Skip to main content

Toll-Like Receptors and Type 1 Diabetes

  • Chapter
  • First Online:
The Islets of Langerhans

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 654))

Abstract

Type 1 diabetes (T1D) is an autoimmune disease that results in the progressive loss of insulin producing cells. Studies performed in humans with T1D and animal models of the disease over the past two decades have suggested a key role for the adaptive immune system in disease mechanisms. The role of the innate immune system in triggering T1D was shown only recently. Research in this area was greatly facilitated by the discovery of toll-like receptors (TLRs) that were found to be a key component of the innate immune system that detect microbial infections and initiate antimicrobial host defense responses. New data indicate that in some situations, the innate immune system is associated with mechanisms triggering autoimmune diabetes. In fact, studies preformed in the BioBreeding Diabetes Resistant (BBDR) and LEW1.WR1 rat models of T1D demonstrate that virus infection leads to islet destruction via mechanisms that may involve TLR9-induced innate immune system activation. Data from these studies also show that TLR upregulation can synergize with virus infection to dramatically increase disease penetrance. Reports from murine models of T1D implicate both MyD88-dependent and MyD88-independent pathways in the course of disease. The new knowledge about the role of innate immune pathways in triggering islet destruction could lead to the discovery of new molecules that may be targeted for disease prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gianani R, Eisenbarth GS. The stages of type 1A diabetes: 2005. Immunol Rev 2005;204:232–49.

    PubMed  CAS  Google Scholar 

  2. Yoon JW, Jun HS. Viruses in type 1 diabetes: brief review. ILAR J 2004;45:343–8.

    PubMed  CAS  Google Scholar 

  3. Janeway CA, Jr., Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002;20:197–216.

    PubMed  CAS  Google Scholar 

  4. Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature 2007;449:819–26.

    PubMed  CAS  Google Scholar 

  5. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006;124:783–801.

    PubMed  CAS  Google Scholar 

  6. Foster SL, Medzhitov R. Gene-specific control of the TLR-induced inflammatory response. Clin Immunol. In Press, Corrected Proof.

    Google Scholar 

  7. Meylan E, Tschopp J, Karin M. Intracellular pattern recognition receptors in the host response. Nature 2006;442:39–44.

    PubMed  CAS  Google Scholar 

  8. Sansonetti PJ. The innate signaling of dangers and the dangers of innate signaling. Nat Immunol 2006;7:1237–42.

    PubMed  CAS  Google Scholar 

  9. Marshak-Rothstein A. Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 2006;6:823–35.

    PubMed  CAS  Google Scholar 

  10. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults 1. Cell 1996;86:973–83.

    PubMed  CAS  Google Scholar 

  11. Kumagai Y, Takeuchi O, Akira S. Pathogen recognition by innate receptors. Journal of Infection and Chemotherapy 2008;14:86–92.

    PubMed  CAS  Google Scholar 

  12. Brodsky I, Medzhitov R. Two modes of ligand recognition by TLRs. Cell 2007;130:979–81.

    PubMed  CAS  Google Scholar 

  13. Kawai T, Akira S. Signaling to NF-[kappa]B by Toll-like receptors. Trends in Molecular Medicine 2007;13:460–69.

    PubMed  CAS  Google Scholar 

  14. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001;413:732–8.

    PubMed  CAS  Google Scholar 

  15. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H. A Toll-like receptor recognizes bacterial DNA. Nature 2000;408:740–5.

    PubMed  CAS  Google Scholar 

  16. Krug A, Luker GD, Barchet W, Leib DA, Akira S, Colonna M. Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood 2004;103:1433–7.

    PubMed  CAS  Google Scholar 

  17. Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A. Toll-like Receptor 9-mediated Recognition of Herpes Simplex Virus-2 by Plasmacytoid Dendritic Cells. The Journal Of Experimental Medicine 2003;198:513–20.

    PubMed  CAS  Google Scholar 

  18. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004;303:1529–31.

    PubMed  CAS  Google Scholar 

  19. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004;303:1526–9.

    PubMed  CAS  Google Scholar 

  20. Marshak-Rothstein A, Rifkin IR. Immunologically active autoantigens: the role of toll-like receptors in the development of chronic inflammatory disease. Annu Rev Immunol 2007;25:419–41.

    PubMed  CAS  Google Scholar 

  21. Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C, Hua J, An LL, Audoly L, La Rosa G, Bierhaus A, Naworth P, Marshak-Rothstein A, Crow MK, Fitzgerald KA, Latz E, Kiener PA, Coyle AJ. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 2007;8:487–96.

    PubMed  CAS  Google Scholar 

  22. Srikanta S, Ganda OP, Jackson RA, Gleason RE, Kaldany A, Garovoy MR, Milford EL, Carpenter CB, Soeldner JS, Eisenbarth GS. Type I diabetes mellitus in monozygotic twins: chronic progressive beta cell dysfunction. Ann Intern Med 1983;99:320–6.

    PubMed  CAS  Google Scholar 

  23. Gianani R, Eisenbarth GS. The stages of type 1A diabetes: 2005. Immunol Rev 2005;204:232–49.

    PubMed  CAS  Google Scholar 

  24. Rossini AA, Handler ES, Mordes JP, Greiner DL. Human autoimmune diabetes mellitus: lessons from BB rats and NOD mice – Caveat emptor. Clin Immunol Immunopathol 1995;74:2–9.

    PubMed  CAS  Google Scholar 

  25. Di Lorenzo TP, Peakman M, Roep BO. Translational mini-review series on type 1 diabetes: Systematic analysis of T cell epitopes in autoimmune diabetes. Clin Exp Immunol 2007;148:1–16.

    PubMed  Google Scholar 

  26. Roep BO. The role of T-cells in the pathogenesis of Type 1 diabetes: From cause to cure. Diabetologia 2003;46:305–21.

    PubMed  CAS  Google Scholar 

  27. Herold KC, Gitelman SE, Masharani U, Hagopian W, Bisikirska B, Donaldson D, Rother K, Diamond B, Harlan DM, Bluestone JA. A Single Course of Anti-CD3 Monoclonal Antibody hOKT3{gamma}1(Ala-Ala) Results in Improvement in C-Peptide Responses and Clinical Parameters for at Least 2 Years after Onset of Type 1 Diabetes. Diabetes 2005;54:1763–9.

    PubMed  CAS  Google Scholar 

  28. McKeever U, Mordes JP, Greiner DL, Appel MC, Rozing J, Handler ES, Rossini AA. Adoptive transfer of autoimmune diabetes and thyroiditis to athymic rats. Proc Natl Acad Sci U S A 1990;87:7618–22.

    PubMed  CAS  Google Scholar 

  29. Zhang L, Nakayama M, Eisenbarth GS. Insulin as an autoantigen in NOD/human diabetes. Curr Opin Immunol 2008;20:111–8.

    PubMed  Google Scholar 

  30. Taplin CE, Barker JM. Autoantibodies in type 1 diabetes. Autoimmunity 2008;41:11–8.

    PubMed  CAS  Google Scholar 

  31. Eisenbarth GS, Jeffrey J. The natural history of type 1A diabetes. Arquivos Brasileiros de Endocrinologia & Metabologia 2008;52:146–55.

    Google Scholar 

  32. Tian J, Zekzer D, Lu Y, Dang H, Kaufman DL. B Cells Are Crucial for Determinant Spreading of T Cell Autoimmunity among beta Cell Antigens in Diabetes-Prone Nonobese Diabetic Mice. J Immunol 2006;176:2654–61.

    PubMed  CAS  Google Scholar 

  33. Barker JM. Type 1 Diabetes-Associated Autoimmunity: Natural History, Genetic Associations, and Screening. J Clin Endocrinol Metab 2006;91:1210–7.

    PubMed  CAS  Google Scholar 

  34. Achenbach P, Bonifacio E, Koczwara K, Ziegler AG. Natural history of type 1 diabetes. Diabetes 54 Suppl 2005;2:S25-S31.

    Google Scholar 

  35. Jahromi MM, Eisenbarth GS. Cellular and molecular pathogenesis of type 1A diabetes. Cell Mol Life Sci 2007;64:865–72.

    PubMed  CAS  Google Scholar 

  36. Redondo MJ, Eisenbarth GS. Genetic control of autoimmunity in Type I diabetes and associated disorders. Diabetologia 2002;45:605–22.

    PubMed  CAS  Google Scholar 

  37. Yu L, Cuthbertson DD, Eisenbarth GS, Krischer JP. Diabetes Prevention Trial 1: prevalence of GAD and ICA512 (IA-2) autoantibodies by relationship to proband. Ann N Y Acad Sci 2002;958:254–8.

    PubMed  CAS  Google Scholar 

  38. von Herrath MG, Fujinami RS, Whitton JL. Microorganisms and autoimmunity: making the barren field fertile? Nat Rev Microbiol 2003;1:151–7.

    Google Scholar 

  39. Kaprio J, Tuomilehto J, Koskenvuo M, Romanov K, Reunanen A, Eriksson J, Stengard J, Kesaniemi YA. Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia 1992;35:1060–7.

    PubMed  CAS  Google Scholar 

  40. Kyvik KO, Green A, Beck-Nielsen H. Concordance rates of insulin dependent diabetes mellitus: a population based study of young Danish twins. Br Med J 1995;311:913–7.

    CAS  Google Scholar 

  41. Silman AJ, Macgregor AJ, Thomson W, Holligan S, Carthy D, Farhan A, Ollier WE. Twin concordance rates for rheumatoid arthritis: results from a nationwide study. Br J Rheumatol 1993;32:903–7.

    PubMed  CAS  Google Scholar 

  42. Eurodiab Ace Study Group. Variation and trends in incidence of childhood diabetes in Europe. Lancet 2000;355:873–6.

    Google Scholar 

  43. Rewers M, LaPorte RE, Walczak M, Dmochowski K, Bogaczynska E. Apparent epidemic of insulin-dependent diabetes mellitus in Midwestern Poland. Diabetes 1987;36:106–13.

    PubMed  CAS  Google Scholar 

  44. Kolb H, Elliott RB. Increasing incidence of IDDM a consequence of improved hygiene? Diabetologia 1994;37:729.

    PubMed  CAS  Google Scholar 

  45. Kilkkinen A, Virtanen SM, Klaukka T, Kenward MG, Salkinoja-Salonen M, Gissler M, Kaila M, Reunanen A. Use of antimicrobials and risk of type 1 diabetes in a population-based mother-child cohort. Diabetologia 2006;49:66–70.

    PubMed  CAS  Google Scholar 

  46. Gibbon C, Smith T, Egger P, Betts P, Phillips D. Early infection and subsequent insulin dependent diabetes. Arch Dis Child 1997;77:384–5.

    PubMed  CAS  Google Scholar 

  47. Pundziute-Lyckå A, Urbonait-ù B, Dahlquist G. Infections and risk of Type I (insulin-dependent) diabetes mellitus in Lithuanian children. Diabetologia 2000;43:1229–34.

    PubMed  Google Scholar 

  48. Viskari H, Ludvigsson J, Uibo R, Salur L, Marciulionyte D, Hermann R, Soltesz G, Fuchtenbusch M, Ziegler AG, Kondrashova A, Romanov A, Kaplan B, Laron Z, Koskela P, Vesikari T, Huhtala H, Knip M, Hyoty H. Relationship between the incidence of type 1 diabetes and maternal enterovirus antibodies: time trends and geographical variation. Diabetologia 2005;48:1280–7.

    PubMed  CAS  Google Scholar 

  49. Infections and vaccinations as risk factors for childhood type I (insulin-dependent) diabetes mellitus: a multicentre case-control investigation. EURODIAB Substudy 2 Study Group. Diabetologia 2000;43:47–53.

    Google Scholar 

  50. Cardwell CR, Carson DJ, Patterson CC. No association between routinely recorded infections in early life and subsequent risk of childhood-onset Type 1 diabetes: a matched case-control study using the UK General Practice Research Database. Diabet Med 2008;25:261–7.

    PubMed  CAS  Google Scholar 

  51. Dotta F, Censini S, van Halteren AGS, Marselli L, Masini M, Dionisi S, Mosca F, Boggi U, Muda AO, Prato SD, Elliott JF, Covacci A, Rappuoli R, Roep BO, Marchetti P. Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci U S A 2007;104:5115–20.

    PubMed  CAS  Google Scholar 

  52. Yoon JW, Austin M, Onodera T, Notkins AL. Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 1979;300:1173–9.

    PubMed  CAS  Google Scholar 

  53. Banatvala JE, Bryant J, Schernthaner G, Borkenstein M, Schober E, Brown D, De Silva LM, Menser MA, Silink M. Coxsackie B, mumps, rubella, and cytomegalovirus specific IgM responses in patients with juvenile-onset insulin-dependent diabetes mellitus in Britain, Austria, and Australia. Lancet 1985;1:1409–12.

    PubMed  CAS  Google Scholar 

  54. King ML, Shaikh A, Bidwell D, Voller A, Banatvala JE. Coxsackie-B-virus-specific IgM responses in children with insulin-dependent (juvenile-onset; type I) diabetes mellitus. Lancet 1983;1:1397–9.

    PubMed  CAS  Google Scholar 

  55. King ML, Bidwell D, Voller A, Bryant J, Banatvala JE. Role of Coxsackie B viruses in insulin-dependent diabetes mellitus. Lancet 1983;2:915–6.

    PubMed  CAS  Google Scholar 

  56. Szopa TM, Titchener PA, Portwood ND, Taylor KW. Diabetes mellitus due to viruses – some recent developments. Diabetologia 1993;36:687–95.

    PubMed  CAS  Google Scholar 

  57. Hiltunen M, Hyoty H, Karjalainen J, Leinikki P, Knip M, Lounamaa R, Akerblom HK. Serological evaluation of the role of cytomegalovirus in the pathogenesis of IDDM: a prospective study. The Childhood Diabetes in Finland Study Group. Diabetologia 1995;38:705–10.

    PubMed  CAS  Google Scholar 

  58. Ginsberg-Fellner F, Witt ME, Yagihashi S, Dobersen MJ, Taub F, Fedun B, McEvoy RC, Roman SH, Davies RG, Cooper, LZ. Congenital rubella syndrome as a model for type 1 (insulin-dependent) diabetes mellitus: increased prevalence of islet cell surface antibodies. Diabetologia 1984;27 Suppl:87–9.

    PubMed  CAS  Google Scholar 

  59. Gamble DR. Relation of antecedent illness to development of diabetes in children. Br Med J 1980;281:99–101.

    PubMed  CAS  Google Scholar 

  60. Chikazawa K, Okusa H, Minakami H, Kimura K, Araki S, Tamada T. [Acute onset of insulin-dependent diabetes mellitus caused by Epstein-Barr virus infection]. Nippon Sanka Fujinka Gakkai Zasshi 1985;37:453–6.

    PubMed  CAS  Google Scholar 

  61. Jaeckel E, Manns M, von Herrath M. Viruses and diabetes. Ann N Y Acad Sci 2002; 958:7–25.

    PubMed  Google Scholar 

  62. Knip M, Veijola R, Virtanen SM, Hyoty H, Vaarala O, Akerblom HK. Environmental Triggers and Determinants of Type 1 Diabetes. Diabetes 2005;54:S125–36.

    PubMed  CAS  Google Scholar 

  63. Andreoletti L, Hober D, Hober-Vandenberghe C, Fajardy I, Belaich S, Lambert V, Vantyghem MC, Lefebvre J, Wattre P. Coxsackie B virus infection and [beta] cell autoantibodies in newly diagnosed IDDM adult patients. Clin Diagn Virol 1998;9:125–33.

    PubMed  CAS  Google Scholar 

  64. Chehadeh W, Weill J, Vantyghem M-C, Alm G, Lefebvre J, Wattre P, Hober D. Increased Level of Interferon-α in Blood of Patients with Insulin-Dependent Diabetes Mellitus. Relationship with Coxsackievirus B Infection. J Infect Dis 2000;181:1929–39.

    PubMed  CAS  Google Scholar 

  65. Juhela S, Hyoty H, Roivainen M, Harkonen T, Putto-Laurila A, Simell O, Ilonen J. T-cell responses to enterovirus antigens in children with type 1 diabetes. Diabetes 2000;49: 1308–13.

    PubMed  CAS  Google Scholar 

  66. Nairn C, Galbraith DN, Taylor KW, Clements GB. Enterovirus variants in the serum of children at the onset of Type 1 diabetes mellitus. Diabet Med 1999;16:509–13.

    PubMed  CAS  Google Scholar 

  67. Sadeharju K, Lonnrot M, Kimpimaki T, Savola K, Erkkila S, Kalliokoski T, Savolainen P, Koskela P, Ilonen J, Simell O, Knip M, Hyoty H. Enterovirus antibody levels during the first two years of life in prediabetic autoantibody-positive children. Diabetologia 2001;44: 818–23.

    PubMed  CAS  Google Scholar 

  68. Lonnrot M, Korpela K, Knip M, Ilonen J, Simell O, Korhonen S, Savola K, Muona P, Simell T, Koskela P, Hyoty H. Enterovirus infection as a risk factor for beta-cell autoimmunity in a prospectively observed birth cohort: the Finnish Diabetes Prediction and Prevention Study. Diabetes 2000;49:1314–8.

    PubMed  CAS  Google Scholar 

  69. Horwitz MS, Ilic A, Fine C, Balasa B, Sarvetnick N. Coxsackieviral-mediated diabetes: induction requires antigen-presenting cells and is accompanied by phagocytosis of beta cells. Clin Immunol 2004;110:134–44.

    PubMed  CAS  Google Scholar 

  70. Hirahara K, Liu L, Clark RA, Yamanaka K, Fuhlbrigge RC, Kupper TS. The majority of human peripheral blood CD4+CD25highFoxp3+ regulatory T cells bear functional skin-homing receptors. J Immunol 2006;177:4488–94.

    PubMed  CAS  Google Scholar 

  71. Maria H, Elshebani A, Anders O, Torsten T, Gun F. Simultaneous type 1 diabetes onset in mother and son coincident with an enteroviral infection. J Clin Virol 2005;33:158–67.

    PubMed  Google Scholar 

  72. Champsaur HF, Bottazzo GF, Bertrams J, Assan R, Bach C. Virologic, immunologic, and genetic factors in insulin-dependent diabetes mellitus. J Pediatr 1982;100:15–20.

    PubMed  CAS  Google Scholar 

  73. Foulis AK, Farquharson MA, Cameron SO, McGill M, Schonke H, Kandolf R. A search for the presence of the enteroviral capsid protein VP1 in pancreases of patients with type 1 (insulin-dependent) diabetes and pancreases and hearts of infants who died of coxsackieviral myocarditis. Diabetologia 1990;33:290–8.

    PubMed  CAS  Google Scholar 

  74. Fuchtenbusch M, Irnstetter A, Jager G, Ziegler A-G. No Evidence for an Association of Coxsackie Virus Infections during Pregnancy and Early Childhood with Development of Islet Autoantibodies in Offspring of Mothers or Fathers with Type 1 Diabetes. J Autoimmun 2001;17:333–40.

    PubMed  CAS  Google Scholar 

  75. Graves PM, Rotbart HA, Nix WA, Pallansch MA, Erlich HA, Norris JM, Hoffman M, Eisenbarth GS, Rewers M. Prospective study of enteroviral infections and development of beta-cell autoimmunity: Diabetes autoimmunity study in the young (DAISY). Diabetes Res Clin Pract 2003;59:51–61.

    PubMed  Google Scholar 

  76. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic Dendritic Cells. Annual Review of Immunology 2003;21:685–711.

    PubMed  CAS  Google Scholar 

  77. Eriksson U, Ricci R, Hunziker L, Kurrer MO, Oudit GY, Watts TH, Sonderegger I, Bachmaier K, Kopf M, Penninger JM. Dendritic cell-induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nat Med 2003;9:1484–90.

    PubMed  CAS  Google Scholar 

  78. Ueno H, Klechevsky E, Morita R, Aspord C, Cao T, Matsui T, Di Pucchio T, Connolly J, Fay JW, Pascual V, Palucka AK, Banchereau J. Dendritic cell subsets in health and disease. Immunol Rev 2007;219:118–42.

    PubMed  CAS  Google Scholar 

  79. Crow MK, Kirou KA, Wohlgemuth J. Microarray Analysis of Interferon-regulated Genes in SLE. Autoimmunity 2003;36:481–90.

    PubMed  CAS  Google Scholar 

  80. Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, Cao W, Wang YH, Su B, Nestle FO, Zal T, Mellman I, Schroder JM, Liu YJ, Gilliet M. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 2007;449:564–9.

    PubMed  CAS  Google Scholar 

  81. Uno S, Imagawa A, Okita K, Sayama K, Moriwaki M, Iwahashi H, Yamagata K, Tamura S, Matsuzawa Y, Hanafusa T, Miyagawa J, Shimomura I. Macrophages and dendritic cells infiltrating islets with or without beta cells produce tumour necrosis factor-alpha in patients with recent-onset type 1 diabetes. Diabetologia 2007;50:596–601.

    PubMed  CAS  Google Scholar 

  82. Vuckovic S, Withers G, Harris M, Khalil D, Gardiner D, Flesch I, Tepes S, Greer R, Cowley D, Cotterill A, Hart DN. Decreased blood dendritic cell counts in type 1 diabetic children. Clin Immunol 2007;123:281–8.

    PubMed  CAS  Google Scholar 

  83. Mollah ZUA, Pai S, Moore C, O'Sullivan BJ, Harrison MJ, Peng J, Phillips K, Prins JB, Cardinal J, Thomas R. Abnormal NF-{kappa}B Function Characterizes Human Type 1 Diabetes Dendritic Cells and Monocytes. J Immunol 2008;180:3166–75.

    PubMed  CAS  Google Scholar 

  84. Summers KL, Marleau AM, Mahon JL, McManus R, Hramiak I, Singh B. Reduced IFN-[alpha] secretion by blood dendritic cells in human diabetes. Clin Immunol 2006;121:81–9.

    PubMed  CAS  Google Scholar 

  85. Skarsvik S, Tiittanen M, Lindstrom A, Casas R, Ludvigsson J, Vaarala O. Poor in vitro maturation and pro-inflammatory cytokine response of dendritic cells in children at genetic risk of type 1 diabetes. Scand J Immunol 2004;60:647–52.

    PubMed  CAS  Google Scholar 

  86. Takahashi K, Honeyman MC, Harrison LC. Impaired yield, phenotype, and function of monocyte-derived dendritic cells in humans at risk for insulin-dependent diabetes. J Immunol 1998;161:2629–35.

    PubMed  CAS  Google Scholar 

  87. Allen JS, Pang K, Skowera A, Ellis R, Rackham C, Lozanoska-Ochser B, Tree T, Leslie RD, Tremble JM, Dayan CM, Peakman M. Plasmacytoid Dendritic Cells Are Proportionally Expanded at Diagnosis of Type 1 Diabetes and Enhance Islet Autoantigen Presentation to T-Cells Through Immune Complex Capture. Diabetes 2009;58:138–45.

    PubMed  CAS  Google Scholar 

  88. Wang X, Jia S, Geoffrey R, Alemzadeh R, Ghosh S, Hessner MJ. Identification of a molecular signature in human type 1 diabetes mellitus using serum and functional genomics. J Immunol 2008;180:1929–37.

    PubMed  CAS  Google Scholar 

  89. Dogan Y, Akarsu S, Ustundag B, Yilmaz E, Gurgoze MK. Serum IL-1beta, IL-2, and IL-6 in insulin-dependent diabetic children. Mediators Inflamm. 2006:59206–11.

    Google Scholar 

  90. Erbagci AB, Tarakτioglu M, Coskun Y, Sivasli E, Sibel Namiduru E. Mediators of inflammation in children with type I diabetes mellitus: cytokines in type I diabetic children. Clin Biochem. 2001;34:645–50.

    PubMed  CAS  Google Scholar 

  91. Nicoletti, Nicoletti F, Conget, Conget I, Di M, Mauro MD, Di M, Marco RD, Mazzarino, Mazzarino M, Bendtzen, Bendtzen K, Messina, Messina A, Gomis, Gomis R. Serum concentrations of the interferon-inducible chemokine IP-10/CXCL10 are augmented in both newly diagnosed Type I diabetes mellitus patients and subjects at risk of developing the disease. Diabetologia 2002;45:1107–10.

    PubMed  CAS  Google Scholar 

  92. Nicoletti F, Conget I, Di Marco R, Speciale AM, Morinigo R, Bendtzen K, Gomis R. Serum levels of the interferon-gamma-inducing cytokine interleukin-18 are increased in individuals at high risk of developing type I diabetes. Diabetologia 2001;44:309–11.

    PubMed  CAS  Google Scholar 

  93. Perez F, Oyarzun A, Carrasco E, Angel B, Albala C, Santos JL. Plasma levels of interleukin-1beta, interleukin-2 and interleukin-4 in recently diagnosed type 1 diabetic children and their association with beta-pancreatic autoantibodies. Rev Med Chil. 2004;132:413–20.

    PubMed  Google Scholar 

  94. Smyth DJ, Cooper JD, Bailey R, Field S, Burren O, Smink LJ, Guja C, Ionescu-Tirgoviste C, Widmer B, Dunger DB, Savage DA, Walker NM, Clayton DG, Todd JA. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet. 2006;38:617–9.

    PubMed  CAS  Google Scholar 

  95. Zipris D. Innate immunity and its role in type 1 diabetes. Curr Opin Endocrinol Diabetes Obes. 2008;15:326–331.

    PubMed  CAS  Google Scholar 

  96. Ghanim H, Mohanty P, Deopurkar R, Sia CL, Korzeniewski K, Abuaysheh S, Chaudhuri A, Dandona P. Acute modulation of toll-like receptors by insulin. Diabetes Care 2008;31: 1827–31.

    PubMed  CAS  Google Scholar 

  97. Crisa L, Greiner DL, Mordes JP, MacDonald RG, Handler ES, Czech MP, Rossini AA. Biochemical studies of RT6 alloantigens in BB/Wor and normal rats. Evidence for intact unexpressed RT6a structural gene in diabetes-prone BB rats. Diabetes 1990;39:1279–88.

    PubMed  CAS  Google Scholar 

  98. Hornum L, Romer J, Markholst H. The diabetes-prone BB rat carries a frameshift mutation in Ian4, a positional candidate of Iddm1. Diabetes 2002;51:1972–9.

    PubMed  CAS  Google Scholar 

  99. Mordes JP, Bortell R, Blankenhorn EP, Rossini AA, Greiner DL. Rat models of type 1 diabetes: genetics, environment, and autoimmunity. ILAR J 2004;45:278–91.

    PubMed  CAS  Google Scholar 

  100. Greiner DL, Rossini AA, Mordes JP. Translating data from animal models into methods for preventing human autoimmune diabetes mellitus: caveat emptor and primum non nocere. Clin Immunol. 2001;100:134–43.

    PubMed  CAS  Google Scholar 

  101. Ellerman KE, Richards CA, Guberski DL, Shek WR, Like AA. Kilham rat triggers T-cell-dependent autoimmune diabetes in multiple strains of rat. Diabetes 1996;45:557–62.

    PubMed  CAS  Google Scholar 

  102. Guberski DL, Thomas VA, Shek WR, Like AA, Handler ES, Rossini AA, Wallace JE, Welsh RM. Induction of type I diabetes by Kilham’s rat virus in diabetes-resistant BB/Wor rats. Science 1991;254:1010–3.

    PubMed  CAS  Google Scholar 

  103. Mordes JP, Guberski DL, Leif JH, Woda BA, Flanagan JF, Greiner DL, Kislauskis EH, Tirabassi RS. LEW.1WR1 rats develop autoimmune diabetes spontaneously and in response to environmental perturbation. Diabetes 2005;54:2727–33.

    PubMed  CAS  Google Scholar 

  104. Brown DD, Salzman LA. Sequence homology between the structural proteins of Kilham rat virus. J Virol 1984;49:1018–20.

    PubMed  CAS  Google Scholar 

  105. Jacoby RO, Ball-Goodrich LJ, Besselsen DG, McKisic MD, Riley LK, Smith AL. Rodent parvovirus infections. Lab Anim Sci. 1996;46:370–80.

    PubMed  CAS  Google Scholar 

  106. Cherry JD. Parvovirus infections in children and adults. Adv Pediatr. 1999;46:245–9.

    PubMed  CAS  Google Scholar 

  107. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa, Matsuura Y, Fujita T, Akira S. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 2006;441:101–5.

    PubMed  CAS  Google Scholar 

  108. Zipris D, Hillebrands JL, Welsh RM, Rozing J, Xie JX, Mordes JP, Greiner DL, Rossini AA. Infections that induce autoimmune diabetes in BBDR rats modulate CD4+CD25+ T cell populations. J Immunol 2003;170:3592–602.

    PubMed  CAS  Google Scholar 

  109. Zipris D, Lien E, Xie JX, Greiner DL, Mordes JP, Rossini AA. TLR activation synergizes with Kilham rat virus infection to induce diabetes in BBDR rats. J Immunol 2005;174: 131–42.

    PubMed  CAS  Google Scholar 

  110. Ellerman KE, Like AA. Susceptibility to diabetes is widely distributed in normal class IIu haplotype rats. Diabetologia 2000;43:890–8.

    PubMed  CAS  Google Scholar 

  111. McKisic MD, Paturzo FX, Gaertner DJ, Jacoby RO, Smith AL. A nonlethal rat parvovirus infection suppresses rat T lymphocyte effector functions. J Immunol. 1995;155:3979–86.

    PubMed  CAS  Google Scholar 

  112. Aslanidis S, Pyrpasopoulou A, Kontotasios K, Doumas S, Zamboulis C. Parvovirus B19 infection and systemic lupus erythematosus: Activation of an aberrant pathway? Eur J Intern Med 2008;19:314–18.

    PubMed  Google Scholar 

  113. Allander T, Tammi MT, Eriksson M, Bjerkner A, Tiveljung-Lindell A, Andersson Br. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci U S A. 2005;102:12891–6.

    PubMed  CAS  Google Scholar 

  114. Bultmann BD, Klingel K, Sotlar K, Bock CT, Baba HA, Sauter M, Kandolf R. Fatal parvovirus B19-associated myocarditis clinically mimicking ischemic heart disease: an endothelial cell-mediated disease. Hum Pathol 2003;34:92–5.

    PubMed  Google Scholar 

  115. Schowengerdt KO, Ni J, Denfield SW, Gajarski RJ, Bowles NE, Rosenthal G, Kearney DL, Price JK, Rogers BB, Schauer GM, Chinnock RE, Towbin JA. Association of Parvovirus B19 Genome in Children With Myocarditis and Cardiac Allograft Rejection. Diagnosis Using the Polymerase Chain Reaction. Circulation 1997;96:3549–54.

    PubMed  CAS  Google Scholar 

  116. Tsay GJ, Zouali M. Unscrambling the role of human parvovirus B19 signaling in systemic autoimmunity. Biochem. Pharmacol 2006;72:1453–9.

    PubMed  Google Scholar 

  117. Nesher G, Rubinow A, Sonnenblick M. Efficacy and adverse effects of different corticosteroid dose regimens in temporal arteritis: a retrospective study. Clin Exp Rheumatol 1997;15:303–6.

    PubMed  CAS  Google Scholar 

  118. Zipris D, Lien E, Nair A, Xie JX, Greiner DL, Mordes JP, Rossini AA. TLR9-signaling pathways are involved in Kilham rat virus-induced autoimmune diabetes in the biobreeding diabetes-resistant rat. J Immunol 2007;178:693–701.

    PubMed  CAS  Google Scholar 

  119. Sobel DO, Goyal D, Ahvazi B, Yoon JW, Chung YH, Bagg A, Harlan DM. Low dose poly I:C prevents diabetes in the diabetes prone BB rat. J Autoimmun 1998;11:343–52.

    PubMed  CAS  Google Scholar 

  120. Ewel CH, Sobel DO, Zeligs BJ, Bellanti JA. Poly I:C accelerates development of diabetes mellitus in diabetes-prone BB rat. Diabetes 1992;41:1016–21.

    PubMed  CAS  Google Scholar 

  121. Thomas VA, Woda BA, Handler ES, Greiner DL, Mordes JP, Rossini AA. Altered expression of diabetes in BB/Wor rats by exposure to viral pathogens. Diabetes 1991;40:255–8.

    PubMed  CAS  Google Scholar 

  122. Koch-Nolte F, Haag F, Kastelein R, Bazan F. Uncovered: the family relationship of a T-cell-membrane protein and bacterial toxins. Immunol Today 1996;17:402–5.

    PubMed  CAS  Google Scholar 

  123. Saoudi A, Seddon B, Fowell D, Mason D. The Thymus Contains a High Frequency of Cells that Prevent Autoimmune Diabetes on Transfer into Prediabetic Recipients. The Journal Of Experimental Medicine 1996;184:2393–8.

    PubMed  CAS  Google Scholar 

  124. Greiner DL, Mordes JP, Handler ES, Angelillo M, Nakamura N, Rossini AA. Depletion of RT6.1+ T lymphocytes induces diabetes in resistant biobreeding/Worcester (BB/W) rats. J Exp Med 1987;166:461–75.

    PubMed  CAS  Google Scholar 

  125. Blankenhorn EP, Rodemich L, Martin-Fernandez C, Leif J, Greiner DL, Mordes JP. The rat diabetes susceptibility locus Iddm4 and at least one additional gene are required for autoimmune diabetes induced by viral infection. Diabetes 2005;54:1233–7.

    PubMed  CAS  Google Scholar 

  126. Aly TA, Ide A, Jahromi MM, Barker JM, Fernando MS, Babu SR, Yu L, Miao D, Erlich HA, Fain PR, Barriga KJ, Norris JM, Rewers MJ, Eisenbarth GS. Extreme genetic risk for type 1A diabetes. Proc Natl Acad Sci U S A 2006;103:14074–9.

    PubMed  CAS  Google Scholar 

  127. Chung YH, Jun HS, Son M, Bao M, Bae HY, Kang Y, Yoon JW. Cellular and molecular mechanism for Kilham rat virus-induced autoimmune diabetes in DR-BB rats. J Immunol 2000;165:2866–76.

    PubMed  CAS  Google Scholar 

  128. Wen L, Peng J, Li Z, Wong FS. The effect of innate immunity on autoimmune diabetes and the expression of Toll-like receptors on pancreatic islets. J Immunol 2004;172:3173–80.

    PubMed  CAS  Google Scholar 

  129. Ohashi PS, Oehen S, Buerki K, Pircher H, Ohashi CT, Odermatt B, Malissen B, Zinkernagel RM, Hengartner H. Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 1991;65:305–17.

    PubMed  CAS  Google Scholar 

  130. Lang KS, Recher M, Junt T, Navarini AA, Harris NL, Freigang S, Odermatt B, Conrad C, Ittner LM, Bauer S, Luther SA, Uematsu S, Akira S, Hengartner H, Zinkernagel RM. Toll-like receptor engagement converts T-cell autoreactivity into overt autoimmune disease. Nat Med 2005;11:138–45.

    PubMed  CAS  Google Scholar 

  131. Hamilton-Williams EE, Lang A, Benke D, Davey GM, Wiesmuller KH, Kurts C. Cutting Edge: TLR Ligands Are Not Sufficient to Break Cross-Tolerance to Self-Antigens. J Immunol 2005;174:1159–63.

    PubMed  CAS  Google Scholar 

  132. Christen U, Benke D, Wolfe T, Rodrigo E, Rhode A, Hughes AC, Oldstone MB, von Herrath MG. Cure of prediabetic mice by viral infections involves lymphocyte recruitment along an IP-10 gradient. J Clin Invest 2004;113:74–84.

    PubMed  CAS  Google Scholar 

  133. Hermitte L, Vialettes B, Naquet P, Atlan C, Payan MJ, Vague P. Paradoxical lessening of autoimmune processes in non-obese diabetic mice after infection with the diabetogenic variant of encephalomyocarditis virus. Eur J Immunol 1990;20:1297–303.

    PubMed  CAS  Google Scholar 

  134. Oldstone MB. Prevention of type I diabetes in nonobese diabetic mice by virus infection. Science 1988;239:500–2.

    PubMed  CAS  Google Scholar 

  135. Oldstone MB. Viruses as therapeutic agents. I. Treatment of nonobese insulin-dependent diabetes mice with virus prevents insulin-dependent diabetes mellitus while maintaining general immune competence. J Exp Med 1990;171:2077–89.

    PubMed  CAS  Google Scholar 

  136. Quintana FJ, Rotem A, Carmi P, Cohen IR. Vaccination with Empty Plasmid DNA or CpG Oligonucleotide Inhibits Diabetes in Nonobese Diabetic Mice: Modulation of Spontaneous 60-kDa Heat Shock Protein Autoimmunity. J Immunol 2000;165:6148–55.

    PubMed  CAS  Google Scholar 

  137. Raine T, Zaccone P, Mastroeni P, Cooke A. Salmonella typhimurium infection in nonobese diabetic mice generates immunomodulatory dendritic cells able to prevent type 1 diabetes. J Immunol 2006;177:2224–33.

    PubMed  CAS  Google Scholar 

  138. Sai P, Rivereau AS. Prevention of diabetes in the nonobese diabetic mouse by oral immunological treatments. Comparative efficiency of human insulin and two bacterial antigens, lipopolysacharide from Escherichia coli and glycoprotein extract from Klebsiella pneumoniae. Diabetes Metab 1996;22:341–8.

    PubMed  CAS  Google Scholar 

  139. Takei I, Asaba Y, Kasatani T, Maruyama T, Watanabe K, Yanagawa T, Saruta T, Ishii T. Suppression of development of diabetes in NOD mice by lactate dehydrogenase virus infection. J Autoimmun 1992;5:665–73.

    PubMed  CAS  Google Scholar 

  140. Tian J, Zekzer D, Hanssen L, Lu Y, Olcott A, Kaufman DL. Lipopolysaccharide-Activated B Cells Down-Regulate Th1 Immunity and Prevent Autoimmune Diabetes in Nonobese Diabetic Mice. J Immunol 2001;167:1081–9.

    PubMed  CAS  Google Scholar 

  141. Wilberz S, Partke HJ, Dagnaes-Hansen F, Herberg L. Persistent MHV (mouse hepatitis virus) infection reduces the incidence of diabetes mellitus in non-obese diabetic mice. Diabetologia 1991;34:2–5.

    PubMed  CAS  Google Scholar 

  142. Smith KA, Efstathiou S, Cooke A. Murine Gammaherpesvirus-68 Infection Alters Self-Antigen Presentation and Type 1 Diabetes Onset in NOD Mice. J Immunol 2007;179: 7325–33.

    PubMed  CAS  Google Scholar 

  143. Alyanakian MA, Grela F, Aumeunier A, Chiavaroli C, Gouarin C, Bardel E, Normier G, Chatenoud L, Thieblemont N, Bach JF. Transforming growth factor-beta and natural killer T-cells are involved in the protective effect of a bacterial extract on type 1 diabetes. Diabetes 2006;55:179–85.

    PubMed  CAS  Google Scholar 

  144. Triantafilou K, Orthopoulos G, Vakakis E, Ahmed MAE, Golenbock DT, Lepper PM, Triantafilou M. Human cardiac inflammatory responses triggered by Coxsackie B viruses are mainly Toll-like receptor (TLR) 8-dependent. Cell Microbiol 2005;7:1117–26.

    PubMed  CAS  Google Scholar 

  145. Triantafilou K, Triantafilou M. Coxsackievirus B4-Induced Cytokine Production in Pancreatic Cells Is Mediated through Toll-Like Receptor 4. J Virol 2004;78:11313–20.

    PubMed  CAS  Google Scholar 

  146. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, Hu C, Wong FS, Szot GL, Bluestone JA, Gordon JI, Chervonsky AV. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 2008;455:1109–13.

    PubMed  CAS  Google Scholar 

  147. Kim HS, Han MS, Chung KW, Kim S, Kim E, Kim MJ, Jang E, Lee HA, Youn J, Akira S, Lee MS. Toll-like receptor 2 senses [beta]-cell death and contributes to the initiation of autoimmune diabetes. Immunity 2007;27:321–33.

    PubMed  CAS  Google Scholar 

  148. Choe JY, Crain B, Wu SR, Corr M. Interleukin 1 receptor dependence of serum transferred arthritis can be circumvented by toll-like receptor 4 signaling. J Exp Med 2003;197:537–42.

    PubMed  CAS  Google Scholar 

  149. Prinz M, Garbe F, Schmidt H, Mildner A, Gutcher I, Wolter K, Piesche M, Schroers R, Weiss E, Kirschning CJ, Rochford CD, Bruck W, Becher B. Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J Clin Invest 2006;116:456–64.

    PubMed  CAS  Google Scholar 

  150. Baccala R, Kono DH, Theofilopoulos AN. Interferons as pathogenic effectors in autoimmunity. Immunol Rev 2005;204:9–26.

    PubMed  CAS  Google Scholar 

  151. Schreuder TCMA, Gelderblom HC, Weegink CJ, Hamann D, Reesink HW, DeVries JH, Hoekstra JBL, Jansen PLM. High incidence of type 1 diabetes mellitus during or shortly after treatment with pegylated interferon alpha for chronic hepatitis C virus infection. Liver Int 2008;28:39–46.

    PubMed  CAS  Google Scholar 

  152. Sobel DO, Ahvazi B. Alpha-interferon inhibits the development of diabetes in NOD mice. Diabetes 1998;47:1867–72.

    PubMed  CAS  Google Scholar 

  153. Brod SA, Malone M, Darcan S, Papolla M, Nelson L. Ingested interferon alpha suppresses Type I diabetes in non-obese diabetic mice. Diabetologia 1998;41:1227–32.

    PubMed  CAS  Google Scholar 

  154. Li Q, Xu B, Michie SA, Rubins KH, Schreriber RD, McDevitt HO. Interferon-+¦ initiates type 1 diabetes in nonobese diabetic mice. PNAS 2008;105:12439–44.

    PubMed  CAS  Google Scholar 

  155. Alba A, Puertas MC, Carrillo J, Planas R, Ampudia R, Pastor X, Bosch F, Pujol-Borrell R, Verdaguer J, Vives-Pi M. IFN{beta} Accelerates Autoimmune Type 1 Diabetes in Nonobese Diabetic Mice and Breaks the Tolerance to {beta} Cells in Nondiabetes-Prone Mice. J Immunol 2004;173:6667–75.

    PubMed  CAS  Google Scholar 

  156. Nakazawa T, Satoh J, Takahashi K, Sakata Y, Ikehata F, Takizawa Y, Bando SI, Housai T, Li Y, Chen C, Masuda T, Kure S, Kato I, Takasawa S, Taniguchi T, Okamoto H, Toyota T. Complete Suppression of Insulitis and Diabetes in NOD mice Lacking Interferon Regulatory Factor-1. J Autoimmun 2001;17:119–25.

    PubMed  CAS  Google Scholar 

  157. Stewart TA, Hultgren B, Huang X, Pitts-Meek S, Hully J, MacLachlan NJ. Induction of type I diabetes by interferon-alpha in transgenic mice. Science 1993;260:1942–6.

    PubMed  CAS  Google Scholar 

  158. Pelegrin M, Devedjian JC, Costa C, Visa J, Solanes G, Pujol A, Asins G, Valera A, Bosch F. Evidence from transgenic mice that interferon-beta may be involved in the onset of diabetes mellitus. J Biol Chem 1998;273:12332–40.

    PubMed  CAS  Google Scholar 

  159. Devendra D, Jasinski J, Melanitou E, Nakayama M, Li M, Hensley B, Paronen J, Moriyama H, Miao D, Eisenbarth GS, Liu E. Interferon-{alpha} as a mediator of polyinosinic:polycytidylic acid-induced Type 1 diabetes. Diabetes 2005;54:2549–56.

    PubMed  CAS  Google Scholar 

  160. Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev 2004;202:8–32.

    PubMed  CAS  Google Scholar 

  161. Montoya M, Schiavoni G, Mattei F, Gresser I, Belardelli F, Borrow P, Tough DF. Type I interferons produced by dendritic cells promote their phenotypic and functional activation. !Lost Data 2002;99:3263–71.

    CAS  Google Scholar 

  162. Cousens LP, Peterson R, Hsu S, Dorner A, Altman JD, Ahmed R, Biron CA. Two roads diverged: interferon alpha/beta- and interleukin 12-mediated pathways in promoting T cell interferon gamma responses during viral infection. J Exp Med 1999;189:1315–28.

    PubMed  CAS  Google Scholar 

  163. Brinkmann V, Geiger T, Alkan S, Heusser CH. Interferon alpha increases the frequency of interferon gamma-producing human CD4+ T cells. J Exp Med 1993;178:1655–63.

    PubMed  CAS  Google Scholar 

  164. Whalen BJ, Mordes JP, Rossini AA. The BB rat as a model of human insulin-dependent diabetes mellitus. Curr Protoc Immunol Chapter 15:Unit, 2001.

  165. Sobel DO, Newsome J, Ewel CH, Bellanti JA, Abbassi V, Creswell K, Blair O. Poly I:C induces development of diabetes mellitus in BB rat. Diabetes 1992;41:515–20.

    PubMed  CAS  Google Scholar 

  166. van der WN, Hillebrands JL, Klatter FA, Bos I, Bruggeman CA, Rozing J. Cytomegalovirus infection modulates cellular immunity in an experimental model for autoimmune diabetes. Clin Dev Immunol 2003;10:153–60.

    Google Scholar 

  167. Anderson MS, Bluestone JA. The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 2005;23:447–85.

    PubMed  CAS  Google Scholar 

  168. Serreze DV, Hamaguchi K, Leiter EH. Immunostimulation circumvents diabetes in NOD/Lt mice. J Autoimmun 1989;2:759–76.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our studies are supported by grants 1-2006-745, 1-2007-584, and 5-2008-224 from the Juvenile Diabetes Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Zipris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zipris, D. (2010). Toll-Like Receptors and Type 1 Diabetes. In: Islam, M. (eds) The Islets of Langerhans. Advances in Experimental Medicine and Biology, vol 654. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3271-3_25

Download citation

Publish with us

Policies and ethics