Skip to main content

Nutrient and Water Limitations on Carbon Sequestration in Forests

  • Chapter
  • First Online:
Carbon Sequestration in Forest Ecosystems

Abstract

In addition to CO2, light, warmth, water, nutrients and growing media are also required for plant growth and net primary production (NPP). Nutrient supply drives C allocation and biomass partitioning into leaves, stems, roots, and in storage and reproductive organs (Ericsson et al. 1996). Thus, C sequestration in forest ecosystems depends on nutrient inputs and their availability (Hessen et al. 2004). Lack of adequate nutrient supply constrains, in particular, the productivity of boreal and temperate forests but nutrient constraints on tropical forest productivity are less well studied (Chapin et al. 2002; Clark 2007). Because the C:nutrient stoichiometry of vegetation and soils differ greatly, C sequestration depends on the distribution of C and nutrients between vegetation and soil (Hessen et al. 2004). Interactions of nutrients affect organic matter (OM) production and decomposition (Melillo et al. 2003). Tree species share the same basic nutrient requirements (Ericsson 1994). However, the quantity of nutrients taken up and returned annually to the forest floor is lower for evergreen compared to other tree species. Important macronutrients are nitrogen (N), phosphorus (P), sulfur (S), potassium (K), calcium (Ca) and magnesium (Mg). Examples of important micronutrients are boron (B), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn) and molybdenum (Mo). In most cases, N is the major limiting nutrient explaining production increases in fertilization experiments (Binkley et al. 1997). In some forests, however, low availability of P, K, Mg, B, Cu, Mn or Zn also limits NPP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems. BioScience 48:921–934

    Google Scholar 

  • Allen CD (2009) Climate-induced forest dieback: an escalating global phenomenon? Unasylva 60:43–49

    Google Scholar 

  • Alo CA, Wang G (2008) Potential future changes of the terrestrial ecosystem based on climate projections bei eight general circulation models. J Geophys Res 113:G01004. doi:10.1029/2007JG000528

    Google Scholar 

  • Andréassian V (2004) Waters and forests: from historical controversy to scientific debate. J Hydrol 291:1–27

    Google Scholar 

  • Attiwill PM (1981) Energy, nutrient flow, and biomass. In: Australian forest nutrition workshop, productivity in perpetuity, August 10–14, Canberra, Australia, pp 131–144

    Google Scholar 

  • Attiwill PM, Adams MA (1993) Nutrient cycling in forests. New Phytol 124:561–582

    CAS  Google Scholar 

  • Austin AT, Horwath RW, Baron JS, Stuart Chapin III F, Christensen TR, Holland EA, Ivanov MV, Lein AY, Martinelli LA, Melillo JM, Shang C (2003) Human disruption of element interactions: drivers, consequences, and trends for the twenty-first century. In: Melillo JM, Field CB, Moldan B (eds) Interactions of the major biogeochemical cycles: global change and human impacts. Island Press, Washington, DC, pp 15–45

    Google Scholar 

  • Barron AR, Wurzburger N, Bellenger JP, Wright SJ, Kraepiel AML, Hedin LO (2009) Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nat Geosci 2:42–45

    CAS  Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. Technical paper of the intergovernmental panel on climate change. IPCC Secretariat, Geneva, Switzerland

    Google Scholar 

  • Betts RA, Boucher O, Collins M, Cox PM, Falloon PD, Gedney N, Hemming DL, Huntingford C, Jones CD, Sexton DMH, Webb MJ (2007) Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448:1037–1042

    CAS  PubMed  Google Scholar 

  • Billings SA (2008) Nitrous oxide in flux. Nature 456:888–889

    CAS  PubMed  Google Scholar 

  • Binkley CS, Apps MJ, Dixon RK, Kauppi PE, Nilsson LO (1997) Sequestering carbon in natural forests. Crit Rev Env Sci Technol 27:S23–S45

    CAS  Google Scholar 

  • Bowman WD, Cleveland CC, Halada Ĺ, HreÅ¡ko J, Baron JS (2008) Negative impact of nitrogen deposition on soil buffering capacity. Nat Geosci 1:767–770

    CAS  Google Scholar 

  • Brantley SL (2008) Understanding soil time. Science 321:1454–1455

    CAS  PubMed  Google Scholar 

  • Calder IR (1998) Water use by forests, limits and controls. Tree Physiol 18:625–631

    PubMed  Google Scholar 

  • Calder I, Hofer T, Vermont S, Warren P (2007) Towards a new understanding of forests and water. Unasylva 58:3–10

    Google Scholar 

  • Caldwell MM, Dawson TE, Richards JH (1993) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161

    Google Scholar 

  • Caldwell MM, Richards JH (1989) Hydraulic lift: water efflux from upper roots improves effectiveness of water uptake by deep roots. Oecologia 79:1–5

    Google Scholar 

  • Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze E-D (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595

    Google Scholar 

  • Cannell MGR (1999) Environmental impacts of forest monocultures: water use, acidification, wildlife conservation, and carbon storage. New Forest 17:239–262

    Google Scholar 

  • Chang M (2006) Forest hydrology: an introduction to water and forests. Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Chapin FS III, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, New York

    Google Scholar 

  • Chapin FS III, McFarland J, McGuire AD, Euskirchen ES, Ruess RW, Kielland K (2009) The changing global carbon cycle: linking plant-soil carbon dynamics to global consequences. J Ecol 97:840–850

    CAS  Google Scholar 

  • Chapin FS III, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD, Cole JJ, Goulden ML, Harden JW, Heimann M, Howarth RW, Matson PA, McGuire AD, Melillo JM, Mooney HA, Neff JC, Houghton RA, Pace ML, Ryan MG, Running SW, Sala OE, Schlesinger WH, Schulze E-D (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041–1050

    CAS  Google Scholar 

  • Chapuis-Lardy L, Wrage N, Metay A, Chotte J-L, Bernoux M (2007) Soils, a sink for N2O? A review. Glob Change Biol 13:1–17

    Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366

    PubMed  Google Scholar 

  • Churkina G, Trusilova K, Vetter M, Dentener F (2007) Contributions of nitrogen deposition and forest regrowth to terrestrial carbon uptake. Carbon Bal Manag 2:5

    Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana J-F, Sanz M-J, Schulze E-D, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    CAS  PubMed  Google Scholar 

  • Claire Horner-Devine C, Martiny AC (2008) News about nitrogen. Science 320:757–758

    PubMed  Google Scholar 

  • Clark DA (2007) Detecting tropical forests’ response to global climatic and atmospheric change: current challenges and a way forward. Biotropica 39:4–19

    Google Scholar 

  • Colman BP, Fierer N, Schimel JP (2008) Abiotic nitrate incorporation, anaerobic microsites, and the ferrous wheel. Biogeochemistry 91:223–227

    Google Scholar 

  • Cornwell WK, Cornelissen JHC, Allison SD, Bauhus J, Eggleton P, Preston CM, Scarff F, Weedon JT, Wirth C, Zanne AE (2009) Plant traits and wood fate across the globe-rotted, burned, or consumed? Glob Change Biol (in press) doi: 10.1111/j.1365-2486.2009.01916.x

    Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Victoria VM, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    PubMed  Google Scholar 

  • Crockford RH, Richardson DP (2000) Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrol Process 14:2903–2920

    Google Scholar 

  • Davidson EA (2008) Fixing forests. Nat Geosci 1:421–422

    CAS  Google Scholar 

  • Davis SC, Hessl AE, Thomas RB (2008) A modified nitrogen budget for temperate deciduous forests in an advanced stage of nitrogen saturation. Global Biogeochem Cy 22, GB4006, doi:10.1029/2008GB003187

    Google Scholar 

  • Dawson TE (1993) Hydraulic lift and water use by plants: implications for water balance, performance, and plant–plant interactions. Oecologia 95:565–574

    Google Scholar 

  • Dawson TE (1998) Water loss from tree roots influences soil water and nutrient status and plant performance. In: Flores HE, Lynch JP (eds) Radical biology: advances and perspectives in the function of plant roots. Current topics in plant physiology, Vol 17. American society of plant physiologists, Rockville, MD, pp 195–210

    Google Scholar 

  • DeLuca TH, Zackrisson O, Gundale MJ, Nilsson M-C (2008) Ecosystem feedbacks and nitrogen fixation in boreal forests. Science 320:1181

    CAS  PubMed  Google Scholar 

  • De Schrijver A, Verheyen K, Mertens J, Staelens J, Wuyts K, Muys B (2008) Nitrogen saturation and net ecosystem production. Nature 451:E1

    PubMed  Google Scholar 

  • Dessler AE, Sherwood SC (2009) A matter of humidity. Science 323:1020–1021

    CAS  PubMed  Google Scholar 

  • Dessler AE, Zhang Z, Yang P (2008) Water-vapor climate feedback inferred from climate fluctuations, 2003–2008. Geophys Res Lett 35:L20704. doi:10.1029/2008GL035333

    Google Scholar 

  • De Vries W, Reinds GJ, Gundersen P, Sterba H (2006) The impact of nitrogen deposition on carbon sequestration in European forests and forest soils. Glob Change Biol 12:1151–1173

    Google Scholar 

  • De Vries W, Solberg S, Dobbertin M, Sterba H, Laubhahn D, Jan Reinds G, Nabuurs G-J, Gundersen P, Sutton MA (2008) Ecologically implausible carbon response? Nature 451:E1–E3

    PubMed  Google Scholar 

  • De Vries W, Solberg S, Dobbertin MD, Sterba H, Laubhann D, van Oijen M, Evans C, Gundersen P, Kros J, Wamelink GWW, Reinds GJ, Sutton MA (2009) The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. For Ecol Manag (in press) doi:10.1016/j.foreco.2009.02.034

    Google Scholar 

  • Dewar RC, Franklin O, Mäkelä A, McMurtrie RE, Valentine HT (2009) Optimal function explains forest responses to global change. BioScience 59:127–139

    Google Scholar 

  • Doney SC, Schimel DS (2007) Carbon and climate system coupling on timescales from the Precambrian to the Anthropocene. Annu Rev Environ Resour 32:14.1–14.36

    Google Scholar 

  • Donner LJ, Large WG (2008) Climate modeling. Annu Rev Environ Resour 33:1–17

    Google Scholar 

  • Doutriaux-Boucher M, Webb MJ, Gregory JM, Boucher O (2009) Carbon dioxide induced stomatal closure increases radiative forcing via a rapid reduction in low cloud. Geophys Res Lett 36:L02703. doi:10.1029/2008GL036273

    Google Scholar 

  • Elbert W, Weber B, Büdel B, Andreae MO, Pöschl U (2009) Microbiotic crusts on soil, rock and plants: neglected major players in the global cycles of carbon and nitrogen? Biogeosciences Discuss 6:6983–7015

    PubMed  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Stanley Harpole W, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    PubMed  Google Scholar 

  • Ericsson T (1994) Nutrient dynamics and requirements of forest crops. N Z J For Sci 24:133–168

    Google Scholar 

  • Ericsson T, Rytter L, Vapaavuori E (1996) Physiology of carbon allocation in trees. Biomass Bioenerg 11:115–127

    CAS  Google Scholar 

  • Evans CD, Goodale CL, Caporn SJM, Dise NB, Emmett BA, Fernandez IJ, Field CB, Findlay SEG, Lovett GM, Meesenburg H, Moldan F, Sheppard LJ (2008) Does elevated nitrogen deposition or ecosystem recovery from acidification drive increased dissolved organic carbon loss from upland soil? A review of evidence from field nitrogen addition experiments. Biogeochemistry 91:13–35

    CAS  Google Scholar 

  • Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science 320:1034–1039

    CAS  PubMed  Google Scholar 

  • Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, Mackenzie FT, Moore B III, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290:291–296

    CAS  PubMed  Google Scholar 

  • FAO (Food and Agricultural Organization of the United Nations) (2008) Forests and water. FAO Forestry paper 155. FAO, Rome

    Google Scholar 

  • Farley KA, Jobbágy EG, Jackson RB (2005) Effects of afforestation on water yield: a global synthesis with implications for policy. Glob Change Biol 11:1565–1576

    Google Scholar 

  • Fleischer S, Bouse I (2008) Nitrogen cycling drives a strong within-soil CO2-sink. Tellus 60B:782–786

    CAS  Google Scholar 

  • Franklin O, McMurtrie RE, Iversen CM, Crous KY, Finzi AC, Tissue DT, Ellsworth DS, Oren R, Norby RJ (2009) Forest fine-root production and nitrogen use under elevated CO2: contrasting responses in evergreen and deciduous trees explained by a common principle. Glob Change Biol 15:132–144

    Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler K-G, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: results from the c4mip model intercomparison. J Clim 19:3337–3353

    Google Scholar 

  • Gaige E, Dail DB, Hollinger DY, Davidson EA, Fernandez IJ, Sievering H, White A, Halteman W (2007) Changes in canopy processes following whole-forest canopy nitrogen fertilization of a mature spruce-hemlock forest. Ecosystems 10:1133–1147

    CAS  Google Scholar 

  • Gallé A, Haldimann P, Feller U (2007) Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytol 174:799–810

    PubMed  Google Scholar 

  • Gallet-Budynek A, Brzostek E, Rodgers VL, Talbot IM, Hyzy S, Finci AC (2009) Intact amino acid uptake by northern hardwood and conifer trees. Oecologia 160:129–138

    PubMed  Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. BioScience 53:341–356

    Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    CAS  PubMed  Google Scholar 

  • Gedney N, Cox PM, Betts RA, Boucher O, Huntingford C, Stott PA (2006) Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439:835–838

    CAS  PubMed  Google Scholar 

  • Giardina CP, Binkley D, Ryan MG, Fownes JH, Senock RS (2004) Belowground carbon cycling in a humid tropical forest decreases with fertilization. Oecologia 139:545–550

    PubMed  Google Scholar 

  • Goldberg SD, Gebauer G (2009) Drought turns a Central European Norway spruce forest soil from an N2O source to a transient N2O sink. Glob Change Biol 15:850–860

    Google Scholar 

  • Gordon LJ, Steffen W, Jönsson BF, Folke C, Falkenmark M, Johanessen Ã… (2005) Human modification of global water vapor flows from the land surface. Proc Natl Acad Sci USA 102:7612–7617

    CAS  PubMed  Google Scholar 

  • de Graaff M-A, van Groenigen K-J, Six J, Hungate B, van Kessel C (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Change Biol 12:2077–2091

    Google Scholar 

  • Grandy AS, Sinsabaugh RL, Neff JC, Stursova M, Zak DR (2008) Nitrogen deposition effects on soil organic matter chemistry are linked to variation in enzymes, ecosystems and size fractions. Biogeochemistry 91:37–49

    CAS  Google Scholar 

  • Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    CAS  PubMed  Google Scholar 

  • Harrington RA, Fownes JH, Vitousek PM (2001) Production and resource-use efficiencies in N- and P-limited tropical forest ecosystems. Ecosystems 4:646–657

    CAS  Google Scholar 

  • Harrison A, Schulze E-D, Gebauer G, Bruckner G (2000) Canopy uptake and utilization of atmospheric pollutant nitrogen. In: Schulze E-D (ed) Carbon and nitrogen cycling in European forest ecosystems. Springer, Berlin, pp 171–188

    Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    PubMed  Google Scholar 

  • Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–292

    CAS  PubMed  Google Scholar 

  • Herbert DA, Fownes JH (1995) Phosphorus limitation of forest leaf area and net primary productivity on a weathered tropical soil. Biogeochemistry 29:223–235

    CAS  Google Scholar 

  • Hessen DO, Ã…gren GI, Anderson TR, Elser JJ, De Ruiter PC (2004) Carbon sequestration in ecosystems: the role of stoichiometry. Ecology 85:1179–1192

    Google Scholar 

  • Högberg P (2007) Nitrogen impacts on forest carbon. Nature 447:781–782

    Google Scholar 

  • Holland EA, Carroll MA (2003) Atmospheric chemistry and the bioatmospheric carbon and nitrogen cycles. In: Melillo JM, Field CB, Moldan B (eds) Interactions of the major biogeochemical cycles: global change and human impacts. Island Press, Washington, DC, pp 273–292

    Google Scholar 

  • Horton JL, Hart SC (1998) Hydraulic lift: a potentially important ecosystem process. Trends Ecol Evol 13:232–235

    Google Scholar 

  • Houlton BZ, Wang Y-P, Vitousek PM, Field CB (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327–334

    CAS  PubMed  Google Scholar 

  • Hüttl RF, Schaaf W (1997) Magnesium deficiency in forest ecosystems. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Hungate BA, Naiman RJ, Apps M, Cole JJ, Moldan B, Satake K, Stewart JWB, Victoria R, Vitousek PM (2003) Disturbance and element interactions. In: Melillo JM, Field CB, Moldan B (eds) Interactions of the major biogeochemical cycles: global change and human impacts. Island Press, Washington, DC, pp 47–62

    Google Scholar 

  • Hyvönen R, Ã…gren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, Oijen M, Wallin G (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173:463–480

    PubMed  Google Scholar 

  • Hyvönen R, Persson T, Andersson S, Olsson B, Ã…gren GI, Linder S (2008) Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry 89:121–137

    Google Scholar 

  • Jackson RB, Jobbágy EG, Avissar R, Baidya Roy S, Barrett DJ, Cook CW, Farley KA, le Maitre DC, McCarl BA, Murray BC (2005) Trading water for carbon with biological carbon sequestration. Science 310:1944–1947

    CAS  PubMed  Google Scholar 

  • Jandl R, Lindner M, Vesterdahl L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268

    CAS  Google Scholar 

  • Jarvis PG, Linder S (2007) Forests remove carbon dioxide from the atmosphere: spruce forest tales! In: Freer-Smith PH, Broadmeadow MSJ, Lynch JM (eds) Forestry and climate change. CAB International, Wallingford, UK, pp. 60–72

    Google Scholar 

  • Jassal RS, Black TA, Chen B, Roy R, Nesic Z, Spittlehouse DL, Trofymow JA (2008) N2O emissions and carbon sequestration in a nitrogen-fertilized Douglas fir stand. J Geophys Res 113:G04013. doi:10.1029/2008JG000764

    Google Scholar 

  • Jetten MSM (2008) The microbial nitrogen cycle. Environ Microbiol 10:2903–2909

    CAS  PubMed  Google Scholar 

  • Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. For Ecol Manag 140:227–238

    Google Scholar 

  • Johnson MS, Lehmann J (2006) Double-funneling of trees: stemflow and root-induced preferential flow. Ecoscience 13:324–333

    Google Scholar 

  • Jones DL, Kielland K, Sinclair FL, Dahlgren RA, Newsham KK, Farrar JF, Murphy DV (2009) Soil organic nitrogen mineralization across a global latitudinal gradient. Global Biogeochem Cy 23, GB1016, doi:10.1029/2008GB003250

    Google Scholar 

  • Kergoat L, Lafont S, Arneth A, Le Dantec V, Saugier B (2008) Nitrogen controls plant canopy light-use efficiency in temperate and boreal ecosystems. J Geophys Res 113:G04017. doi:10.1029/2007JG000676

    Google Scholar 

  • Kimmins JP (2004) Forest ecology. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Knapp AK, Beier C, Briske DD, Classen AT, Luo Y, Reichstein M, Smith MD, Smith SD, Bell JE, Fay PA, Heisler JL, Leavitt SW, Sherry R, Smith B, Weng E (2008) Consequences of more extreme precipitation regimes for terrestrial ecosystems. BioScience 58:811–821

    Google Scholar 

  • Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252–3257

    Google Scholar 

  • Koehler B, Corre MD, Veldkamp E, Wullaert H, Wright SJ (2009) Immediate and long-term nitrogen oxide emissions from tropical forest soils exposed to elevated nitrogen input. Glob Change Biol 15:2049–2066

    Google Scholar 

  • Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411

    PubMed  Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic, San Diego, CA

    Google Scholar 

  • Kull O (2002) Acclimation of photosynthesis in canopies: models and limitations. Oecologia 133:267–279

    Google Scholar 

  • Landsberg J (2003) Modelling forest ecosystems: state of the art, challenges, and future directions. Can J For Res 33:385–397

    Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    PubMed  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    CAS  PubMed  Google Scholar 

  • Levia DF, Frost EE (2003) A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. J Hydrol 274:1–29

    CAS  Google Scholar 

  • Lewis SL, Malhi Y, Phillips OL (2004) Fingerprinting the impacts of global change on tropical forests. Philos Trans R Soc Lond B 359:437–462

    CAS  Google Scholar 

  • Lilleskov EA, Bruns TD, Dawson TE, Camacho FJ (2009) Water sources and controls on water-loss rates if epigeous ectomycorrhizal fungal sporocarps during summer drought. New Phytol 182:483–494

    PubMed  Google Scholar 

  • Limm EB, Simonin KA, Bothman AG, Dawson TE (2009) Foliar water uptake: a common water acquisition strategy for plants of the redwood forest. Oecologia 161:449–459

    CAS  Google Scholar 

  • Liste H-H, White JC (2008) Plant hydraulic lift of soil water – implications for crop production and land restoration. Plant Soil 313:1–17

    CAS  Google Scholar 

  • Litton CM, Raich JW, Ryan MG (2007) Review: carbon allocation in forest ecosystems. Glob Change Biol 13:2089–2109

    Google Scholar 

  • Liu L, Greaver TL (2009) A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol Lett (in press), DOI: 10.1111/j.1461-0248.2009.01351.x

    Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628

    CAS  PubMed  Google Scholar 

  • Lovelock CE, Feller IC, Ball MC, Engelbrecht BMJ, Ewe ML (2006) Differences in plant function in phosphorus- and nitrogen-limited ecosystems. New Phytol 172:514–522

    CAS  PubMed  Google Scholar 

  • Luo Y (2007) Terrestrial carbon-cycle feedback to climate warming. Annu Rev Ecol Evol Syst 38:683–712

    Google Scholar 

  • Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54:731–739

    Google Scholar 

  • Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff JB, Rayment M, Tedeschi V, Valentini R, Grace J (2007) The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:848–852

    PubMed  Google Scholar 

  • Mahowald N, Jickells TD, Baker AR, Artaxo P, Benitez-Nelson CR, Bergametti G, Bond TC, Chen Y, Cohen DD, Herut B, Kubilay N, Losno R, Luo C, Maenhaut W, McGee KA, Okin GS, Siefert RL, Tsukuda S (2009) Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Global Biogeochem Cy 22, GB4026, doi:10.1029/2008GB003240

    Google Scholar 

  • Makarieva AM, Gorshkov VG (2007) Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol Earth Syst Sci 11:1013–1033

    Google Scholar 

  • Makarieva AM, Gorshkov VG, Li B-L (2009) Precipitation on land versus distance from the ocean: evidence for a forest pump of atmospheric moisture. Ecol Complex 6:302–307

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Matson PA, McDowell WH, Townsend AR, Vitousek PM (1999) The globalization of N deposition: ecosystem consequences in tropical environments. Biogeochemistry 46:67–83

    CAS  Google Scholar 

  • McGroddy ME, Silver WL, de Oliveira RC, de Mello WZ, Keller M (2008) Retention of phosphorus in highly weathered soils under a lowland Amazonian forest ecosystem. J Geophys Res 113:G04012. doi:10.1029/2008JG000456

    Google Scholar 

  • McMurtrie RE, Norby RJ, Medlyn BE, Dewar RC, Pepper DA, Reich PB, Barton CVM (2008) Why is plant-growth response to elevated CO2 amplified when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis. Funct Plant Biol 35:521–534

    CAS  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom/New York, NY, pp 747–845

    Google Scholar 

  • Meinzer FC, Clearwater MJ, Goldstein G (2001) Water transport in trees: current perspectives, new insights and some controversies. Environ Exp Bot 45:239–262

    Google Scholar 

  • Melillo JM, Field CB, Moldan B (2003) Element interactions and the cycles of life: an overview. In: Melillo JM, Field CB, Moldan B (eds) Interactions of the major biogeochemical cycles: global change and human impacts. Island Press, Washington, DC, pp 1–12

    Google Scholar 

  • Michalzik B, Kalbitz K, Park J-H, Solinger S, Matzner E (2001) Fluxes and concentrations of dissolved organic carbon and nitrogen – a synthesis for temperate forests. Biogeochemistry 52:173–205

    Google Scholar 

  • Millard P, Sommerkorn M, Grelet G-A (2007) Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytol 175:11–28

    CAS  PubMed  Google Scholar 

  • Monclus R, Dreyer E, Villar M, Delmotte FM, Delay D, Petit JM, Barbaroux C, Thiec D, Brechet C, Brignolas F (2006) Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides × Populus nigra. New Phytol 169:765–777

    PubMed  Google Scholar 

  • Nadelhoffer KJ, Emmett BA, Gundersen P, Janne Kjønaas O, Koopmans CJ, Schleppi P, Tietema A, Wright RF (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145–148

    CAS  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48

    PubMed  Google Scholar 

  • Neary DG, Ice GG, Jackson CR (2009) Linkages between forest soils and water quality and quantity. For Ecol Manage (in press) doi:10.1016/j.foreco.2009.05.027

    Google Scholar 

  • Novaes E, Osorio L, Drost DR, Miles BL, Boaventura-Novaes CRD, Benedict C, Dervinis C, Yu Q, Sykes R, Davis M, Martin TA, Peter GF, Kirst M (2009) Quantitative genetic analysis of biomass and wood chemistry of Populus under different nitrogen levels. New Phytol 182:878–890

    Google Scholar 

  • Oliver CD, Larson BC (1996) Forest stand dynamics. Wiley, New York

    Google Scholar 

  • Ollinger SV, Richardson AD, Martin ME, Hollinger DY, Frolking SE, Reich PB, Plourde LC, Katul GG, Munger JW, Oren R, Smith M-L, Paw KT, Bolstad PV, Cook BD, Day MC, Martin TA, Monson RK, Schmid HP (2008) Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: functional relations and potential climate feedbacks. P Natl Acad Sci USA 105:19336–19341

    CAS  Google Scholar 

  • Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schäfer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–472

    CAS  PubMed  Google Scholar 

  • Ostertag R (2001) The effects of nitrogen and phosphorus availability on fine root dynamics in Hawaiian forests. Ecology 82:485–499

    Google Scholar 

  • Ostle NJ, Smith P, Fisher R, Woodward FI, Fisher JB, Smith JU, Galbraith D, Levy P, Meir P, McNamara NP, Bardgett RD (2009) Integrating plant-soil interactions into global carbon cycle models. J Ecol 97:851–863

    Google Scholar 

  • Pallardy SG (2008) Physiology of woody plants. Academic, Burlington, MA

    Google Scholar 

  • Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–364

    CAS  PubMed  Google Scholar 

  • Paungfoo-Lonhienne C, Lonhienne TGA, Rentsch D, Robinson N, Christie M, Webb RI, Gamage HK, Carroll BJ, Schenk PM, Schmidt S (2008) Plants can use protein as a nitrogen source without assistance from other organisms. Proc Natl Acad Sci USA 105:4524–4529

    CAS  PubMed  Google Scholar 

  • Perry DA (1994) Forest ecosystems. The John Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Plante AF (2007) Soil biogeochemical cycling of inorganic nutrients and metals. In: Paul EA (ed) Soil microbiology, ecology, and biochemistry. Academic, Burlington, MA, pp 389–432

    Google Scholar 

  • Polacek D, Kofler W, Oberhuber W (2006) Radial growth of Pinus sylvestris growing on alluvial terraces is sensitive to water-level fluctuations. New Phytol 169:299–308

    PubMed  Google Scholar 

  • Pregitzer KS, Burton AJ, Zak DR, Talhelm AF (2008) Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests. Glob Change Biol 14:142–153

    Google Scholar 

  • Purves D, Pacala S (2008) Predictive models of forest dynamics. Science 320:1452–1453

    CAS  PubMed  Google Scholar 

  • Rasmussen J, Kuzyakov Y (2009) Carbon isotopes as proof for plant uptake of organic nitrogen: relevance of inorganic carbon uptake. Soil Biol Biochem 41:1586–1587

    Google Scholar 

  • Rauch JN, Pacyna JM (2009) Earth’s global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn cycles. Global Biogeochem Cy 23, GB2001, doi:10.1029/2008GB003376

    Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science (in press), doi:10.1126/science.1176985

    Google Scholar 

  • Reay DS, Dentener F, Smith P, Grace J, Feely RA (2008) Global nitrogen deposition and carbon sinks. Nat Geosci 1:430–437

    CAS  Google Scholar 

  • Reich PB, Hungate BA, Luo Y (2006) Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annu Rev Ecol Evol Syst 37:611–636

    Google Scholar 

  • Reich PB, Oleksyn J, Wright IJ (2009) Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160:207–212

    Google Scholar 

  • Reich PB, Tjoelker MG, Pregitzer KS, Wright IJ, Oleksyn J, Machado J-L (2008) Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol Lett 11:793–801

    PubMed  Google Scholar 

  • Reichstein M (2007) Impacts of climate change on forest soil carbon: principles, factors, models, uncertainties. In: Freer-Smith PH, Broadmeadow MSJ, Lynch JM (eds) Forestry and climate change. CAB International, Wallingford, U.K., pp 127–135

    Google Scholar 

  • Richards JH, Caldwell MM (1987) Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73:486–489

    Google Scholar 

  • Robertson GP, Groffman PM (2007) Nitrogen transformations. In: Paul EA (ed) Soil microbiology, ecology, and biochemistry. Academic, Burlington, MA, pp 341–364

    Google Scholar 

  • Schenk HJ (2008) The shallowest possible water extraction profile: a null model for global root distributions. Vadose Zone J 7:1119–1124

    Google Scholar 

  • Schenk HJ, Jackson RB (2005) Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma 126:129–140

    Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry – an analysis of global change. Academic, San Diego, CA

    Google Scholar 

  • Schlesinger WH (2009) On the fate of anthropogenic nitrogen. Proc Natl Acad Sci USA 106:203–208

    CAS  PubMed  Google Scholar 

  • Schuur EAG (2003) Productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation. Ecology 84:1165–1170

    Google Scholar 

  • Sheil D, Murdiyarso D (2009) How forests attract rain: an examination of a new hypothesis. BioScience 59:341–347

    Google Scholar 

  • Sievering H, Tomaszewski T, Torizzo J (2007) Canopy uptake of atmospheric N deposition at a conifer forest: part I-canopy N budget, photosynthetic efficiency and net ecosystem exchange. Tellus 59B:483–492

    CAS  Google Scholar 

  • Silver WL (1998) The potential effects of elevated CO2 and climate change on tropical forest soils and biogeochemical cycling. Clim Change 39:337–361

    CAS  Google Scholar 

  • Sparks JP (2009) Ecological ramifications of the direct foliar uptake of nitrogen. Oecologia 159:1–13

    Google Scholar 

  • Sutton MA, Simpson D, Levy PE, Smith RI, Reis S, van Oijen M, de Vries W (2008) Uncertainties in the relationship between atmospheric nitrogen deposition and forest carbon sequestration. Glob Change Biol 14:2057–2063

    Google Scholar 

  • Thomas PA, Packham JR (2007) Ecology of woodlands and forests – description, dynamics and diversity. Cambridge University Press, Cambridge, U.K

    Google Scholar 

  • Townsend AR, Asner GP, Cleveland CC (2008) The biogeochemical heterogeneity of tropical forests. Trends Ecol Evol 23:424–431

    PubMed  Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Google Scholar 

  • Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120

    PubMed  Google Scholar 

  • Treseder KK, Turner KM, Mack MC (2007) Mycorrhizal responses to nitrogen fertilization in boreal ecosystems: potential consequences for soil carbon storage. Glob Change Biol 13:78–88

    Google Scholar 

  • Valladares F (2008) A mechanistic view of the capacity of forests to cope with climate change. In: Bravo F, LeMay V, Jandl G, von Gadow K (eds) Managing forest ecosystems: the challenge of climate change. Springer, New York, pp 15–40

    Google Scholar 

  • van Dijk AIJM, Keenan RJ (2007) Planted forests and water in perspective. For Ecol Manag 251:1–9

    Google Scholar 

  • Vitousek P (2004) Nutrient cycling and limitation: Hawai’i as a model system. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Vitousek P, Aber J, Howarth R, Likens G, Matson P, Schindler D, Schlesinger W, Tilman D (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Vitousek PM, Fahey TJ, Johnson DW, Swift MJ (1988) Element interactions in forest ecosystems: succession, allometry and input–output budgets. Biogeochemistry 5:7–34

    CAS  Google Scholar 

  • Vrede T, Dobberfuhl D, Kooijman SALM, Elser JJ (2004) Fundamental connections among organism C:N:P stoichiometry, macromolecular composition, and growth. Ecology 85:1217–1229

    Google Scholar 

  • Walbridge MR (1991) Phosphorus availability in acid organic soils of the lower North Carolina coastal plain. Ecology 72:2083–2100

    Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19

    CAS  Google Scholar 

  • Wamelink GWW, van Dobben HF, Mol-Dijkstra JP, Schouwenberg EPAG, Kros J, de Vries W, Berendse F (2009) Effect of nitrogen deposition reduction on biodiversity and carbon sequestration. For Ecol Manag (in press) doi:10.1016/j.foreco.2008.10.024

    Google Scholar 

  • Wang X (2007) Effects of species richness and elevated carbon dioxide on biomass accumulation: a synthesis using meta-analysis. Oecologia 152:595–605

    PubMed  Google Scholar 

  • Wang Y-P, Houlton BZ, Field CB (2007) A model of biogeochemical cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase production. Global Biogeochem Cy 21, GB1018, doi:10.1029/2006GB002797

    Google Scholar 

  • Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–513

    CAS  PubMed  Google Scholar 

  • Waring RW, Running SW (2007) Forest ecosystems – analysis at multiple scales. Elsevier Academic, Burlington, MA

    Google Scholar 

  • Weedon JT, Cornwell WK, Cornelissen JHC, Zanne AE, Wirth C, Coomes DA (2009) Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol Lett 12:45–56

    PubMed  Google Scholar 

  • Whiteside MD, Treseder KK, Atsatt PR (2009) The brighter side of soils: quantum dots track organic nitrogen through fungi and plants. Ecology 90:100–108

    PubMed  Google Scholar 

  • Wild M (2009) Global dimming and brightening: a review. J Geophys Res 114, D00D16, doi:10.1029/2008JD011470

    Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets Ãœ, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    CAS  PubMed  Google Scholar 

  • Wullschleger SD, Meinzer FC, Vertessy RA (1998) A review of whole-plant water use studies in trees. Tree Physiol 18:499–512

    PubMed  Google Scholar 

  • Xia J, Wan S (2008) Global response patterns of terrestrial plant species to nitrogen addition. New Phytol 179:428–439

    CAS  PubMed  Google Scholar 

  • Zhang L, Dawes WR, Walker GR (2001) Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour Res 37:701–708

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Lorenz .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lorenz, K., Lal, R. (2010). Nutrient and Water Limitations on Carbon Sequestration in Forests. In: Carbon Sequestration in Forest Ecosystems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3266-9_5

Download citation

Publish with us

Policies and ethics