Skip to main content

Recombinant DNA Pharmaceuticals

  • Chapter
  • First Online:
  • 2215 Accesses

Abstract

Modern molecular medicine encompasses the utilization of many molecular biological techniques in the analysis of disease, disease genes and disease gene function. The study of disease genes and their function in an unaffected individual has been possible by the development of recombinant DNA and cloning techniques. The term gene cloning covers a range of techniques that makes it possible to manipulate DNA in a test tube and also to return it to living organism where it function normally. The tools of gene cloning includes vectors, genes and the enzymes. Overcoming the biological and methodological obstacles posed by cell factories to the production or rDNA pharmaceuticals is a main challenge in the further development of protein-based molecular medicine. Recombinant DNA technologies might have exhausted conventional cell factories and new production systems need to be deeply explored and incorporated into the production pipeline. On the other hand, a more profound comprehension of host cell physiology and stress responses to protein production would necessary offer improved tools (either at genetic, metabolic or system levels) to favour high yield and high quality protein production. Apart from the expected incorporation of unusual mammalian hosts such as transgenic animals or plants, microbial cells appear as extremely robust and convenient hosts, and gaining knowledge about the biological aspects of protein production would hopefully enhance the performance of such hosts beyond the current apparent limitations. In this regard, not only commonly used bacteria and yeasts but unconventional strains or species are observed as promising cell factories for forthcoming recombinant drugs. Their incorporation into productive processes for human pharmaceuticals would hopefully push the trend of marketed products and fulfil the increasing demands of the pharmacological industry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Berg, P., Baltimore, D., Boyer, H.W., 1974, Potential biohazards of recombinant DNA molecules. Science 185:303.

    Article  CAS  Google Scholar 

  • Binder, L., Vogel, T., Hadary, D., 1989, Chimeric bovine-human growth hormone prepared by recombinant DNA technology: binding properties and biological activity. Mol Endocrinol 3:923–930.

    Article  CAS  PubMed  Google Scholar 

  • Black, W.J., 1989, Drug products of recombinant DNA technology American. J HospPharm 46:1834–1844.

    CAS  Google Scholar 

  • Branduardi, P., Smeraldi, C., Porro, D., 2008, Metabolically engineered yeasts: ‘potential’ industrial applications. J Mol Microbiol Biotechnol 15:31–40.

    Article  CAS  PubMed  Google Scholar 

  • Carroll, W.L., 1993, Introduction to recombinant-DNA technology American. J Clin Nutr 58:249S–258S.

    CAS  Google Scholar 

  • Dawid, I.B., Wahli, W., 1979, Application of recombinant DNA technology to questions of developmental biology: a review. Dev Biol 69:305–328.

    Article  CAS  PubMed  Google Scholar 

  • de Marco, A., 2007, Protocol for preparing proteins with improved solubility by co-expressing with molecular chaperones in Escherichia coli. Nat Protoc 2:2632–2639.

    Article  PubMed  Google Scholar 

  • de Marco, A., Schroedel, A., 2005, Characterization of the aggregates formed during recombinant protein expression in bacteria. BMC Biochem 6:10. doi: 10.1186/1471-2091-6-10.

    Google Scholar 

  • Descamps, J.L., 1994, Therapeutic applications of genetic engineering. Ann Pharm Fr 52:294–302.

    CAS  PubMed  Google Scholar 

  • Ferrer-Miralles, N., Domingo-Espín, J., Corchero, J.L., Vázquez, E., Villaverde, A., 2009, Microbial factories for recombinant pharmaceuticals. Microb Cell Fact 8:17, doi:10.1186/1475-2859-8–17.

    Article  PubMed  Google Scholar 

  • Gluck, S.L., Nelson, R.D., Lee, B.S., 1992, Introduction to the principles and methods of recombinant DNA technology. Semin Nephrol 12:467–494.

    CAS  PubMed  Google Scholar 

  • Gonzalez-Montalban, N., 2007, Recombinant protein solubility-does more mean better. Nat Biotechnol 25:718–720.

    Article  CAS  PubMed  Google Scholar 

  • Graf, A., Gasser, B., Dragosits, M., Sauer, M., Leparc, G.G., Tüchler, T., Kreil, D.P., Mattanovich, D., 2008, Novel insights into the unfolded protein response using Pichia pastoris specific DNA microarrays. BMC Genomics 9:390.

    Article  PubMed  Google Scholar 

  • Holec-Gasior, L., Kur, J., Hiszczyńska-Sawicka, E., 2009, GRA2 and ROP1 recombinant antigens as potential markers for detection of Toxoplasma gondii-specific immunoglobulin G in humans with acute toxoplasmosis. Clin Vaccine Immunol 16:510–514.

    Article  CAS  PubMed  Google Scholar 

  • Holtzman, N.A., 1988, Recombinant DNA technology, genetic tests, and public policy. Am J Hum Genet 42:624–632.

    CAS  PubMed  Google Scholar 

  • Jana, S., Deb, J.K., 2005, Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol 67:289–298.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, I.S., 1983, Human insulin from recombinant DNA technology. Science 219:632–637.

    Article  CAS  PubMed  Google Scholar 

  • Lomedico, P.T., 1982, Use of recombinant DNA technology to program eukaryotic cells to synthesize rat proinsulin: a rapid expression assay for cloned genes. PNAS 79:5798–5802.

    Article  CAS  PubMed  Google Scholar 

  • Loumaye, E., Campbell, R., Salat-Baroux, J., 1995, Human follicle-stimulating hormone produced by recombinant DNA technology: a review for clinicians. Hum Reprod Update 1:188–199.

    Article  CAS  PubMed  Google Scholar 

  • Manning, M.C., Patel, K., Borchardt, R.T., 1989, Stability of protein pharmaceuticals. Pharm Res 6:903–918.

    Article  CAS  PubMed  Google Scholar 

  • Marston, F.A., 1986, The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem J 240:1–12.

    CAS  PubMed  Google Scholar 

  • Mattanovich, D., Gasser, B., Hohenblum, H., Sauer, M., 2004, Stress in recombinant protein producing yeasts. J Biotechnol 113:121–135.

    Article  CAS  PubMed  Google Scholar 

  • Porro, D., Sauer, M., Branduardi, P., Mattanovich, D., 2005, Recombinant protein production in yeasts. Mol Biotechnol 31:245–259.

    Article  CAS  PubMed  Google Scholar 

  • Redwan, e., Matar, S.M., El-Aziz, G.A., Serour, E.A., 2008, Synthesis of the human insulin gene: protein expression, scaling up and bioactivity. Prep Biochem Biotechnol 38:24–39.

    Article  CAS  Google Scholar 

  • Revers, R.R., Henry, R., Schmeiser, L., Kolterman, O., Cohen, R., Bergenstal, R., Polonsky, K., Jaspan, J., Rubenstein, A., Frank, B., 1984, The effects of biosynthetic human proinsulin on carbohydrate metabolism. Diabetes 33:762–770.

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui, M.A., 1982, Recombinant DNA technology and its application to developmental biology. J Craniofac Genet Dev Biol 2:75–92.

    CAS  PubMed  Google Scholar 

  • Sorensen, H.P., Mortensen, K.K., 2005, Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact 4:1.

    Article  PubMed  Google Scholar 

  • Staub, J.M., Garcia, B., Graves, J., Hajdukiewicz, P.T., Hunter, P., Nehra, N., Paradkar, V., Schlittler, M., Carroll, J.A., Spatola, L., Ward, D., Ye, G., Russell, D.A., 2000, High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18:333–338.

    Article  CAS  PubMed  Google Scholar 

  • Tiefenbrunn, A.J., Robinson, A.K., Kurnik, P.B., Ludbrook, P.A., Sobel, B.E., 1985, Clinical pharmacology in patients with evolving myocardial infarction of tissue-type plasminogen activator produced by recombinant DNA technology. Circulation 71:110–116.

    CAS  PubMed  Google Scholar 

  • Travis, J., Owen, M., George, P., 1985, Isolation and properties of recombinant DNA produced variants of human alpha 1-proteinase inhibitor. J Biol Chem 260:4384–4389.

    CAS  PubMed  Google Scholar 

  • Vajo, Z., Fawcett, J., Duckworth, W.C., 2001, Recombinant DNA technology in the treatment of diabetes: insulin analogs. Endocr Rev 22:706–717.

    Article  CAS  PubMed  Google Scholar 

  • Werner, R.G., Pommer, C.H., 1990, Successful development of recombinant DNA-derived pharmaceuticals. Arzneimittelforschung 40:1274–1283.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Debnath, M., Prasad, G.B., Bisen, P.S. (2010). Recombinant DNA Pharmaceuticals. In: Molecular Diagnostics: Promises and Possibilities. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3261-4_3

Download citation

Publish with us

Policies and ethics