggren PO, Gromada J. Increase in cellular glutamate levels stimulates exocytosis in pancreatic beta-cells. FEBS Lett 2002;531:199–203.

    Article  PubMed  CAS  Google Scholar 

  72. Bertrand G, Ishiyama N, Nenquin M, Ravier MA, Henquin JC. The elevation of glutamate content and the amplification of insulin secretion in glucose-stimulated pancreatic islets are not causally related. J Biol Chem 2002;277:32883–91.

    Article  PubMed  CAS  Google Scholar 

  73. Kiely A, McClenaghan NH, Flatt PR, Newsholme P. Pro-inflammatory cytokines increase glucose, alanine and triacylglycerol utilization but inhibit insulin secretion in a clonal pancreatic beta-cell line. J Endocrinol 2007;195:113–23.

    Article  PubMed  CAS  Google Scholar 

  74. Yang J, Wong RK, Park M, Wu J, Cook JR, York DA, Deng S, Markmann J, Naji A, Wolf BA, Gao Z. Leucine regulation of glucokinase and ATP synthase sensitizes glucose-induced insulin secretion in pancreatic beta-cells. Diabetes 2006;55:193–201.

    Article  PubMed  CAS  Google Scholar 

  75. Heissig H, Urban KA, Hastedt K, Zunkler BJ, Panten U. Mechanism of the insulin-releasing action of alpha-ketoisocaproate and related alpha-keto acid anions. Mol Pharmacol 2005;68:1097–105.

    Article  PubMed  CAS  Google Scholar 

  76. McClenaghan NH, Flatt PR. Metabolic and K(ATP) channel-independent actions of keto acid initiators of insulin secretion. Pancreas 2000;20:38–46.

    Article  PubMed  CAS  Google Scholar 

  77. Hsu BY, Kelly A, Thornton PS, Greenberg CR, Dilling LA, Stanley CA. Protein-sensitive and fasting hypoglycaemia in children with the hyperinsulinism/hyperammonemia syndrome. J Pediatr 2001;138:383–89.

    Article  PubMed  CAS  Google Scholar 

  78. Carobbio S, Frigerio F, Rubi B, Vetterli L, Bloksgaard M, Gjinovci A, Pournourmohammadi S, Herrera PL, Reith W, Mandrup S, Maechler P. Deletion of glutamate dehydrogenase in beta-cells abolishes part of the insulin secretory response not required for glucose homeostasis. J Biol Chem 2009;284:921–9.

    Article  PubMed  CAS  Google Scholar 

  79. Poitout V, Hagman D, Stein R, Artner I, Robertson RP, Harmon JS. Regulation of the insulin gene by glucose and fatty acids. J Nutr 2006;136:873–6.

    PubMed  CAS  Google Scholar 

  80. Bensellam M, Van Lommel L, Overbergh L, Schuit FC, Jonas JC. Cluster analysis of rat pancreatic islet gene mRNA levels after culture in low-, intermediate- and high-glucose concentrations. Diabetologia 2009;52:463–76.

    Article  PubMed  CAS  Google Scholar 

  81. Andrali SS, Sampley ML, Vanderford NL, Ozcan S. Glucose regulation of insulin gene expression in pancreatic beta-cells. Biochem J 2008;415:1–10.

    Article  PubMed  CAS  Google Scholar 

  82. Kelpe CL, Moore PC, Parazzoli SD, Wicksteed B, Rhodes CJ, Poitout V. Palmitate inhibition of insulin gene expression is mediated at the transcriptional level via ceramide synthesis. J Biol Chem 2003;278:30015–21.

    Article  PubMed  CAS  Google Scholar 

  83. Hagman DK, Hays LB, Parazzoli SD, Poitout V. Palmitate inhibits insulin gene expression by altering PDX-1 nuclear localization and reducing MafA expression in isolated rat islets of Langerhans. J Biol Chem 2005;280:32413–8.

    Article  PubMed  CAS  Google Scholar 

  84. Newsholme P, Brennan L, Bender K. Amino-acid metabolism, beta cell function and diabetes. Diabetes 2006;55 Suppl 2:S39–47.

    Google Scholar 

  85. Cunningham GA, McClenaghan NH, Flatt PR, Newsholme P. L-Alanine induces changes in metabolic and signal transduction gene expression in a clonal rat pancreatic beta-cell line and protects from pro-inflammatory cytokine-induced apoptosis. Clin Sci (Lond) 2005;109:447–55.

    Article  CAS  Google Scholar 

  86. Corless M, Kiely A, McClenaghan NH, Flatt PR, Newsholme P. Glutamine regulates expression of key transcription factor, signal transduction, metabolic gene, and protein expression in a clonal pancreatic beta-cell line. J Endocrinol 2006;190:719–27.

    Article  PubMed  CAS  Google Scholar 

  87. Renstrom E, Ding WG, Bokvist K, Rorsman P. Neurotransmitter-induced inhibition of exocytosis in insulin-secreting beta cells by activation of calcineurin. Neuron 1996;17:513–22.

    Article  PubMed  CAS  Google Scholar 

  88. Tremblay F, Lavigne C, Jacques H, Marette A. Role of dietary proteins and amino acids in the pathogenesis of insulin resistance. Annu Rev Nutr 2007;27:293–310.

    Article  PubMed  CAS  Google Scholar 

  89. Newsholme P, Haber EP, Hirabara SM, Rebelato EL, Procopio J, Morgan D, Oliveira-Emilio HC, Carpinelli AR, Curi R. Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 2007;583:9–24.

    Article  PubMed  CAS  Google Scholar 

  90. McClenaghan NH, Scullion SM, Mion B, Hewage C, Malthouse JP, Flatt PR, Newsholme P, Brennan L. Prolonged L-alanine exposure induces changes in metabolism, Ca(2+) handling and desensitization of insulin secretion in clonal pancreatic beta-cells. Clin Sci (Lond) 2009;116:341–51.

    CAS  Google Scholar 

  91. Patterson S, Scullion SM, McCluskey JT, Flatt PR, McClenaghan NH. Prolonged exposure to homocysteine results in diminished but reversible pancreatic beta-cell responsiveness to insulinotropic agents. Diabetes Metab Res Rev 2007;23:324–34.

    Article  PubMed  CAS  Google Scholar 

  92. Patterson S, Flatt PR, Brennan L, Newsholme P, McClenaghan NH. Detrimental actions of metabolic syndrome risk factor, homocysteine, on pancreatic beta-cell glucose metabolism and insulin secretion. J Endocrinol 2006;189:301–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Newsholme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Newsholme, P., Gaudel, C., McClenaghan, N.H. (2010). Nutrient Regulation of Insulin Secretion and β-Cell Functional Integrity. In: Islam, M. (eds) The Islets of Langerhans. Advances in Experimental Medicine and Biology, vol 654. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3271-3_6

Download citation

Publish with us

Policies and ethics