Skip to main content

Immunoassay

  • Chapter
  • First Online:
  • 2089 Accesses

Abstract

Antibody-based detection systems for specific Ags are versatile and powerful tools for various molecular and cellular analyses, as well as clinical diagnostics. The power of such systems originates from the considerable specificity of Abs for particular antigenic epitopes. There are, however, numerous examples where important biological markers for cancer, infectious disease, or biochemical processes are present at too low a concentration in body fluids or tissues to be detected by using conventional immunoassays.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alcorn, S.W., Pascho, R.J., 2000, Single-dilution enzyme-linked immunosorbent assay for quantification of antigen-specific salmonid antibody. J Vet Diagn Invest 12(3):245–252.

    CAS  PubMed  Google Scholar 

  • Arenkov, P., Kukhtin, A., Gemmelll, A., Voloshchuck, S., Chupeeva, V., Mirzabekov, A., 2000, Protein microchips: use for immunoassay and enzymatic reactions. Ana Biochem 278(2):123–131

    Article  CAS  Google Scholar 

  • Beqai, S.H., Lerner, A.M., Fitzgerald, J.T., 2008, Immunoassay with cytomegalovirus early antigens from gene products p52 and CM2 (UL44 and UL57) detects active infection in patients with chronic fatigue syndrome. J Clin Pathol 61(5):623–626.

    Article  Google Scholar 

  • Bosch, A.M.G., Van Hell, H., Brands, J.A.M., Dijkhuizen, D.M., Schuurs, A.H.W.M., 1975, Methods for the determination of total estrogens (TE) and human placental lactogen (HPL) in plasma of pregnant women by enzyme-immunoassay. Clin Chem 21:1009.

    Google Scholar 

  • Bourdage, J.S., Lee, T.N., Taylor, J.M., Willey, M.B., Brandt, J.T., Konrad, R.J., 2005, Effect of double antigen bridging immunoassay format on antigen coating concentration dependence and implications for designing immunogenicity assays for monoclonal antibodies. J Pharm Biomed Anal 39(3–4):685–690.

    Article  CAS  PubMed  Google Scholar 

  • Catt, K., Tregear, G.W., 1967, Solid-phase radioimmunoassay in antibody-coated tubes. Science 158:1570–1572.

    Article  CAS  PubMed  Google Scholar 

  • Edelman, R., 2007, Dengue vaccines approach the finish line. Clin Infect Dis 45 Suppl 1:S56–S60.

    Article  PubMed  Google Scholar 

  • Engvall, E., Jonsson, K., Perlmann, P., 1971, Enzyme-linked immunosorbent assay. II. Quantitative assay of protein antigen, immunoglobulin G, by means of enzyme-labelled antigen and antibody-coated tubes. Biochim Biophys Acta 251(3):427–434.

    CAS  PubMed  Google Scholar 

  • Engvall, E., Perlmann, P., 1971, Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 8:871–874.

    Article  CAS  PubMed  Google Scholar 

  • Engvall, E., Wewer, U.M., 2003 The new frontier in muscular dystrophy research: booster genes. FASEB J;17:1579–1584.

    Article  CAS  PubMed  Google Scholar 

  • Findlay, J.W., Smith, W.C., Lee, J.W., Nordblom, G.D., Das, I., DeSilva, B.S., Khan, M.N., Bowsher, R.R., 2000, Validation of immunoassays for bioanalysis: a pharmaceutical industry perspective J Pharm Biomed Anal 21(6):1249–1273.

    Article  CAS  PubMed  Google Scholar 

  • Geng, D., Shankar, G., Schantz, A., Rajadhyaksha, M., Davis, H., Wagner, C., 2005, Validation of immunoassays used to assess immunogenicity to therapeutic monoclonal antibodies. J Pharm Biomed Anal 39(3–4):364–375.

    Article  CAS  PubMed  Google Scholar 

  • Grunow, R., Porsch-Ozchrumez, M., Splettstoesser, W., Buckendahl, A., Hahn, U., Beyer, W., Bohm, R., Huber, M., Vd Esche, U., Bessler, W., Frangoulidis, D., Finke, E.J., 2007, Monitoring of ELISA-reactive antibodies against anthrax protective antigen (PA), lethal factor (LF), and toxin-neutralizing antibodies in serum of individuals vaccinated against anthrax with the PA-based UK anthrax vaccine. Vaccine 25(18):3679–3683.

    Article  CAS  PubMed  Google Scholar 

  • Halperin, G., Marcus, H., 2001, Application of recovery tests in the validation of immunoassays for assessing the immunogenicity of B. anthracis PA vaccine. PDA J Pharm Sci Technol 55(3):150–161.

    CAS  Google Scholar 

  • Hashemitabar, G.R., Razmi, G.R., Shahroozian, A., 2008, Application of a modified human enzyme-linked immunosorbent assay kit for diagnosis of hydatidosis in sheep Iranian J Vet Res 9(1) serial no. 22:31–35.

    Google Scholar 

  • Hix, J., Martinez, C., Buchanan, I., Morgan, J., Tam, M., Shankar, A., 2004, Development of a rapid enzyme immunoassay for the detection of retinol-binding protein. Am J Clin Nutrition 79(1):93–98.

    CAS  Google Scholar 

  • Howell, E.E., Nasser, J., Schray, K.J., 1981, Coated tube enzyme immunoassay: factors affecting sensitivity and effects of reversible protein binding to polystyrene. J Immunoassay 2(3–4):205–225.

    Article  CAS  PubMed  Google Scholar 

  • Hunsperger, E.A., Yoksan, S., Buchy, P., Nguyen, V.C., Sekaran, S.D., Enria, D.A., Pelegrino, J.L., Vazquez, S., Artsob, H., Drebot, M., et al., 2009, Evaluation of commercially available anti-dengue virus immunoglobulin M tests. Emerg Infect Dis 15(3):436–440.

    Article  CAS  PubMed  Google Scholar 

  • Kolb, S.J., Gubitz, A.K., Olszewski, R.F., Jr., Ottinger, E., Sumner, C.J., Fischbeck, K.H., Dreyfuss, G., 2006, A novel cell immunoassay to measure survival of motor neurons protein in blood cells. BMC Neurol 6:6.

    Article  PubMed  Google Scholar 

  • Liu, X., Dai, Q., Austin, L., Coutts, J., Knowles, G., Zou, J., Chen, H., Huo, Q., 2008, A one-step homogeneous immunoassay for cancer biomarker detection using glod nanoparticle probes coupled with dynamic light scattering. J Am Chem Soc 130(9):2780–2782.

    Article  CAS  PubMed  Google Scholar 

  • Ludert, J.E., Mosso, C., Ceballos-Olvera, I., del Angel, R.M., 2008, Use of a commercial enzyme immunoassay to monitor dengue virus replication in cultured cells. Virol J 5:51.

    Google Scholar 

  • Mida, T., Miyazaki, O., Nakamura, Y., Hirayama, S., Hanyu, O., Fukamachi, I., Okada, M., 2003, Analytical performance of a sandwich enzyme immunoassay for preβ-HDL in stabilized plasma. J Lipid Res 44(3):645–650.

    Article  Google Scholar 

  • Mire-Sluis, A.R., Barrett, Y.C., Devanarayan, V., Koren, E., Liu, H., Maia, M., Parish, T., Scott, G., Shankar, G., Shores, E., Swanson, S.J., Taniguchi, G., Wierda, D., Zuckerman, L.A., 2004, Recommendations for the design and optimization of immunoassays used in the detection of host antibodies against biotechnology products. J Immunol Methods 289(1–2):1–16.

    Article  CAS  PubMed  Google Scholar 

  • Munial, S., Miethe, P., Netuschil, L., Struck, F., Maier, K., Bauermeister, C., 2007, Immunoassay-based diagnostic point-of-care technology for oral specimen. Ann N Y Acad Sci 1098:486–489.

    Article  Google Scholar 

  • Ong, C.S., Li, A.S., Priest, J.W., Copes, R., Khan, M., Fyfe, M.W., Marion, S.A., Roberts, J.M., Lammie, P.J., Isaac-Renton, J.L., 2005, Enzyme immunoassay of cryptosporidium-specific immunoglobulin G antibodies to assess longitudinal infection trends in six communities in British Columbia, Canada. Am J Trop Med Hyg 73(2):288–295.

    CAS  PubMed  Google Scholar 

  • Pombo, M., Berthold, I., Gingrich, E., Jaramillo, K., Leef, M., Sirota, L., Hsu, H., Arciniega, J., 2004, Validation of an anti-PA-ELISA for the potency testing of anthrax vaccine in mice. Biologicals 32(3):157–163.

    Article  CAS  PubMed  Google Scholar 

  • Rubina, A.Y., Dyukova, V.I., Dementieva, E.I., Stomakhin, A.A., Nesmeyanov, V.A., Grishin, E.V., Zasedateley, A.S., 2005, Quantitative immunoassay of biotoxins on hydrogel-based protein m microchips. Anal Biochem 340(2):317–329.

    Article  CAS  PubMed  Google Scholar 

  • Rucker, V.C., Havenstrite, K.L., Herr, A.E., 2005, Antibody microarrays for native toxin detection. Anal Biochem 339(2):262–270.

    Article  CAS  PubMed  Google Scholar 

  • Schuurs, A.H.W.M., Van Weemen, B.K., 1980, Enzyme-immunoassay: a powerful analytical tool [Review]. J Immunoassay 1:229–249.

    Article  CAS  PubMed  Google Scholar 

  • Schweitzer, B., Wiltshire, S., Lamber, J., O’Malley, S., Kukanskis, K., Zhu, Z., Kingsmore, S.F., Lizardi, P.M., Ward, D.C., 2000, Immunoassays with rolling circle DNA amplification: a versatile platform for ultrasensitive antigen detection. Proc Natl Acad Sci USA 97(18):10113–10119.

    Article  CAS  PubMed  Google Scholar 

  • Seppala, M., Rutanen, E.M., Heikinheimo, M., Jalanko, H., Engvall, E., 1978 Detection of trophoblastic tumour activity by pregnancy-specific ß1 glycoprotein. Int J Cancer 21:265–267.

    Article  CAS  PubMed  Google Scholar 

  • Sipponen, P., Ruoslahti, E., Vuento, M., Engvall, E., Stenman, U., Ihamakit, T., Suirala, M., 1976, CEA and CEA-like activity in gastric cancer. Acta Hepatogastroenterol (Stuttg) 13:276–279.

    Google Scholar 

  • Takashi, M., Miyazaki, O., Nakamura, Y., et al., 2003, Analytical performance of a sandwich enzyme immunoassay for preß1-HDL in stabilized plasma, J Lipid Res 44:645–650.

    Google Scholar 

  • Uotila, M., Ruoslathi, E., Engvall, E., 1981, Two-site sandwich enzyme immunoassay with monoclonal antibodies to human alphafetoprotein. J Immunol Methods 42(1):11–15.

    Article  CAS  PubMed  Google Scholar 

  • Valdes, I., Hermida, L., Martin, J., Menendez, T., Gil, L., Lazo, L., Castro, J, Niebla, O., Lopez C., Bernardo, L., Sanchez, J., Romero, Y., Martinez, R., Guzman, M.G., Guillen, G., 2009, Immunological evaluation in nonhuman primates of formulations based on the chimeric protein p64k-domain III of dengue 2 and two components of Neisseria meningitis. Vaccine 27(7):995–1001.

    Article  CAS  PubMed  Google Scholar 

  • Van Cleave, V.H., 2003, Vailidation of immunoassays for anti-drug antibodies. Dev Biol (Basel) 112:107–112.

    Google Scholar 

  • Van Weemen, B.K., Schuurs, A.H.W.M., 1974, Immunoassay using antibody-enzyme conjugates. FEBS Lett 43:215–218.

    Article  PubMed  Google Scholar 

  • Von der Waat, M., Snelting, A., Cichy, J., Wolters, G., Schuurs, A., Schuurs, A.H.W.M., 1978, Enzyme immunoassay in diagnosis of hepatitis with emphasis on the detection of “e” antigen (HbeAg). J Med Virol 3(1):43–49.

    Article  Google Scholar 

  • Watt, R.M., Philip, A., Wos, S.M., Sam, G.J., 1986, Rapid assay for immunological detection of Trichomonas vaginalis. J Clin Microbiol 24(4):551–555.

    CAS  PubMed  Google Scholar 

  • Wolters, G., Kuijpers, L.P.C., Kacaki, J., Schuurs, A.H.W.M., 1976, Enzyme-immunoassay for HbsAg. Lancet II:690.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Debnath, M., Prasad, G.B., Bisen, P.S. (2010). Immunoassay. In: Molecular Diagnostics: Promises and Possibilities. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3261-4_11

Download citation

Publish with us

Policies and ethics