Skip to main content

High Fat Programming of β-Cell Failure

  • Chapter
  • First Online:
The Islets of Langerhans

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 654))

Abstract

High saturated fat intake contributes to insulin resistance, β-cell failure, and type 2 diabetes. Developmental programming refers to a stimulus or insult during critical periods of life which includes fetal and subsequent early neonatal life. Programming alters offspring physiology and metabolism with both immediate and lasting consequences. Maternal nutrition in gestation and lactation shapes offspring development and health. A high saturated fat diet ingested by mothers during gestation and/or lactation is a form of nutritional insult that induces diabetogenic changes in offspring physiology and metabolism. High fat programming is induced by maternal high saturated fat intake during defined periods of gestation and/or lactation and programs the physiology and metabolism of the offspring in early life. This more recently adopted form of developmental programming reflects society in both affluent and developing countries. High fat programming induces adverse changes in β-cell development and function in neonatal and weanling offspring. These changes are characterized by compromised β-cell development and function, evident by altered expression of key factors that maintain the β-cell phenotype. High fat programming is likely to result in β-cell failure and eventual type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kasuga M. Insulin resistance and pancreatic beta cell failure. J Clin Invest 2006;116:1756–60.

    PubMed  CAS  Google Scholar 

  2. Anderson JW, Kendall CW, Jenkins DJ. Importance of weight management in type 2 diabetes: review with meta-analysis of clinical studies. J Am Coll Nutr 2003;22:331–9.

    PubMed  Google Scholar 

  3. Ludvik B, Nolan JJ, Baloga J, Sacks D, Olefsky J. Effect of obesity on insulin resistance in normal subjects and patients with NIDDM. Diabetes 1995;44:1121–5.

    PubMed  CAS  Google Scholar 

  4. Godfrey KM, Lillycrop KA, Burdge GC, Gluckman PD, Hanson MA. Epigenetic mechanisms and the mismatch concept of the developmental origins of health and disease. Pediatr Res 2007;61:5R–10R.

    PubMed  Google Scholar 

  5. Popkin BM. Nutrition in transition: the changing global nutrition challenge. Asia Pac J Clin Nutr 2001;10 Suppl:S13–8.

    PubMed  CAS  Google Scholar 

  6. Gluckman PD, Hanson MA. The developmental origins of the metabolic syndrome. Trends Endocrinol Metab 2004;15:183–7.

    PubMed  CAS  Google Scholar 

  7. Prentice AM, Moore SE. Early programming of adult diseases in resource poor countries. Arch Dis Child 2005;90:429–32.

    PubMed  CAS  Google Scholar 

  8. Bhargava SK, Sachdev HS, Fall CH, Osmond C, Lakshmy R, Barker DJ, Biswas SK, Ramji S, Prabhakaran D, Reddy KS. Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N Engl J Med 2004;350:865–75.

    PubMed  CAS  Google Scholar 

  9. Gluckman PD, Hanson MA. Developmental origins of disease paradigm: a mechanistic and evolutionary perspective. Pediatr Res 2004;56:311–7.

    PubMed  Google Scholar 

  10. Jansson N, Nilsfelt A, Gellerstedt M, Wennergren M, Rossander-Hulthen L, Powell TL, Jansson T. Maternal hormones linking maternal body mass index and dietary intake to birth weight. Am J Clin Nutr 2008;87:1743–9.

    PubMed  CAS  Google Scholar 

  11. Heywood WE, Mian N, Milla PJ, Lindley KJ. Programming of defective rat pancreatic beta-cell function in offspring from mothers fed a low-protein diet during gestation and the suckling periods. Clin Sci (Lond) 2004;107:37–45.

    CAS  Google Scholar 

  12. Siebel AL, Mibus A, De Blasio MJ, Westcott KT, Morris MJ, Prior L, Owens JA, Wlodek ME. Improved lactational nutrition and postnatal growth ameliorates impairment of glucose tolerance by uteroplacental insufficiency in male rat offspring. Endocrinology 2008;149:3067–76.

    PubMed  CAS  Google Scholar 

  13. Zambrano E, Bautista CJ, Deas M, Martinez-Samayoa PM, Gonzalez-Zamorano M, Ledesma H, Morales J, Larrea F, Nathanielsz PW. A low maternal protein diet during pregnancy and lactation has sex- and window of exposure-specific effects on offspring growth and food intake, glucose metabolism and serum leptin in the rat. J Physiol 2006;571:221–30.

    PubMed  CAS  Google Scholar 

  14. Cerf ME. High fat diet modulation of glucose sensing in the beta-cell. Med Sci Monit 2007;13:RA12–7.

    PubMed  CAS  Google Scholar 

  15. Cerf ME, Louw J. High fat-induced programming of beta-cell development and function in neonatal and weanling offspring. Kerala, India, Transworld Research Network; 2008, pp. 133–58.

    Google Scholar 

  16. Cerf ME, Williams K, Nkomo XI, Muller CJ, Du Toit DF, Louw J, Wolfe-Coote SA. Islet cell response in the neonatal rat after exposure to a high-fat diet during pregnancy. Am J Physiol Regul Integr Comp Physiol 2005;288:R1122–8.

    PubMed  CAS  Google Scholar 

  17. Cerf ME, Williams K, Chapman CS, Louw J. Compromised beta-cell development and beta-cell dysfunction in weanling offspring from dams maintained on a high-fat diet during gestation. Pancreas 2007;34:347–53.

    PubMed  CAS  Google Scholar 

  18. Cerf ME, Muller CJ, Du Toit DF, Louw J, Wolfe-Coote SA. Hyperglycaemia and reduced glucokinase expression in weanling offspring from dams maintained on a high-fat diet. Br J Nutr 2006;95:391–96.

    PubMed  CAS  Google Scholar 

  19. Ackermann AM, Gannon M. Molecular regulation of pancreatic β-cell mass development, maintenance, and expansion. J Mol Endocrinol 2007;38:193–206.

    PubMed  CAS  Google Scholar 

  20. Li D, Yin X, Zmuda EJ, Wolford CC, Dong X, White MF, Hai T. The repression of IRS2 gene by ATF3, a stress-inducible gene, contributes to pancreatic beta-cell apoptosis. Diabetes 2008;57:635–44.

    PubMed  CAS  Google Scholar 

  21. Donath MY, Halban PA. Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia 2004;47:581–89.

    PubMed  CAS  Google Scholar 

  22. Masiello P. Animal models of type 2 diabetes with reduced pancreatic beta-cell mass. Int J Biochem Cell Biol 2006;38:873–93.

    PubMed  CAS  Google Scholar 

  23. Poitout V, Robertson RP. Minireview: Secondary beta-cell failure in type 2 diabetes – a convergence of glucotoxicity and lipotoxicity. Endocrinology 2002;143:339–42.

    PubMed  CAS  Google Scholar 

  24. Pick A, Clark J, Kubstrup C, Levisetti M, Pugh W, Bonner-Weir S, Polonsky KS. Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes 1998;47:358–64.

    PubMed  CAS  Google Scholar 

  25. Donath MY, Gross DJ, Cerasi E, Kaiser N. Hyperglycemia-induced beta-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. Diabetes 1999;48:738–44.

    PubMed  CAS  Google Scholar 

  26. Skelly RH, Bollheimer LC, Wicksteed BL, Corkey BE, Rhodes CJ. A distinct difference in the metabolic stimulus-response coupling pathways for regulating proinsulin biosynthesis and insulin secretion that lies at the level of a requirement for fatty acyl moieties. Biochem J 1998;331 (Pt 2):553–61.

    PubMed  CAS  Google Scholar 

  27. Poitout V, Robertson RP. Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev 2008;29:351–66.

    PubMed  CAS  Google Scholar 

  28. Ruderman N, Prentki M. AMP kinase and malonyl-CoA: targets for therapy of the metabolic syndrome. Nat Rev Drug Discov 2004;3:340–51.

    PubMed  CAS  Google Scholar 

  29. Chen, C, Hosokawa, H, Bumbalo, LM, Leahy, JL: Regulatory effects of glucose on the catalytic activity and cellular content of glucokinase in the pancreatic beta cell. Study using cultured rat islets. J Clin Invest 94:1616–20, 1994

    PubMed  CAS  Google Scholar 

  30. Khaldi MZ, Guiot Y, Gilon P, Henquin JC, Jonas JC. Increased glucose sensitivity of both triggering and amplifying pathways of insulin secretion in rat islets cultured for 1 wk in high glucose. Am J Physiol Endocrinol Metab 2004;287:E207–17.

    PubMed  CAS  Google Scholar 

  31. Prentki M, Joly E, El-Assaad W, Roduit R. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes 51 Suppl 2002;3:S405–13.

    Google Scholar 

  32. Prentki M, Nolan CJ. Islet beta cell failure in type 2 diabetes. J Clin Invest 2006;116:1802–12.

    PubMed  CAS  Google Scholar 

  33. Rhodes CJ. Type 2 diabetes-a matter of beta-cell life and death? Science 2005;307:380–84.

    PubMed  CAS  Google Scholar 

  34. Muoio DM, Newgard CB. Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol 2008;9:193–205.

    PubMed  CAS  Google Scholar 

  35. Gniuli D, Calcagno A, Caristo ME, Mancuso A, Macchi V, Mingrone G, Vettor R. Effects of high-fat diet exposure during fetal life on type 2 diabetes development in the progeny. J Lipid Res 2008;49:1936–45.

    PubMed  CAS  Google Scholar 

  36. Brunner Y, Schvartz D, Priego-Capote F, Coute Y, Sanchez JC. Glucotoxicity and pancreatic proteomics. J Proteomics 2008, In press

    Google Scholar 

  37. LeRoith D. Beta-cell dysfunction and insulin resistance in type 2 diabetes: role of metabolic and genetic abnormalities. Am J Med 113 Suppl 2002;6A:3S–11S.

    Google Scholar 

  38. Dubois M, Vacher P, Roger B, Huyghe D, Vandewalle B, Kerr-Conte J, Pattou F, Moustaid-Moussa N, Lang J. Glucotoxicity inhibits late steps of insulin exocytosis. Endocrinology 2007;148:1605–14.

    PubMed  CAS  Google Scholar 

  39. Kim Y, Iwashita S, Tamura T, Tokuyama K, Suzuki M. Effect of high-fat diet on the gene expression of pancreatic GLUT2 and glucokinase in rats. Biochem Biophys Res Commun 1995;208:1092–98.

    PubMed  CAS  Google Scholar 

  40. Jorns A, Tiedge M, Ziv E, Shafrir E, Lenzen S. Gradual loss of pancreatic beta-cell insulin, glucokinase and GLUT2 glucose transporter immunoreactivities during the time course of nutritionally induced type-2 diabetes in Psammomys obesus (sand rat). Virchows Arch 2002;440:63–69.

    PubMed  Google Scholar 

  41. Reimer MK, Ahren B. Altered beta-cell distribution of pdx-1 and GLUT-2 after a short-term challenge with a high-fat diet in C57BL/6 J mice. Diabetes 2002;51 Suppl 1:S138–3.

    PubMed  CAS  Google Scholar 

  42. Gremlich S, Bonny C, Waeber G, Thorens B. Fatty acids decrease IDX-1 expression in rat pancreatic islets and reduce GLUT2, glucokinase, insulin, and somatostatin levels. J Biol Chem 1997;272:30261–9.

    PubMed  CAS  Google Scholar 

  43. Navarro-Tableros V, Fiordelisio T, Hernandez-Cruz A, Hiriart M. Physiological development of insulin secretion, calcium channels and GLUT2 expression of pancreatic rat β-cells. Am J Physiol Endocrinol Metab 2007;292:E1018–29.

    PubMed  CAS  Google Scholar 

  44. Park JH, Stoffers DA, Nicholls RD, Simmons RA. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest 2008;118:2316–24.

    PubMed  CAS  Google Scholar 

  45. Terauchi Y, Sakura H, Yasuda K, Iwamoto K, Takahashi N, Ito K, Kasai H, Suzuki H, Ueda O, Kamada N. Pancreatic beta-cell-specific targeted disruption of glucokinase gene. Diabetes mellitus due to defective insulin secretion to glucose. J Biol Chem 1995;270:30253–6.

    PubMed  CAS  Google Scholar 

  46. Terauchi Y, Takamoto I, Kubota N, Matsui J, Suzuki R, Komeda K, Hara A, Toyoda Y, Miwa I, Aizawa S, Tsutsumi S, Tsubamoto Y, Hashimoto S, Eto K, Nakamura A, Noda M, Tobe K, Aburatani H, Nagai R, Kadowaki T. Glucokinase and IRS-2 are required for compensatory beta cell hyperplasia in response to high-fat diet-induced insulin resistance. J Clin Invest 2007;117:246–57.

    PubMed  CAS  Google Scholar 

  47. Sone H, Kagawa Y. Pancreatic beta cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice. Diabetologia 2005;48:58–67.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlon E. Cerf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cerf, M.E. (2010). High Fat Programming of β-Cell Failure. In: Islam, M. (eds) The Islets of Langerhans. Advances in Experimental Medicine and Biology, vol 654. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3271-3_5

Download citation

Publish with us

Policies and ethics