The Idea of Pure Logic

Part of the Synthese Library book series (SYLI, volume 345)


In his Prolegomena to Pure Logic Husserl works with Bolzano’s idea that the entire field of truths can be partitioned into several parts, each of which consists of all truths “of a certain kind,” that is, all truths that are germane to a certain homogeneous kind (Gattung) of objects.1 Husserl says that “it is not arbitrary where and how we delimit fields of truth,”2 “the domain of truth is not an unordered chaos,”3 but it is articulated in “natural provinces”4 that are also called “fields of knowledge (Erkenntnisgebiete)”5 or fields of experience (in a broad sense of this word which comports well with common mathematical usage, where, for instance, a system of abstract objects like e.g. the natural numbers equipped with certain functions and relations is said to be a “field of experience”). Each field of experience in Husserl’s sense can be viewed as “an independent reality with its own experimentally determined mathematical structure.”6 In this sense fields of “the purely mathematical sciences whose objects are numbers, manifolds (Mannigfaltigkeiten), etc., things thought of as mere bearers of ideal properties, independently from real being or not being,”7 are also to be considered fields of knowledge or of experience.8


Cardinal Number Logical Truth True Proposition Valid Inference General Proposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bolzano B (1810) Beyträge zu einer begründeteren Darstellung der Mathematik. Erste Lieferung. Caspar Widtmann, Prague. Reprint: Wissenschaftliche Buchgesellschaft, Darmstadt 1974Google Scholar
  2. Boole G (1847) The mathematical analysis of logic. Macmillan, CambridgeGoogle Scholar
  3. Frege G (1881), Booles rechnende Logik und die Begriffsschrift. In: Frege 1969, 9–52Google Scholar
  4. Frege G (1882) Ueber den Zweck der Begriffsschrift. In: Frege 2007, 97–106Google Scholar
  5. Frege G (1892) Über Begriff und Gegenstand. Zeitschrift für Philosophie und philosophische Kritik 16:192–205Google Scholar
  6. Leibniz GW (1704) Nouveaux Essais sur l’entendement humain. In: Akademieausgabe, VI.6, Akademie-Verlag, Berlin 1962Google Scholar
  7. Schröder E (1877) Der Operationskreis des Logikkalkuls. Teubner, LeipzigGoogle Scholar
  8. Berg J (1962) Bolzano’s logic. Almquist & Wiksell, StockholmGoogle Scholar
  9. Buhl G (1961) Ableitbarkeit und Abfolge. Kant-Studien, Ergänzungshefte 83Google Scholar
  10. Casari E (1973) La filosofia della matematica del ‘900. Sansoni, FirenzeGoogle Scholar
  11. Casari E (1985) L’universo logico bolzaniano. Rivista di Filosofia 76:339–366Google Scholar
  12. Casari E (1987) Matematica e verità. Rivista di Filosofia 78:329–350Google Scholar
  13. Casari E (1992) An interpretation of some ontological and semantical notions in Bolzano's logic. In: Florence Centre (ed), pp 55–105Google Scholar
  14. Casari E (1999) Husserl. In: Rossi P, Viano CA (eds) Storia della Filosofia, Vol. 6/1. Laterza, Roma-Bari, pp 161–173Google Scholar
  15. Casari E (2000) On Husserl’s theory of wholes and parts. Hist Phil Logic 21:1–43CrossRefGoogle Scholar
  16. Cavaillès J, Méthode axiomatique et formalisme (1938). In: Cavaillès 1994, pp 1–202Google Scholar
  17. Fine K (1994) Essence and modality. In: Tomberlin J (ed) Philosophical perspectives 8: logic and language. Ridgeview Publishing, Atascadero, pp 1–16Google Scholar
  18. George R (1983) Bolzano’s consequence, relevance and enthymemes and a postscript on fallacies. J Phil Logic 12:299–318, 319–325Google Scholar
  19. Künne W (2003) Conceptions of truth. Clarendon Press, OxfordCrossRefGoogle Scholar
  20. Künne W (2008) Versuche über Bolzano/Essays on Bolzano. Academia Verlag, St. AugustinGoogle Scholar
  21. Künne W (2009) Die Philosophische Logik Gottlob Freges. Klostermann, Frankfurt/MGoogle Scholar
  22. Mancosu P (1999) Bolzano and Cournot on mathematical explanation. Revue d’histoire des sciences 42:429–455CrossRefGoogle Scholar
  23. Morscher E (2008) Bernard Bolzano’s life and work. Academia Verlag, St. AugustinGoogle Scholar
  24. Mulligan K (2004) Essence and modality the quintessence of Husserl’s theory. In: Siebel M, Textor M (eds) Semantik und Ontologie. Ontos Verlag, Frankfurt, pp 387–419Google Scholar
  25. Null GT, Simons RA (1982) Manifolds, concepts and moment abstrakta. In: Smith B (ed) Parts and moments, studies in logic and formal ontology. Philosophia Verlag, München, pp 439–479Google Scholar
  26. Ortiz Hill C, Husserl’s Mannigfaltigkeitslehre (2000a), in: Ortiz Hill C, Rosado Haddock GE 2000b, 161–168Google Scholar
  27. Ortiz Hill C (2002) Tackling three of Frege’s problems: Edmund Husserl on sets ads manifolds. Axiomathes 13:79–104CrossRefGoogle Scholar
  28. Paoli F (1991) Bolzano e le dimostrazioni matematiche. Rivista di Filosofia 83:221–242Google Scholar
  29. Scholz H (1930) Die Axiomatik der Alten. In: Mathesis Universalis, Wissenschaftliche Buchgesellschaft, Darmstadt 1969, pp 27–44Google Scholar
  30. Sebestik J (1992) Logique et mathématique chez Bernard Bolzano. Vrin, ParisGoogle Scholar
  31. Siebel M (1996) Der Begriff der Ableitbarkeit bei Bolzano. Academia Verlag, St. AugustinGoogle Scholar
  32. Tatzel A (2002) Bolzano’s theory of ground and consequence. Notre Dame J Formal Logic 43:1–25CrossRefGoogle Scholar
  33. Tieszen R (2004) Science as a triumph of the human spirit and science in crisis. Husserls and the fortunes of reason. In: Tieszen R 2005, 21–45Google Scholar
  34. Webb J (1980) Mechanism, mentalism and mathematics. Reidel, DordrechtGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Universität Hamburg Philosophisches SeminarHamburgGermany

Personalised recommendations