Skip to main content

The Programmable Cell of Monocytic Origin (PCMO): A Potential Adult Stem/Progenitor Cell Source for the Generation of Islet Cells

  • Chapter
  • First Online:
The Islets of Langerhans

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 654))

Abstract

Adult stem or programmable cells hold great promise in diseases in which damaged or non-functional cells need to be replaced, such as in type 1 diabetes. We have recently demonstrated that peripheral blood monocytes can be differentiated in vitro into pancreatic β-cell-like cells capable of synthesizing insulin. The two-step phenotypic conversion commences with growth factor-induced partial reprogramming during which the cells acquire a state of plasticity along with expression of various markers of pluripotency. These cells, termed “programmable cells of monocytic origin” (PCMOs), can then be induced with appropriate differentiation media to become insulin-producing cells (NeoIslet cells). Expression profiling of transcription factors known to determine endocrine and β-cell development in vivo indicated that NeoIslet cells resemble cells with an immature β-cell phenotype. Current efforts focus on establishing culture conditions that (i) increase the plasticity and proliferation potential of PCMOs by enhancing the reprogramming process and (ii) improve insulin production by mimicking in vivo lineage specification and normal pancreatic endocrine development. Combining these two strategies has great potential in generating large amounts of blood-derived cells suitable for both autologous and allogeneic therapy of type 1 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMP:

bone morphogenetic protein

EGF:

epidermal growth factor

FGF:

fibroblast growth factor

ESC:

embryonic stem cell

IL-3:

interleukin-3

HGF:

hepatocyte growth factor

M-CSF:

macrophage colony-stimulating factor

MSC:

mesenchymal stem cell

PCMO:

programmable cell of monocytic origin

RA:

retinoic acid

RT-PCR:

reverse transcription polymerase chain reaction

Shh:

sonic hedgehog

TGF-beta:

transforming growth factor-beta

References

  1. Best M, Carroll M, Hanley NA, Piper Hanley K. Embryonic stem cells to beta-cells by understanding pancreas development. Mol Cell Endocrinol 2008;288:86–94.

    PubMed  CAS  Google Scholar 

  2. Bonner-Weir S, Weir GC. New sources of pancreatic β-cells. Nat Biotechnol 2005;23:857–61.

    PubMed  CAS  Google Scholar 

  3. Bonner-Weir S, Inada A, Yatoh S, Li WC, Aye T, Toschi E, Sharma A. Transdifferentiation of pancreatic ductal cells to endocrine beta-cells. Biochem Soc Trans 2008;36:353–6.

    PubMed  CAS  Google Scholar 

  4. Bouwens L. Beta cell regeneration. Curr Diabetes Rev 2006;2:3–9.

    PubMed  Google Scholar 

  5. Boumaza I, Srinivasan S, Witt WT, Feghali-Bostwick C, Dai Y, Garcia-Ocana A, Feili-Hariri M. Autologous bone marrow-derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets, alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia. J Autoimmun 2009;32:33–42.

    PubMed  CAS  Google Scholar 

  6. Brem-Exner BG, Sattler C, Hutchinson JA, Koehl GE, Kronenberg K, Farkas S, Inoue S, Blank C, Knechtle SJ, Schlitt HJ, Fändrich F, Geissler EK. Macrophages driven to a novel state of activation have anti-inflammatory properties in mice. J Immunol 2008;180:335–49.

    PubMed  CAS  Google Scholar 

  7. Brubaker PL, Drucker DJ. Minireview: Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 2004;145:2653–9.

    PubMed  CAS  Google Scholar 

  8. Burns CJ, Persaud SJ, Jones PM. Diabetes mellitus: a potential target for stem cell therapy. Curr Stem Cell Res Ther 2006;1:255–66.

    PubMed  CAS  Google Scholar 

  9. Dai C, Huh CG, Thorgeirsson SS, Liu Y. Beta-cell-specific ablation of the hepatocyte growth factor receptor results in reduced islet size, impaired insulin secretion, and glucose intolerance. Am J Pathol 2005;167:429–36.

    PubMed  CAS  Google Scholar 

  10. D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 2006;24:1392–401.

    PubMed  Google Scholar 

  11. Eberhard D, Tosh D, Slack JM: Origin of pancreatic endocrine cells from biliary duct epithelium. Cell Mol Life Sci 2008;65:3467–80.

    PubMed  CAS  Google Scholar 

  12. Ehnert S, Nussler AK, Lehmann A, Dooley S. Blood monocyte-derived neohepatocytes as in vitro test system for drug metabolism. Drug Metab Dispos 2008;36:1922–9.

    PubMed  CAS  Google Scholar 

  13. Glanemann M, Gaebelein G, Nussler N, Hao L, Kronbach Z, Shi B, Neuhaus P, Nussler AK. Transplantation of monocyte-derived hepatocyte-like cells (NeoHeps) improves survival in a model of acute liver failure. Ann Surg 2009;249:149–54.

    PubMed  Google Scholar 

  14. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005;5:953–64.

    PubMed  CAS  Google Scholar 

  15. Guillemain G, Filhoulaud G, Da Silva-Xavier G, Rutter GA, Scharfmann R. Glucose is necessary for embryonic pancreatic endocrine cell differentiation. J Biol Chem 2007;282: 15228–37.

    PubMed  CAS  Google Scholar 

  16. Gurdon JB, Melton DA. Nuclear reprogramming in cells. Science 2008;322:1811–5.

    PubMed  CAS  Google Scholar 

  17. Hutchinson JA, Riquelme P, Wundt J, Hengstler JG, Fändrich F, Ungefroren H, Clement B. Could treatment with neohepatocytes benefit patients with decompensated chronic liver disease? Am J Hematol 2007;82:947–8.

    PubMed  Google Scholar 

  18. Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS. SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type I receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 2002;62:65–74.

    PubMed  CAS  Google Scholar 

  19. Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Araúzo-Bravo MJ, Ruau D, Han DW, Zenke M, Schöler HR. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 2008;454:646–50.

    PubMed  CAS  Google Scholar 

  20. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D’Amour KA, Carpenter MK, Baetge EE. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008;26:443–52.

    PubMed  CAS  Google Scholar 

  21. Kuwana M, Kuwana M, Okazaki Y, Kodama H, Izumi K, Yasuoka H, Ogawa Y, Kawakami Y, Ikeda Y. Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. J Leukoc Biol 2003;74:833–45.

    PubMed  CAS  Google Scholar 

  22. Levine F, Itkin-Ansari P. Beta-cell Regeneration: neogenesis, replication or both? J Mol Med 2008;86:247–58.

    PubMed  CAS  Google Scholar 

  23. Li L, Li F, Qi H, Feng G, Yuan K, Deng H, Zhou H. Coexpression of Pdx1 and betacellulin in mesenchymal stem cells could promote the differentiation of nestin-positive epithelium-like progenitors and pancreatic islet-like spheroids. Stem Cells Dev 2008;815–23.

    Google Scholar 

  24. Miettinen PJ, Huotari M, Koivisto T, Ustinov J, Palgi J, Rasilainen S, Lehtonen E, Keski-Oja J, Otonkoski T. Impaired migration and delayed differentiation of pancreatic islet cells in mice lacking EGF-receptors. Development 2000;127:2617–27.

    PubMed  CAS  Google Scholar 

  25. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 2007;448:548–9.

    Google Scholar 

  26. Möller B, Ungefroren H, Acil Y, Springer I, Schulze M, Warnke PH, Fändrich F, Wiltfang J. Transdifferentiation of human monocytes to osteoblast-like cells – a comparison to human osteoblasts, SaOS-2 osteosarcoma cells and human mesenchymal stem cells. In press

    Google Scholar 

  27. Noguchi H, Xu G, Matsumoto S, Kaneto H, Kobayashi N, Bonner-Weir S, Hayashi S. Induction of pancreatic stem/progenitor cells into insulin-producing cells by adenoviral-mediated gene transfer technology. Cell Transplant 2006;15:929–38.

    PubMed  Google Scholar 

  28. Ogawa K, Saito A, Matsui H, Suzuki H, Ohtsuka S, Shimosato D, Morishita Y, Watabe T, Niwa H, Miyazono K. Activin-Nodal signaling is involved in propagation of mouse embryonic stem cells. J Cell Sci 2006;120:55–65.

    Google Scholar 

  29. Oliver-Krasinski JM, Stoffers DA. On the origin of the beta cell. Genes Dev 2008;22: 1998–2021.

    PubMed  CAS  Google Scholar 

  30. Pufe T, Petersen W, Fändrich F, Varoga D, Wruck CJ, Mentlein R, Helfenstein A, Hoseas D, Dressel S, Tillmann B, Ruhnke M. Programmable cells of monocytic origin (PCMO): A source of peripheral blood stem cells that generate collagen type II-producing chondrocytes. J Orthop Res 2008;26:304–13.

    PubMed  CAS  Google Scholar 

  31. Roccisana J, Reddy V, Vasavada RC, Gonzalez-Pertusa JA, Magnuson MA, Garcia-Ocaña A. Targeted inactivation of hepatocyte growth factor receptor c-met in beta-cells leads to defective insulin secretion and GLUT-2 downregulation without alteration of beta-cell mass. Diabetes 2005;54:2090–102.

    PubMed  CAS  Google Scholar 

  32. Romagnani P, Annunziato F, Liotta F, Lazzeri E, Mazzinghi B, Frosali F, Cosmi L, Maggi L, Lasagni L, Scheffold A, Kruger M, Dimmeler S, Marra F, Gensini G, Maggi E, Romagnani S. CD14+CD34low cells with stem cell phenotypic and functional features are the major source of circulating endothelial progenitors. Circ Res 2005;97:314–22.

    PubMed  CAS  Google Scholar 

  33. Ruau D, Ensenat-Waser R, Dinger TC, Vallabhapurapu DS, Rolletschek A, Hacker C, Hieronymus T, Wobus AM, Müller AM, Zenke M. Pluripotency associated genes are reactivated by chromatin-modifying agents in neurosphere cells. Stem Cells 2008;26:920–6.

    PubMed  CAS  Google Scholar 

  34. Ruhnke M, Ungefroren H, Nussler A, Martin F, Brulport M, Schormann W, Hengstler JG, Klapper W, Ulrichs K, Hutchinson JA, Soria B, Parwaresch RM, Heeckt P, Kremer B, Fändrich F. Differentiation of in vitro-modified human peripheral blood monocytes into hepatocyte-like and pancreatic islet-like cells. Gastroenterology 2005;128:1774–86.

    PubMed  CAS  Google Scholar 

  35. Ruhnke M, Nussler AK, Ungefroren H, Hengstler JG, Kremer B, Hoeckh W, Gottwald T, Heeckt P, Fändrich F. Human monocyte-derived neohepatocytes: a promising alternative to primary human hepatocytes for autologous cell therapy. Transplantation 2005;79:1097–103.

    PubMed  Google Scholar 

  36. Sanvito F, Herrera PL, Huarte J, Nichols A, Montesano R, Orci L, Vassalli JD. TGF-beta 1 influences the relative development of the exocrine and endocrine pancreas in vitro. Development 1994;120:3451–62.

    PubMed  CAS  Google Scholar 

  37. Schulze M, Fändrich F, Ungefroren H, Kremer B. Adult stem cells – perspectives in treatment of metabolic diseases. Acta Gastro-Enterologica Belgica 2005;68:461–5.

    PubMed  CAS  Google Scholar 

  38. Serafimidis I, Rakatzi I, Episkopou V, Gouti M, Gavalas A: Novel effectors of directed and Ngn3-mediated differentiation of mouse embryonic stem cells into endocrine pancreas progenitors. Stem Cells 2008;26:3–16.

    PubMed  CAS  Google Scholar 

  39. Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 2008;6:e253.

    PubMed  Google Scholar 

  40. Soria B, Bedoya FJ, Tejedo JR, Hmadcha A, Ruiz-Salmerón R, Lim S, Martin F. Cell therapy for diabetes mellitus: an opportunity for stem cells? Cells Tissues Organs 2008;188:70–7.

    PubMed  CAS  Google Scholar 

  41. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science 2008;322:945–9.

    PubMed  CAS  Google Scholar 

  42. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663–76.

    PubMed  CAS  Google Scholar 

  43. Tang DQ, Cao LZ, Burkhardt BR, Xia CQ, Litherland SA, Atkinson MA, Yang LJ. In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes 2004;53:1721–32.

    PubMed  CAS  Google Scholar 

  44. Tsuchida K, Nakatani M, Yamakawa N, Hashimoto O, Hasegawa Y, Sugino H. Activin isoforms signal through type I receptor serine/threonine kinase ALK7. Mol Cell Endocrinol 2004;220:59–65.

    PubMed  CAS  Google Scholar 

  45. Vaca P, Berná G, Araujo R, Carneiro EM, Bedoya FJ, Soria B, Martín F. Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells. Exp Cell Res 2008;314:969–74.

    PubMed  CAS  Google Scholar 

  46. Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell 2004;116:639–48.

    PubMed  CAS  Google Scholar 

  47. Xiao L, Yuan X, Sharkis SJ. Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenetic protein pathways in human embryonic stem cells. Stem Cells 2006;24:1476–86.

    PubMed  CAS  Google Scholar 

  48. Xie H, Ye M, Feng R, Graf T: Stepwise reprogramming of B cells into macrophages. Cell 2004;117:663–76.

    PubMed  CAS  Google Scholar 

  49. Yan L, Han Y, Wang J, Liu J, Hong L, Fan D. Peripheral blood monocytes from patients with HBV related decompensated liver cirrhosis can differentiate into functional hepatocytes. Am J Hematol 2007;82:949–54.

    PubMed  CAS  Google Scholar 

  50. Yang L, Li S, Hatch H, Ahrens K, Cornelius JG, Petersen BE, Peck AB: In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc Natl Acad Sci U S A 2002;99:8078–83.

    PubMed  CAS  Google Scholar 

  51. Xu X, D’Hoker J, Stangé G, Bonné S, De Leu N, Xiao X, Van de Casteele M, Mellitzer G, Ling Z, Pipeleers D, Bouwens L, Scharfmann R, Gradwohl G, Heimberg H: Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 2008;132: 197–207.

    PubMed  CAS  Google Scholar 

  52. Zaret KS. Genetic programming of liver and pancreas progenitors: lessons for stem-cell differentiation. Nat Rev Genet 2008;9:329–40.

    PubMed  CAS  Google Scholar 

  53. Zaret KS, Grompe M. Generation and regeneration of cells of the liver and pancreas. Science 2008;322:1490–4.

    PubMed  CAS  Google Scholar 

  54. Zhao Y, Glesne D, Huberman E. A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc Natl Acad Sci U S A 2003;100:2426–31.

    PubMed  CAS  Google Scholar 

  55. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta cells. Nature 2008;455:627–32.

    PubMed  CAS  Google Scholar 

  56. Zulewski H. Differentiation of embryonic and adult stem cells into insulin producing cells. Panminerva Med 2008;50:73–9.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to Dr. M. Schulze for long-standing intellectual support. We acknowledge not citing many original publications directly, but rather through the reviews. Part of the work described here was supported by Blasticon Biotechnologische Forschung and Fresenius Biotech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Ungefroren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ungefroren, H., Fändrich, F. (2010). The Programmable Cell of Monocytic Origin (PCMO): A Potential Adult Stem/Progenitor Cell Source for the Generation of Islet Cells. In: Islam, M. (eds) The Islets of Langerhans. Advances in Experimental Medicine and Biology, vol 654. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3271-3_29

Download citation

Publish with us

Policies and ethics